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Onsager reciprocal relations with broken time-reversal symmetry
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We provide analytical and numerical evidence that Onsager reciprocal relations remain valid for systems with
broken time-reversal symmetry as is typically the case when a generic magnetic field is present. Our results show
that the Onsager reciprocal relations are much more general than previously assumed. Hence, the fundamental
constraints they impose on heat to work conversion remain valid also with broken time-reversal symmetry. In
particular, the possibility of an engine operating at the Carnot efficiency with finite power is ruled out on purely
thermodynamic grounds.
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Introduction. Onsager reciprocal relations [1–3] are a cor-
nerstone in nonequilibrium statistical physics. In the linear
response regime, given a system brought out of equilibrium by
the thermodynamic forces Fk , the corresponding fluxes Jk are
such that, in the coupled transport equations Jj = ∑

k L jkFk ,
the kinetic coefficients Ljk obey the relations Ljk = Lk j . On-
sager reciprocal relations reflect at the macroscopic level the
time-reversal symmetry of the microscopic dynamics, which
is invariant under the transformation T (r, p, t ) ≡ (r,−p,−t ),
where r, p, and t are coordinates, momenta, and time. There-
fore, it is expected that Onsager relations are no longer valid
when time-reversal symmetry is broken, typically by an ap-
plied magnetic field. In this case, the invariance of equations
of motion is recovered if the time t is replaced by −t and
simultaneously the magnetic field B by −B: TB(r, p, t, B) ≡
(r,−p,−t,−B). This leads to the Onsager-Casimir relations
[1,4] for the kinetic coefficients: Ljk (B) = Lk j (−B), while in
principle one could still have Ljk (B) �= Lk j (B), thus violating
the Onsager symmetry.

As the principles of thermodynamics, Onsager relations
introduce fundamental constraints on heat to work conversion.
Violation of the Onsager symmetry, as expected when time-
reversal symmetry is broken, would allow one, in principle,
to have finite power at Carnot efficiency [5]. Indeed, in such
situation, the second law of thermodynamics is consistent with
the possibility to have nondissipative currents, generated by
thermodynamic forces.
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For concreteness, we consider the example of coupled
charge and heat transport [6], where Fe and Fh are the electro-
chemical and temperature gradient, Je and Jh the charge and
heat flow, and the Onsager symmetry implies Lhe = Leh. On
the other hand, when time-reversal symmetry is broken by an
applied magnetic field, the Onsager-Casimir relation �(B) =
T S(−B) holds (� = Lhe/Lee is the Peltier coefficient, S =
Leh/T Lee the thermopower, and T the temperature), while
in principle one could have �(B) �= T S(B) [i.e., Leh(B) �=
Lhe(B)], thus breaking the Onsager symmetry.

For Leh �= Lhe, the laws of thermodynamics would not for-
bid the existence of an engine working at the Carnot efficiency

ηC while delivering finite power [6] P = ηC

4
|L2

eh−L2
he|

Lee
Fh. Such

a spectacular possibility was denied in models with inelastic
scattering [7–14] and for systems described as Markov pro-
cesses [15]. On the other hand, a general no-go theorem based
on purely thermodynamic considerations is not available.

There are special cases for which it is known that On-
sager reciprocal relations remain valid in spite of an applied
magnetic field: for noninteracting systems connected to two
reservoirs, as a consequence of the symmetry properties of
the scattering matrix [16], and for interacting systems sub-
ject to a constant magnetic field [17–20]. Then the relevant
question arises: is it possible that Onsager relations remain
valid under general broken time-reversal symmetry as in
the case of a generic spatially dependent magnetic field? In
this Rapid Communication, we shall show, on the basis of
analytical results and extensive numerical simulations, that
this is the case. Our results show that the Onsager reciprocal
relations are much more general than previously assumed.
Consequently, breaking the time-reversal symmetry does not
remove the thermodynamic constraints imposed by the On-
sager relations, and the above possibility of an engine with
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nonvanishing power at the Carnot efficiency is ruled out on
purely thermodynamic grounds.

Analytical result. We consider a system of N interacting
particles, governed by the Hamiltonian

H =
N∑

i

[pi − qiA(ri )]2

2mi
+ 1

2

∑

i

∑

j �=i

V (ri j ), (1)

where ri and pi are the conjugated coordinates and momenta
of particle i (of mass mi and charge qi), V (ri j ) is the interaction
potential between particles i and j, and A is the vector
potential.

We start by assuming B = B(x) k, and by using the Landau
gauge we write the vector potential as A = A(x) j, with k and
j the versor of the z and y axis, and A(x) = ∫ x

x0
B(x′)dx′, the

choice of x0 being irrelevant. The equations of motion then
read as follows:

ẋi = px
i

mi
,

ẏi = 1

mi

[
py

i − qiA(xi )
]
,

żi = pz
i

mi
,

ṗx
i = F x

i + qi

mi

[
py

i − qiA(xi )
]

B(xi ),

ṗy
i = F y

i ,

ṗz
i = F z

i ,

(2)

where Fα
i = − ∂

∑
j �=i V (ri j )

∂αi
represents the force, deriving from

particle-particle interactions, on particle i in direction α. Such
equations are invariant under the transformation

M(x, y, z, px, py, pz, t, B) ≡ (x,−y, z,−px, py,−pz,−t, B).

(3)

Symmetry (3) requires the reversal of time but not of the
magnetic field, and therefore standard arguments [2,17] imply
the Onsager reciprocal relations. Similar considerations show
that Onsager relations remain valid when the magnetic field
B varies along any direction in the xy plane. It is important
to remark that V (ri j ) is invariant under transformation (3)
because we assume that the potential depends only on the
distance between particles.

The above reasoning does not apply for a generic
magnetic field. Indeed, if we consider B = B(x, y) k, and
we choose the vector potential as A = A(x, y) j, where
A(x, y) = ∫ x

x0
B(x′, y)dx′, we can see that transformation (3)

implies py
i − qA(xi, yi ) → py

i − qA(xi,−yi ) and in general
A(xi,−yi ) �= A(xi, yi ). To investigate the general case, we
shall therefore first turn to numerical simulations and then to
physical considerations.

Numerics. We first consider a two-dimensional (2D) gas of
interacting particles, of equal mass m and charge q (we set
m = q = 1). The particles are in a rectangular box of length L
(along the x coordinate) and width W (along the y coordinate)
(see Fig. 1 for a schematic plot). The system is subject to a
magnetic field B(x, y) directed along the z axis. The dynamics
is described by the multiparticle collision (MPC) method [22].
The MPC simplifies the numerical simulation of interacting

FIG. 1. Schematic drawing of the 2D gas of interacting parti-
cles, described by the multiparticle collision dynamics. The cells
of dashed-line boundaries represent the partition of space used to
model collisions [21]. A magnetic field, transverse to the plane of
motion, is applied to the system which is coupled to the left and right
electrochemical reservoirs.

particles by coarse-graining the time and space at which
interactions occur [21].

The system is placed in contact with two electrochemical
reservoirs at x = 0 and x = L, through openings of the same
size as the width W of the box. The left and right reservoirs
are modeled as ideal gases and are characterized by temper-
ature Tγ and electrochemical potential μγ (γ = L, R). We
use a stochastic model of the reservoirs [23,24]: whenever a
particle of the system crosses the boundary which separates
the system from the left or right reservoir, it is removed. On
the other hand, particles are injected into the system from the
boundaries, with rates and energy distribution determined by
temperature and electrochemical potential (see, e.g., Ref. [6]).
Coupled transport was discussed with this method [25–29],
also for the MPC model [30,31].

In our simulations, we set Tγ and μγ to be slightly biased
from the nominal temperature and electrochemical potential
of the system, denoted as T and μ, respectively, to measure
the resultant charge and heat current for evaluating the Peltier
and Seebeck coefficient [30,31]; i.e., TL,R = T ± �T/2 and
μL,R = μ ± �μ/2. In classical physics μ contains an arbi-
trary addable constant, and therefore, in addition to T and μ,
the particle density ρ must be specified as well.

First, we consider the case B(x) = gx. As expected from
the above theory, the numerical results of Fig. 2(a) show that
the Onsager symmetry �(g) = T S(g) is fulfilled for any value
of g. In the inset, we show the relative error εr ≡ |�(g) −
T S(g)|/�(g) for g = 0.3. We can see that εr , due to the finite
integration time t in numerical simulations, decreases ∝1/

√
t ,

as expected for statistical errors, and is smaller than 0.3% for
t = 1.2 × 108.

We then consider the generic case for 2D systems, and
numerically investigate several functions B(x, y), without
finding any statistically significant violation of the Onsager
symmetry. As an illustrative example, in Fig. 2(b) we show
results for B(x, y) = g sin[πx/(2L)] sin[πy/(2W )]. Similarly
to the case of Fig. 2(a), the Onsager symmetry is fulfilled, with
the relative error εr ∝ 1/

√
t (see the inset, where we show

as an example g = 3, for which εr is smaller than 0.5% for
t = 1.4 × 107).

In fact, our extensive numerical investigations also
show that the Onsager symmetry keeps as well in a

022009-2



ONSAGER RECIPROCAL RELATIONS WITH BROKEN … PHYSICAL REVIEW RESEARCH 2, 022009(R) (2020)

FIG. 2. (a) Peltier coefficient � (green open squares) and thermopower S times temperature T (blue pluses) as a function of g for the 2D
interacting gas model subjected to the magnetic field B(x) = gx. Parameters for the MPC simulations: length L = 10, width W = 2, side of
the square cells a = 0.1, time between collisions τ = 0.25, and rotation angle (representing the interaction strength [21]) α = π/2. For the
reservoirs, the nominal temperature and electrochemical potential of the system is T = 1 and μ = 0, and the corresponding particle density ρ =
22; the temperature (electrochemical potential) bias is �T = 0.05 (�μ = 0.05). The inset shows the relative error εr = |�(g) − T S(g)|/�(g)
versus integration time t for g = 0.3 as an example. (b) Same as (a) but for the magnetic field B(x, y) = g sin[πx/(2L)] sin[πy/(2W )]. The inset
is for the relative error for g = 3. (c) The corresponding results for the 3D interacting gas model. Parameter values for the MPC simulations are
L = 10, W = H = 2, a = 0.1, and τ = 0.25. For the reservoirs, T = 1, μ = 0, and the corresponding particle density ρ = 88; the temperature
(electrochemical potential) bias of the reservoirs is �T = 0.05 (�μ = 0.05). Inset: relative error εr for g = 3.

three-dimensional (3D) system subjected to an arbitrary mag-
netic field with varying amplitude and direction in space. As
an example, we present in Fig. 2(c) the results for a 3D exten-
sion of the 2D gas model discussed previously. In this model,
all gas particles (of unit mass and charge) are confined to move
in a cuboid-shaped volume of length L, width W , and height H
in the x, y, and z coordinate, respectively. The MPC dynamics
is assumed again [21]. At the two ends in the longitudinal
direction, the system exchanges particles and energy with two
reservoirs modeled by 3D ideal gases of temperatures TL,R =
T ± �T/2 and electrochemical potentials μL,R = μ ± �μ/2,
through two openings of area W H , in a similar way as in the
2D case. For all magnetic fields that have been simulated with,
we find that the Onsager symmetry holds to a satisfactory
accuracy. For the data shown in Fig. 2(c) as an example, the
particular magnetic field is B = g(Bx, By, Bz ), with Bx = fy fz,
By = fz fx, and Bz = fx fy, where fx = sin[πx/(2L)], fy =
sin[πy/(2W )], and fz = sin[πz/(2H )].

Discussion and conclusions. The results for 2D systems
can be understood from the following argument [32]. A
generic field B(x, y) can be approximated by a finite number
n of step functions (in the y direction), B(x, y) ≈ B(x, yk )
for step k (k = 1, . . . , n). For each step the magnetic field
is constant in the y direction, and therefore symmetry (3)
applies. On the other hand, discontinuities of the field
between steps would induce sudden changes of velocity but
not affect the symmetry. A similar argument holds for 3D

motion. Here, one could divide the system into small volumes
dVα , and for each volume approximate the magnetic field with
a constant vector. Building a local Cartesian tern (xα, yα, zα )
for each dVα , with zα pointing in the field direction, symmetry
(3) applies locally. For dVα → 0, we thus expect to reverse
each trajectory by locally applying symmetry (3), without
reversing the magnetic field.

The results of this Rapid Communication could be ex-
tended to quantum mechanics, with the proper counterpart
of map M of Eq. (3) discussed in Ref. [19]. We expect
that Onsager relations remain valid under other time-reversal
breaking mechanisms like the Coriolis force, even though the
question remains open.

Onsager reciprocity relations are linear response relations
[33] and therefore cannot claim the universal validity of the
first and second law of thermodynamics. However, the results
presented here show that Onsager relations can hold for sys-
tems without time-reversal symmetry, significantly extending
the applicability of one of the most powerful principles of
nonequilibrium thermodynamics.
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