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Superconductivity due to cooperation of electron-electron and electron-phonon
interactions at quarter filling
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Existing theories of superconductivity emphasize either electron-electron or electron-phonon interaction, each
of which tends to cancel the effect of the other. We present direct evidence from unbiased numerical calculations
of cooperative, as opposed to competing, effects of electron-electron and electron-phonon interactions within
the frustrated Hubbard Hamiltonian with bond-coupled phonons, uniquely at the band filling of one-quarter.
The two interactions cooperatively reinforce d-wave superconducting pair-pair correlations at this filling while
competing with one another at all other densities. Our work gives insight into how intertwined charge order and
superconductivity appear in real materials.
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I. INTRODUCTION

There is strong evidence that any successful theory of
superconductivity (SC) in the high-Tc cuprates and other
unconventional superconductors must incorporate the effects
of electron-electron (e-e) interactions. It is now often assumed
that superconducting pairing in these materials can be medi-
ated solely by e-e interactions, leading to numerous studies of
model Hamiltonians with e-e interactions such as the Hubbard
model. While the properties of the two-dimensional (2D)
Hubbard model remain under active debate, calculations with
the best unbiased methods available have found no long-range
superconducting pairing in the weakly doped Hubbard model
on a square lattice [1,2] or the half-filled Hubbard model on
the triangular [3] and anisotropic triangular [4] lattices. These
calculations also find that pairing correlations become weaker
with increasing e-e interaction strength [1–4].

One possible reason calculations have failed to find SC
is that repulsive e-e terms alone are not sufficient for SC
and other interactions are required. The only other interaction
common to all unconventional superconductors is electron-
phonon (e-p) coupling. In the cuprates there is strong exper-
imental evidence for the importance of phonons in the elec-
tronic properties and SC. This includes giant softening of the
Cu-O bond stretching frequency in the underdoped cuprates
[5], the oxygen isotope effect [6,7], and kinks observed in
photoemission experiments [8]. Phonons also play a role in
the ubiquitous charge ordering found in all cuprates [5,9].
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Charge ordering in cuprates and other unconventional super-
conductors has led to proposals that correlated-electron SC
evolves from or is intertwined with spatial broken-symmetry
states, for example, density waves of Cooper pairs [10–15]. It
is however not clear what such pair-density-wave states look
like in detail or emerge from.

A key theoretical idea behind the belief that e-e interactions
mediate SC in the nearly half-filled band is the resonating-
valence-bond (RVB) theory of SC, in which SC is proposed
to emerge from a proximate half-filled spin-gapped valence-
bond solid (VBS) state [16]. While this idea is both promising
and exciting, in addition to the lack of evidence for SC in the
nearly-half-filled Hubbard model [1–4], theoretical evidence
for the VBS within 2D models is sparse or absent. At half
filling, a VBS would be most likely to be found on frustrated
lattices in the strong interaction limit of the Hubbard model,
the Heisenberg model. A VBS ground state is found in the
2D Heisenberg model in the presence of strong four-spin
interactions [17]. However, in the J1-J2 Heisenberg model,
while some recent numerical results suggest the possibility of
a VBS phase between the Néel and stripe antiferromagnetic
(AFM) phases [18], other calculations find no VBS order
[19,20]. In the frustrated half-filled Hubbard model [3,21]
or Hubbard-Heisenberg model [22] numerical studies to date
have not found evidence for a VBS phase.

Singlet formation is favored over AFM order in one di-
mension, and a 2D system can be driven to a singlet phase
by making the system effectively one dimensional through
segregated stripes of charges. In this case the density must
be less than one charge per site. Clay and co-workers have
proposed a valence-bond theory of SC that combines features
of the Cooper pair-density-wave concept and RVB theories,
with the critical difference that the theory applies uniquely to
the quarter-filled band (i.e., carrier density ρ = 0.5) [23]. At
ρ = 0.5 in the presence of lattice frustration, a paired-electron
crystal (PEC) emerges that is a density wave of spin singlets,
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with nearest-neighbor (NN) singlet pairs separated by pairs
of vacant sites. The PEC is the quarter-filled equivalent of the
VBS, characterized by coexisting spin gap and charge or bond
order, and is favored over AFM order in the presence of lattice
frustration [24,25].

Initial theoretical evidence for a correlated ρ = 0.5 su-
perconducting state within the electron-only Hubbard Hamil-
tonian has been presented [26–28]. Strong experimental ev-
idence exists as well in the organic charge-transfer solid
(CTS) superconductors, all of which are ρ = 0.5 [23]. In the
CTS the PEC is found proximate to SC with pressure taking
the place of doping [23]. Besides the CTS, many ρ = 0.5
superconductors are known [23]. The theory has been further
generalized to the cuprates, where it has been suggested that,
following a valence transition, the oxygen p orbitals become
the active sites in the Cu-O planes, forming a frustrated ρ =
0.5 lattice [29]. It is important to note that e-p interactions are
required to realize the PEC, because bond distortions must
occur simultaneously with NN singlet formation at ρ = 0.5
[24,25]. If SC indeed emerges from the destabilization of the
PEC, it has to be driven by both e-e and e-p interactions.
This is what we will demonstrate in the present paper. In
Sec. II we discuss previous work on the effect of combined
e-p and e-e interactions and introduce the model we study.
Section III introduces the method and numerical results and
Sec. IV summarizes our findings.

II. MODEL

In most theories e-p and e-e interactions have been consid-
ered to be mutually exclusive in mediating SC. This belief is
partly due to the failures of the phonon-based pairing mech-
anism of the BCS model in unconventional superconductors
[30], but is also reinforced by the study of Hamiltonians that
combine e-e and e-p interactions. In many of the models
studied to date, phonons are assumed to only couple to the
local charge density. In general, the effects of these types of
phonons will compete with the Hubbard U , which prevents
double occupancies. The simplest system is the Hubbard-
Holstein model (HHM), where at each site a dispersionless
phonon is coupled to the charge density:

H = −
∑

〈i, j〉,σ
ti j (c

†
i,σ c j,σ + H.c.) + U

∑
i

ni,↑ni,↓

+ g
∑
i,σ

xini,σ +
∑

i

(
p2

i

2M
+ Mω2

2
x2

i

)
. (1)

In Eq. (1) c†i,σ creates an electron of spin σ on site i, ni,σ =
c†i,σ ci,σ , ti j is the electron hopping integral, and U is the on-site
Hubbard interaction. In addition, xi and pi are coordinate and
momentum operators for the phonon oscillator at site i with
mass M and frequency ω. The e-p coupling constant is g. We
give energies below in units of the bare hopping t . The physics
of the HHM is governed by the competition between on-site
pairing driven by the e-p interaction and opposed by U . This is
most clearly seen in the antiadiabatic limit (M → 0, ω → ∞)
where the effective Hubbard interaction between electrons is
Ueff = U − 2g2/ω.

Phonons also couple to the kinetic energy of electrons. We
consider here a model with dispersionless bond-coupled (Su-
Schrieffer-Heeger-type [31]) phonons, the Peierls-Hubbard
model

H = −
∑

〈i, j〉,σ
ti j[1 + αx(i j)](c

†
i,σ c j,σ + H.c.)

+U
∑

i

ni,↑ni,↓ +
∑
〈i, j〉

(
p2

(i j)

2M
+ Mω2

2
x2

(i j)

)
. (2)

In Eq. (2) x(i j) is the phonon coordinate associated with the
deformation of the bond connecting sites i and j and all the
other terms have identical meaning to Eq. (1). Compared to
the large amount of work on the HHM, there are few nu-
merical studies of bond-coupled phonons beyond the classical
limit. Most work at finite ω has been in one dimension and
mostly at ρ = 1 (see Ref. [32] for a recent review) [33–36]. A
2D multiorbital lattice was studied recently, although only for
U = 0 [37].

Even for U = 0 the antiadiabatic limit of Eq. (2) results in
a much more complex effective interaction between electrons
than in the HHM [36,38–41]. For Eq. (2) on a 2D square
lattice the effective Hamiltonian HW has the form [39–41]

HW = −W
∑

i

K2
i , (3)

where W = 2α2

Mω2 and Ki is the kinetic energy of bonds con-
nected to site i,

Ki =
∑
σ,�δ

(c†�i+�δ,σ c�i,σ + H.c.), (4)

with �δ = {+x̂,+ŷ,−x̂,−ŷ}. There are four types of terms in
Eq. (3): a chemical potential term, nearest-neighbor repulsion
for parallel spins, on-site pair terms (which will be suppressed
by U ), and pair hopping of nearest-neighbor singlet pairs
[36,38–41]. Recent work has shown that the pair hopping
interaction can lead to strongly bound bipolarons with light
effective masses that are stable against strong e-e interactions
[36]. This suggests the possibility of e-p mediated SC in the
presence of strong e-e interactions at finite carrier densities.

The effect of adding HW to the 2D Hubbard Hamilto-
nian was studied using ground-state and finite-temperature
quantum Monte Carlo near ρ = 1 [39–41]. Long-range dx2−y2

superconducting order was found for sufficiently strong HW in
the ground state, with a transition from AFM order to dx2−y2

SC as the strength of HW is increased [39–41]. However, as
in the HHM, here again the SC state was suppressed by U .
While this shows that d-wave SC can in principle result from
e-p interactions, it suggests that d-wave SC is only possible
provided the e-p coupling is strong enough to overcome e-e
interactions, again reinforcing the belief that e-e and e-p
interactions cannot simultaneously drive SC. Importantly, HW

and Eq. (2) have not been investigated in two dimensions at
densities significantly different from ρ = 1.

Below we study Eq. (2) directly using quantum Monte
Carlo over a wide density range. While being consistent with
previous results for the effective model at ρ ≈ 1, our results
show that the behavior at ρ = 0.5 is qualitatively different
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from other densities and that at ρ = 0.5, e-e and e-p inter-
actions can cooperatively enhance pairing.

III. NUMERICAL RESULTS

We define singlet pair creation operators �
†
i ,

�
†
i =

∑
ν

g(ν)√
2

(c†i,↑c†i+�rν ,↓ − c†i,↓c†i+�rν ,↑), (5)

where g(ν) is a relative sign that determines the pairing
symmetry. We consider four types of pairing: (i) NN pairs
with �rν = {+x̂,+ŷ,−x̂,−ŷ} and g(ν) = {+1,+1,+1,+1} or
{+1,−1,+1,−1} for s or dx2−y2 pairing, respectively, and (ii)
next-nearest-neighbor pairs with �rν = {x̂ + ŷ,−x̂ + ŷ,−x̂ −
ŷ, x̂ − ŷ} and g(ν) = {+1,+1,+1,+1} or {+1,−1,+1,−1}
for sxy or dxy pairing, respectively.

The pair-pair correlation function is P(r) = 〈�†
i �i+�r〉.

A theory of correlated electron SC should satisfy two re-
quirements: (i) At zero temperature P(r) must have long-
range order and (ii) P(r) in the presence of e-e interactions
should be enhanced over its value for noninteracting fermions.
Finite- and zero-temperature calculations on frustrated Hub-
bard models (with no e-p coupling) of up to 128 sites have
shown that U enhances d-wave pairing preferentially at ρ =
0.5 while suppressing pair-pair correlations relative to their
U = 0 value at all other ρ [26–28]. While enhanced by
U the magnitude of P(r) however decreases with distance,
consistent with either a zero or possibly small long-range
superconducting order parameter [26–28].

To solve Eq. (2) we use finite-temperature determinant
quantum Monte Carlo (DQMC), which provides unbiased
results [42]. The lowest temperatures that can be reached
in DQMC are however limited by the fermion sign prob-
lem. In the density region of most interest here, ρ ≈ 0.5,
the sign problem is considerably less severe than for the
more intensively studied ρ ≈ 0.8. Nevertheless, we are not
able to reach low enough temperatures to determine whether
the ground state has long-range superconducting order. It is
important to recall that the effective model HW does have
long-range superconducting order in the ground state [39–41].
Besides the sign problem, Monte Carlo autocorrelation times
often increase exponentially with e-p coupling near phase
transitions [43]. To help mitigate this we implemented the
block phonon updates of Ref. [44]. We use an imaginary
time discretization of �τ = 0.05, which is small enough
that this source of systematic error can be neglected. We
report results in terms of the dimensionless e-p coupling
strength λ = α2tx/Mω2 and set M = 1. Further information
on the method, including comparisons with other methods
in one dimension, the autocorrelation time of the method,
and the dependence on �τ , is given in the Supplemental
Material [45].

We performed calculations on 4 × 4, 6 × 6, and 10 × 10
anisotropic triangular lattices [26]. This lattice has a single
frustrating bond t ′ across each plaquette; in the limit t ′ = t
(t ′ = 0) it is the triangular (square) lattice. We assume e-p
coupling only to the tx and ty bonds. Several families of
organic CTS superconductors (α, β, β ′, and β ′′ structures)
have very similar tight-binding lattice structures [23]. Because

0.2 0.4 0.6 0.8 1
ρ

0

0.002

0.004

P 
s

U=0 λ=1.00
U=1 λ=1.00
U=4 λ=1.00
U=λ=0

FIG. 1. Average s long-range pair-pair correlations P̄ versus
density ρ for the 6 × 6 anisotropic triangular lattice with ω = 0.5
at inverse temperature β = 8.

the PEC requires lattice frustration [24,25], we work in the
strongly frustrated limit with t ′ = 0.8. The lattice dimensions
are chosen under the constraint that the ρ = 0.5 single-
particle state is nondegenerate [26]. We also take ty = 0.9
slightly different from tx = 1.0 in order to increase the number
of nondegenerate densities. This lessens the severity of the
fermion sign problem and makes calculations feasible over a
range of ρ. The precise choice of tx, ty, and t ′ is however not
critical to the results we report.

P(r = 0) can be decomposed into combinations of charge
and spin correlations [46]. Antiferromagnetic order leads to a
trivial increase of the short-range component of P(r), even as
the long-range component is strongly suppressed [4,46]. To
mitigate such finite-size effects we exclude small-r correla-
tions and measure the average long-range value of P(r) [47],

P̄ = N−1
p

∑
r>2

P(r). (6)

In Eq. (6) only correlations over distances greater than two
lattice spacings are kept; Np is the number of such terms.

For the 4 × 4 and 6 × 6 lattices we calculated P̄ over the
density range 0.2 � ρ � 1.0. In Fig. 1 we plot P̄ for s pairing
versus density for the 6 × 6 lattice (similar data for the 4 × 4
lattice and for sxy pairing are in the Supplemental Material
[45]). We find that at all densities U suppresses s pairing; as
U increases P̄ becomes closer to zero across the entire density
range. There is an increase in P̄ for s pairing over its value
for noninteracting electrons for strong λ in the low-density
region ρ � 0.4. An s or sxy SC state may exist in the model
in the very-low-density region provided U is not too large;
we will not consider this parameter region further here. The
sxy pairing shows some enhancement by λ for ρ > 0.4, but is
also suppressed by U [45].

In the thermodynamic limit on the anisotropic triangular
lattice we expect a pairing symmetry that mixes dxy and dx2−y2 ;
on finite lattices either dx2−y2 or dxy is favored [26,48]. In Fig. 2
we plot P̄ for the dxy symmetry versus density for the 6 × 6
lattice. Figure 2(a) shows the effect of increasing U at fixed
e-p coupling strength. Compared to the noninteracting system
(solid line), pairing correlations are enhanced by U selectively
at ρ = 0.5 [26–28]. At all other densities pairing is suppressed
by U . Figure 2(b) shows the effect of increasing e-p coupling
at fixed U . Here phonons enhance the pairing over a wide
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FIG. 2. Same parameters as in Fig. 1 but for dxy pairing: (a) effect
of increasing U at fixed λ and (b) effect of increasing λ at fixed U .
Both interactions enhance dxy pairing at ρ = 0.5. The insets magnify
the density region around ρ = 0.5.

density range for ρ � 0.4, including at both ρ = 0.5 and
ρ = 1. However, only at ρ = 0.5 do e-e and e-p interactions
both enhance P̄; at other densities the interactions compete.

For the 10 × 10 lattice we find that the fermion sign is
reasonable for both ρ ≈ 0.5 and ρ = 1. Figure 3 summarizes
our results for ρ = 1 on all of the lattices. At ρ = 1, P̄ for
either dx2−y2 or dxy pairing increases with λ for λ � 1. This
is consistent with the d-wave superconducting state found in
Refs. [39–41]. However, U competes with the e-p interaction
at ρ = 1 with P̄ decreasing with increasing U . We expect on
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d x2 -y
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0.008

P 
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λ

0.0015
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0.0025

P 
d xy

(a)

(b)

(c) 

FIG. 3. Plot of P̄ versus e-p coupling strength λ for ρ = 1, β =
8, and ω = 0.5 on the (a) 4 × 4, (b) 6 × 6, and (c) 10 × 10 lattices.
Open (closed) symbols are for U = 0 (U = 3).
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FIG. 4. Plot of P̄ versus e-p coupling strength λ for ρ ∼ 0.5
and ω = 0.5 on the (a) 4 × 4 (ρ = 0.375), (b) 6 × 6 (ρ = 0.500),
and (c) 10 × 10 (ρ = 0.460) lattices. Circles (diamonds) are for the
inverse temperature β = 8 (β = 16). Open (closed) symbols are for
U = 0 (U = 3).

less frustrated lattices at ρ = 1 a competition between d-wave
SC mediated by the bond phonons and AFM order mediated
by U . On the 4 × 4 lattice at large λ, P̄ for sxy pairing becomes
comparable to P̄ for dx2−y2 pairing [45]. This may be the
reason for the weak decrease of the dx2−y2 P̄ with U at large λ

in Fig. 3(a).
The behavior of P̄ at ρ ≈ 0.5 (Fig. 4) is very different

from ρ = 1. At ρ ≈ 0.5 zero-temperature calculations on the
Hubbard model (λ = 0) find that P̄ increases with U , with
the density deviation from ρ = 0.5 decreasing with increasing
lattice size [26–28]. Here, for all the lattices, we find that
P̄ increases with increasing U and λ at the same densities
where T = 0 calculations find enhancement by U alone.
Cooperative interactions, however, should not merely both
increase the value of an order parameter, but the effect of the
first interaction should be strengthened in the presence of the
second and vice versa. This is indeed what we see at ρ = 0.5.
First, we see that λ enhances the effect of U : In Fig. 4 the
increase in P̄ between U = 0 and U = 3 for all lattices is
larger for λ > 0 than at λ = 0. In fact, at the temperatures
we can access here, on some lattices P̄ decreases with U at
λ = 0. Second, nonzero U enhances the increase in P̄ with λ.
As a function of λ, P̄ reaches a broad maximum at λ = λmax.
Comparing the values of P̄ at λ = 0 and λmax, there is a larger
increase for U > 0 compared to U = 0. These data show that
at ρ ≈ 0.5, U and SSH phonon interactions not only both
enhance pairing, but their effect is cooperative. This is the
central result of our work.

The range of temperatures we can access is limited, but
in Fig. 4 we compare ρ ≈ 0.5 results for β = 8 and β = 16.
The temperature dependence of the 4 × 4 lattice may not
be representative of larger systems because the ground state
of the Hubbard model [Eq. (2) with λ = 0] on the 4 × 4
lattice at ρ = 0.375 is a triplet for large U (U � 5). In the
U = 0 results of Figs. 4(b) and 4(c), at the lower temperature
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FIG. 5. Plot of P̄ versus e-p coupling strength λ for dxy pairing in
the 6 × 6 lattice at ρ = 0.5, β = 8, and U = 3. Squares, diamonds,
and triangles correspond to phonon frequencies ω of 0.5, 1.0, and
3.0, respectively.

(β = 16) the enhancement of P̄ by λ is somewhat less than
at β = 8. This may imply the absence of SC at U = 0 for
ρ = 0.5 in the ground state of Eq. (2). However, for U > 0,
the amount of enhancement by U at λ ∼ λmax does increase at
β = 16 compared to β = 8. This suggests that the cooperative
behavior at ρ = 0.5 remains at lower temperatures.

Regarding the peak in P̄ at λmax, a similar broad maximum
in P̄ is seen as a function of U in zero-temperature λ = 0
calculations at ρ = 0.5 [27,28]. We expect the decrease in
P̄ at larger λ and/or U is caused by the increasing effective
mass of pairs. Further, λmax and the amount of enhancement
also depend on ω. In Fig. 5 we show the effect of the phonon
frequency ω on P̄ for the 6 × 6 lattice. As ω decreases,
λmax shifts towards stronger coupling and the amount of
enhancement increases. This shows that the phonon disper-
sion relation will play an important role in understanding a
superconducting state mediated by the combination of e-e and
e-p interactions.

IV. CONCLUSION

We have shown that uniquely at ρ = 0.5 bond-coupled
phonons act cooperatively with on-site Coulomb interactions
in enhancing superconducting pairing. Both interactions con-
tribute to the superconducting state; the Hubbard U promotes

NN singlet formation, while bond-coupled phonons promote
pair hopping. It has been noted that the same pair hopping
interaction is present in both the large-U expansion of the
bare Hubbard model and the effective interaction HW [41].
With similar physics contained in both e-e and e-p interaction
terms, it then might be expected to find cooperative behavior
under the right conditions. Cooperative degrees of freedom
are essential to understand phase transitions in real materi-
als including the nonsuperconducting phases of the organic
CTS [23]. Producing an unconventional superconducting state
from e-p interactions alone in the presence of competing e-e
interactions would require a careful tuning of parameters that
is unrealistic. As noted above, the best model calculations
now suggest that e-e interactions alone are not sufficient for
SC. Cooperative e-e and e-p interactions resolve both of these
problems.

The observation of cooperative enhancement of pairing
only at ρ ≈ 0.5 supports our proposal of SC emerging from
the PEC [23]. The PEC has period-4 charge and bond or-
der lattice [24,25]. This is only commensurate on the 4 × 4
lattice, where with classical phonons at zero temperature an
AFM-PEC transition occurs at a critical e-p coupling strength
[24,25]. On the 4 × 4 lattice we do not find a strong peak in
the bond-bond structure factor suggesting the PEC, but for
ρ = 0.5 the maximum of the bond-bond structure factor is
at Q = (π/2, π ), which is consistent with the PEC [24,25].
However, with the λ and temperatures accessible to DQMC
we are not able to reach the PEC transition. Intersite Coulomb
interactions Vi j (below the critical value Vc for Wigner crystal
formation) strengthen the PEC and might be necessary to see
the PEC state on large lattices [25]. Further calculations over a
range of t ′ and on commensurate lattices are beyond the scope
of the present work. Studies of the effective interaction HW

across a wider density range will also be useful.
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