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Ferromagnetic spin correlations in the two-dimensional Hubbard model
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We analyze the dynamical nearest-neighbor and next-nearest-neighbor spin correlations in the four-site and
eight-site dynamical cluster approximation to the two-dimensional Hubbard model. Focusing on the robustness
of these correlations at long imaginary times, we reveal enhanced ferromagnetic correlations on the lattice
diagonal, consistent with the emergence of composite spin-1 moments at a temperature scale that essentially
coincides with the pseudogap temperature T ∗. We discuss these results in the context of the spin-freezing theory
of unconventional superconductivity.
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I. INTRODUCTION

The two-dimensional (2D) Hubbard model has been stud-
ied extensively in connection with high-temperature super-
conductivity in the cuprates [1–4]. It is believed to be the
simplest model that captures the relevant physics in these
compounds and indeed, many features of the cuprate phase
diagram can be reproduced using, for example, cluster exten-
sions of dynamical mean field theory (DMFT) [5–8]. These
studies, most of them based on a four-site plaquette embedded
in a self-consistent dynamical mean field, not only repro-
duced a d-wave superconducting dome next to or partially
overlapping with an antiferromagnetic phase [5,6,9] but also
the characteristic signatures of the pseudogap state [10–12].
They further revealed that the pseudogap state competes with
superconductivity [13].

Despite this progress, the actual mechanism underlying the
appearance of the pseudogap and high-temperature supercon-
ductivity remains to be understood. A common view is that an-
tiferromagnetic spin fluctuations provide the “glue” for super-
conductivity [14]. The recently proposed spin-freezing theory
of unconventional superconductity [15,16], on the other hand,
suggests that fluctuations in the magnitude of a composite
spin (henceforth referred to as local spin fluctuations) play a
crucial role. This motivates the present study of dynamical
spin correlations in the 2D Hubbard model.

The link to spin-freezing-induced superconductivity [15]
and Hund metal behavior [17] is provided by the four-site
cluster DMFT construction. This cluster DMFT solution can
be mapped exactly to an auxiliary two-site, two-orbital cluster
problem with a Slater-Kanamori interaction on each site [16].
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The mapping involves a transformation to bonding and anti-
bonding orbitals along the diagonals of the four-site cluster, as
illustrated in Fig. 1. If the annihilation operators on the four-
site cluster are denoted by d1, . . . , d4, the transformed orbitals
are f1 = 1√

2
(d1 − d3), c1 = 1√

2
(d1 + d3), f2 = 1√

2
(d2 − d4),

and c2 = 1√
2
(d2 + d4). The freezing of spins (due to the

ferromagnetic Hund coupling; see blue rectangles in Fig. 1)
in the effective two-orbital description translates into robust
composite spin-1 moments on the diagonals of the original
cluster. An interesting open question concerns the antiferro-
magnetic correlations between these spin-1 moments, and the
competition with spin- 1

2 nearest-neighbor singlet formation
(red ellipse), i.e., the antiferromangetic correlations that have
been considered in most of the previous literature [18]. It is
also relevant to ask how robust this picture is as one moves to
larger clusters.

FIG. 1. Illustration of the basis transformation from the four-site
single-orbital plaquette (left) to a two-site two-orbital cluster (right).
Solid black lines represent a hopping t , double lines a hopping 2t ,
and dashed lines a Slater-Kanamori interaction with Ũ = Ũ ′ = J̃ =
U/2 (where U is the Hubbard interaction on the plaquette). Blue
rectangles represent the tendency to spin-1 formation on a given site
of the two-orbital cluster, and the red ellipse the competing tendency
to form a spin- 1

2 singlet between c electrons with opposite spins.
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FIG. 2. Imaginary-time-dependent nearest-neighbor (−S12,
dashed) and diagonal next-nearest-neighbor (S13, solid) spin
correlations at β = 10 and indicated fillings, in four-site DCA (left)
and eight-site DCA (right). While antiferromagnetic S12 correlations
dominate at short times, they are weaker than the ferromagnetic S13

correlations at τ = β/2.

The spin freezing theory focuses on cluster spin
correlations measured in the bonding and antibonding
basis, such as S f f (τ ) = 〈Sz

f (τ )Sz
f (0)〉. In terms of

the original operators, and for f ≡ f1, we can write
Sz

f = 1
2 [Sz

1 + Sz
3 − 1

2 (Y↑ − Y↓)] with Yσ = d†
1σ d3σ + d†

3σ d1σ .
The S f f correlator can thus be expressed as S f f (τ ) =
1
2 [S11(τ ) + S13(τ )] − 1

8 [〈(Sz
1(0) + Sz

3(0))(Y↑(τ ) − Y↓(τ ))〉] −
1
8 [〈(Y↑(0) − Y↓(0))(Sz

1(τ ) + Sz
3(τ ))〉], and requires a

measurement of correlation functions of the type
〈n1σ (τ )d†

1σ ′d3σ ′ (0)〉. This is numerically challenging and
requires a worm-type sampling [16,19]. Some results for
the easily measurable contribution 1

2 [S11(τ ) + S13(τ )] are
presented in the Appendix.

In the present study, we take a step back and instead of
discussing the dynamics of S f f (τ ) we compute and analyze
the nearest-neighbor S12 and diagonal next-nearest neighbor
S13 spin correlations in the original basis. We will reveal
nontrivial results for the relative strengths of these correla-
tions in the long-τ (low energy) regime, and connect these
observations to the spin-freezing scenario and pseudogap
phenomenon.

II. RESULTS

We employ the dynamical cluster approximation (DCA)
[20], which enforces translational invariance on the cluster,
and report the spin correlations S12 and S13 measured on the
impurity cluster. The calculations are performed for a square
lattice Hubbard model with nearest-neighbor hopping t , which
we use as the unit of energy. The on-site repulsion is fixed to
U = 8.

A. Spin correlations

Figure 2 plots −S12 and S13 for inverse temperature β = 10
and different fillings (half filling corresponds to nσ = 0.5).
The left (right) panel reports results for the four-site (eight-
site) cluster. At short imaginary times τ , the antiferromag-
netic nearest-neighbor correlations (dashed lines) dominate
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FIG. 3. Difference in spin correlations β[S13(β/2)−(−S12(β/2))]
in four-site DCA (top) and eight-site DCA (bottom). The Tc data for
the d-wave superconducting phase in the four-site case (solid black
line) are taken from Ref. [6]. The Tc dome of the eight-site cluster
is an educated guess based on the results in Ref. [21]. Dashed lines
with diagonal crosses indicate the filling below which the nearest-
neighbor spin correlations at τ = β/2 become ferromagnetic.

the diagonal next-nearest-neighbor correlations (solid lines).
The time dependence is, however, nontrivial, and for a broad
range of fillings, we find that at long times the ferromangetic
S13 correlations dominate. This is related to the interesting fact
that S13 can increase with increasing τ , in contrast to −S12,
which always decreases. We interpret the robustness of S13 as
a signature of the formation of a composite spin-1 moment on
diagonally opposite sites. While this phenomenon has been
anticipated in the previous spin-freezing analysis based on
four-site cluster DMFT [16], it is manifest also in the DCA
solution and persists in the eight-site calculation.

Because the long-time behavior reveals interesting prop-
erties of the spin correlations, we will from now on focus
on the values of S12 and S13 at τ = β/2. In Fig. 3, we plot
β[S13(β/2) − ( − S12(β/2))], where the multiplication with
β is meant to compensate for the overall decay of the correla-
tions with time, but is not crucial for the following analysis. A
positive value indicates dominant ferromagnetic correlations
on the diagonals, while a negative value implies dominant an-
tiferromagnetic nearest-neighbor correlations. Let us first fo-
cus on the four-site DCA results, shown in the top panel. Here,
we also indicate by a black solid line the Tc dome previously
computed for the same model in Ref. [6]. It is apparent from
this plot that ferromagnetic next-nearest-neighbor correlations
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FIG. 4. Imaginary-time dependent next-nearest-neighbor (S13,
solid) and nearest-neighbor (−S12, dashed) spin correlations at half-
filling and indicated β, in four-site DCA (left) and eight-site DCA
(right).

dominate over a wide doping range, and in fact almost exactly
the doping range in which d-wave superconductivity is found
at low temperatures.

The strongest enhancement of ferromagnetic correlations
occurs in a temperature and doping region that one typically
associates with the onset of the pseudogap (“T ∗ line”). This
suggests that the formation and freezing of composite spins
on the lattice diagonals is at the root of the pseudogap
phenomenon. Note that in our simulations, long-range order
is suppressed. It is natural to assume that the spin-1 mo-
ments formed on the diagonals will order antiferromagneti-
cally close to half-filling. In fact, the region with dominant
ferromagnetic correlations is also quite similar to the antifer-
romagnetic region reported in Ref. [6]. Whether the composite
spin-1 moments will still be present in the long-range ordered
antiferromagnetic phase is an interesting open question.

The lower panel of Fig. 3 shows the results obtained
from eight-site DCA. The computational resources available
to us do not allow to compute the Tc dome, but due to
the smaller mean-field effect, we expect it to peak at lower
temperature. Based on the results for slightly smaller U
reported in Refs. [13,21], we show an educated guess for
the Tc dome by the dashed line. As in the four-site DCA
case, the ferromagnetic spin correlations dominate at τ = β/2
in a wide doping region that covers the expected Tc dome.
The largest enhancement is found at lower temperatures in
eight-site DCA, but comparable values to the four-site case are
reached for β � 10. The suppression due to the exponential
decay of the spin correlations near half-filling is barely evident
at β � 20, due to the overall weaker antiferromagnetic spin
correlations; see also the right panel of Fig. 4.

B. Pseudogap

To investigate the apparent connection between spin-
freezing and the pseudogap phase more closely, we have ana-
lyzed the spectral functions of the (0, π ) momentum patch,
using the maximum entropy (MaxEnt) method [22–25]. In
Fig. 3, a small black dot indicates a small pseudogap feature,
and the larger black circles show a robust pseudogap in
the antinodal region. While our procedure is not immune to

Monte Carlo noise and uncertainties in the analytical continu-
ation, it produces an interesting picture in rough agreement
with the T ∗ line reported in the previous literature [6]. In
particular, we find that the pseudogap region determined
by MaxEnt indeed essentially coincides with the region of
enhanced ferromagnetic correlations.

The apparent weakening of the ferromagnetic tendency
at low temperature and close to half-filling (clearly visible
in the top panel of Fig. 3) is due to the exponential decay
of both S13 and S12 in this region of the phase diagram.
(The data for S13 are shown in the Appendix.) This results
in much smaller values of β[S13(β/2) − ( − S12(β/2))]. To
illustrate the crossover to an exponential decay, we plot in
Fig. 4 the temperature dependence of S13 and (−S12) at half
filling. The exponential decay most likely originates from
strong nearest-neighbor spin- 1

2 singlet formation (see the red
ellipse in Fig. 1), which eventually leads to a breakup of the
composite spin-1 moments [18]. It is clear though from Fig. 3
that this breakup happens at a lower temperature scale than
the opening of the pseudogap. Hence, we conclude that the
opening of the pseudogap around T ∗ is intimately connected
to enhanced ferromagnetic correlations and the formation
of composite spin-1 moments on the lattice diagonals. The
antiferromagnetic correlations between these composite mo-
ments result in a pseudogap which is most pronounced near
momentum (0, π ) and (π, 0). As temperature is lowered by
about a factor of 2 below T ∗, singlet formation between
nearest-neighbor spin- 1

2 becomes dominant near half filling
and leads to the weakening of ferromagnetic correlations on
the diagonal and an exponential decay of both S12 and S13. The
region dominated by spin- 1

2 singlets can be associated with
the downturn in Tc close to half-filling, which indicates that
these correlations are detrimental to superconductivity. The
largest Tc values are instead found in the region where the
ferromagnetic S13 correlations are strongly enhanced, while
the competing spin- 1

2 singlet formation is suppressed due to
doping.

C. Non-Fermi-liquid metal

Apart from the pseudogap region, the cuprate phase di-
agrams feature a non-Fermi-liquid metal phase in a broad
doping region at high temperatures. This behavior is expected
within the spin-freezing theory and can be explained already
at the level of a single-site DMFT description in the bonding-
antibonding basis. This description is interesting because it
disentangles the antiferromagnetic physics from the freezing
of the composite spin-1 moments. As shown in Ref. [16],
this single-site two-orbital DMFT analysis predicts a non-
Fermi-liquid crossover line which roughly extends from the
half-filled T = 0 Mott point through the peak of the super-
conducting dome to high temperatures and dopings. Such a
crossover is also evident in Fig. 5, which plots βG(0,π )(β/2), a
quantity which is roughly proportional to the density of states
at the Fermi level [26], for the Green’s function corresponding
to momentum patch (0, π ) (analogous plots for the local
Green’s function can be found in the Appendix). We see that
as the filling is increased from the hole overdoped region,
the density of states near the Fermi level increases, reaching
a maximum on the overdoped side of the superconducting
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FIG. 5. Density of states at the Fermi level in the antinodal
region, estimated from βG(0,π )(β/2). The dashed line shows the
maximum in the broad crossover from overdoped Fermi liquid to
under-doped Hund metal.

dome at low temperature, and at even lower fillings at higher
temperature (dashed line with diagonal crosses). Closer to
half filling, the formation of local spin-1 moments and an
associated Hund-metal state [17,27] leads to a suppression of
the density of states with increasing filling. In the analysis
of the (0, π ) patch, the opening of the actual pseudogap is
roughly visible near half-filling. A proper identification of T ∗,
however, requires a direct analysis of the spectral function, as
done in Fig. 3, since βG(0,π )(β/2) is not sufficiently sensitive
to narrow gaps.

D. Ferromgnetic nearest-neighbor correlations in the
hole-overdoped regime

A noteworthy observation is that in the overdoped regime,
the nearest-neighbor correlations (near τ = β/2) change from
antiferromagnetic to ferromagnetic. In Fig. 3, we indicate the
switching point of the S12 correlations by the dashed line with
diagonal crosses. It is interesting to note that several recent
experiments on overdoped cuprates report ferromagnetic fluc-
tuations [28,29], which set in roughly at the doping where
superconductivity disappears. The emergence of such corre-
lations can also be qualitatively understood via the mapping
to the effective two-orbital system (Fig. 1). In fact, the generic

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.4  0.45  0.5  0.55  0.6

β[
S

13
(β

/2
)-

(-
S

12
(β

/2
))

]

filling per spin

β=10 t’=0.3t
t’=-0.3t

FIG. 6. Doping dependence of the enhancement in diagonal
next-nearest neighbor spin correlations for β = 10 and t ′ = −0.3t .
To illustrate the doping asymmetry, we also plot the result for t ′ =
0.3t .

phase diagram of the two-orbital model with ferromagnetic
Hund coupling (Fig. 3 in Ref. [30]) reveals that as one hole-
dopes the half-filled Mott insulator, the system evolves from
a region with strong antiferromagnetic correlations through
a spin-freezing crossover (bad metal) region into a regime
which near 3/4 filling and down to half-filling is influenced
by the proximity to a ferromagnetic phase.

E. Effect of t ′

Finally, we briefly discuss the effect of a diagonal next-
nearest-neighbor hopping t ′. Cuprate-related studies of the 2D
Hubbard model usually consider t ′ = −0.3t , which results in
a particle-hole asymmetric density of states and a particle-
hole asymmetric phase diagram [9]. While the effect of t ′
on superconductivity and on the competition between d-wave
pairing and antiferromagnetic order depends on U , Ref. [31]
showed that in the strongly correlated regime, the correlated
pairing susceptibility is larger on the electron-doped side. This
suggests that the lower Tc in electron-doped cuprates is the
result of stronger antiferromagnetic tendencies and not the
result of a weaker pairing glue. In Fig. 6, we show the doping
dependence of β[S13(β/2) − ( − S12(β/2))] for β = 10 and
t ′ = −0.3t as well as t ′ = 0.3t . The doping asymmetry in
the spin-freezing crossover is rather small, with a slightly
stronger enhancement of the ferromagnetic S13 correlations
on the electron-doped side. This result is consistent with
the weak doping asymmetry of the superconducting order
parameter dome for U = 8 reported in Ref. [9] and the filling
dependence of the correlated pairing susceptibility in Fig. 3 of
Ref. [31]. The qualitative agreement with the pairing suscep-
tibility provides further support for the spin-freezing theory of
unconventional superconductivity.

III. CONCLUSIONS

We have analyzed the dynamical cluster spin correla-
tions in the 2D Hubbard model using four-site and eight-
site DCA calculations. The diagonal next-nearest-neighbor
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correlations exhibit a nontrivial τ dependence at T > 0 and in
the doped Mott regime, which results in robust ferromagnetic
correlations at long times. This is compatible with the emer-
gence of composite spin-1 moments on the lattice diagonals,
as a result of spin freezing. The freezing phenomenon occurs
in the doping range where superconductivity is found at low
temperature, and the onset of spin freezing approximately
coincides with the opening of a pseudogap near the antin-
ode. We discussed the competition between this freezing
phenomenon and the formation of nearest-neighbor spin- 1

2
singlets at low temperature near half-filling. The breakup of
the composite spins in favor of spin- 1

2 singlets happens at
a temperature which is substantially below T ∗, and in the
underdoped region, where superconductivity is suppressed.
The spin-1 moments which form at elevated temperature will
freeze and order antiferromagnetically near half-filling, but
they remain unfrozen down to low temperatures in the opti-
mally doped regime. According to the spin-freezing theory of
unconventional superconductivity, the amplitude fluctuations
of these moments induce the attractive interaction needed for
pairing [16]. While we have not studied the pair suscepti-
bility and order parameter in this work, we showed that the
filling-dependence of the spin-freezing behavior in the model
with next-nearest-neighbor hopping t ′ = −0.3t is consistent
with the previously reported data [31] for the correlated
pairing susceptibility. The results of this analysis and the
apparent connection between the spin-freezing crossover and
the available Tc data [20,21] suggest a close link between
spin freezing and superconductivity in the two-dimensional
Hubbard model.
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APPENDIX: ADDITIONAL DATA

This Appendix contains additional data for spin correlation
functions and Green’s functions. Figure 7 presents the S13

correlation functions at τ = β/2. The results for −S12 are
qualitatively similar. In these plots, one can recognize the
appearance of the composite moments at roughly T ∗ and the
suppression due to spin- 1

2 singlet formation at low tempera-
ture near half-filling.

The top panels of Fig. 8 show the integral of the correla-
tion function S11 + S13,

∫ β

0 dτ (S11(τ ) + S13(τ )), which is the
easily measurable contribution to the S f f correlation function.
The bottom panels report the contribution to this integral from
frozen moments, β[S11(β/2) + S13(β/2)].

Finally, we plot in Fig. 9 the density of states at the Fermi
level, βG(β/2), evaluated with the local Green’s function.
Similar to Fig. 5 in the main text (results for the (0, π ) patch),
these data illustrate the crossover from a Fermi-liquid-like
metal with low carrier density in the overdoped regime to an
incoherent Hund metal with suppressed density of states in the
underdoped regime.
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FIG. 7. Long-time value of the next-nearest-neighbor spin correlation, S13(β/2), in four-site DCA (left) and eight-site DCA (right).
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FIG. 8. Total (top) and frozen (bottom) contribution to the integral of S11 + S13 in four-site DCA (left) and eight-site DCA (right).
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FIG. 9. Density of states at the Fermi level, estimated from the local Green’s function G as βG(β/2).
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