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Transition between dissipatively stabilized helical states
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We analyze a XXZ spin-1/2 chain which is driven dissipatively at its boundaries. The dissipative driving is
modeled by Lindblad jump operators which only act on both boundary spins. In the limit of large dissipation,
we find that the boundary spins are pinned to a certain value and at special values of the interaction anisotropy,
the steady states are formed by a rank-2 mixture of helical states with opposite winding numbers. Contrarily to
previous stabilizations of topological states, these helical states are not protected by a gap in the spectrum of the
Lindbladian. By changing the anisotropy, the transition between these steady states takes place via mixed states of
higher rank. In particular, crossing the value of zero anisotropy a totally mixed state is found as the steady state.
The transition between the different winding numbers via mixed states can be seen in light of the transitions
between different topological states in dissipatively driven systems. The results are obtained by developing a
perturbation theory in the inverse dissipative coupling strength and using the numerical exact diagonalization
and matrix product state methods.
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Over decades, dissipation has been considered as a de-
structive influence which destroys the coherence properties
of quantum systems. Recently, this point of view has been
revised, since tailored environments have been employed in
order to dissipatively drive a quantum many-body system into
a desired steady state, the so-called attractor state [1]. Even if
an external perturbation is applied over a certain time window,
the system flows back to the attractor state afterwards. Exam-
ples of many-body states that can be reached via an attractor
dynamics of a tailored environment are Bose-Einstein conden-
sates [2], number squeezed states [3], Tonks-like states [4],
superconducting states [5,6], and, more recently, topologically
interesting states [7–11]. These comprise Chern insulators
[12] and the Hofstadter model of atoms in an optical cavity
[9].

Topological states are characterized by the existence of
invariants which can only change in steps by a global action
on the system. A paradigmatic example is the use of the
stepwise change of the electrical resistance in the quantum
Hall effect in topological insulators which is employed for
the definition of the standard for the electrical resistance
[13]. The classification of topological properties in nonin-
teracting closed systems has attracted considerable attention
[14–16]. In contrast, topological properties in interacting or
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open quantum systems are much less well understood, despite
intensified efforts during the last few years.

In open noninteracting systems [8] two important ingredi-
ents were identified for reaching stable topologically nontriv-
ial states. The first one is the existence of a dissipative gap,
i.e., a gap in the spectrum of the Lindbladian above the steady
state. The second one can only be introduced in noninteracting
systems and is the so-called purity gap. This gap measures the
purity of the most strongly mixed mode of the bulk.

Here, we go far beyond current studies and show how
the intriguing interplay of interactions and a tailored dissi-
pative coupling can give access to topologically interesting
properties. To do this, we study by exact analytical and
numerical methods the paradigmatic spin-1/2 XXZ-quantum
spin chain with dissipative boundaries. Previous work has un-
covered far-from-equilibrium steady states of a helical nature
with remarkable transport properties [17–20]. In this Rapid
Communication we focus on a specific configuration of this
system for which the jump operators at the boundary sites are
identical and thus lead to an additional reflection symmetry.
We find using a perturbative expansion in the limit of large
dissipation that rank-2 steady states—formed by helical states
with opposite winding numbers—are dissipatively generated
at certain discrete values of the anisotropy parameter due to
the space reflection symmetry. The winding numbers have
integer values and therefore, similar to topological invariants,
can only change their values in integer steps. The helical
steady states are not protected by a finite gap which is in con-
trast to topological states in open systems found previously
[8]. However, the dissipative attractor dynamics stabilizes
these helical states. As one varies the interaction strength
a transition between two helical states occurs, which takes
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place via higher rank mixtures of states to which several
different winding numbers contribute. When the anisotropy
changes sign, the steady state transits even via a completely
mixed state. Our findings rely on both analytical perturbative
methods which are valid for any system size and numerical
methods for systems up to N = 12 sites.

We describe the XXZ chain with a density operator ρ by
the Lindblad master equation

dρ

dt
= − i

h̄
[Ĥ , ρ] + D(ρ). (1)

Below we shall set h̄ = 1. The first term on the right-hand side
describes the unitary evolution due to the XXZ Hamiltonian,

Ĥ = J
N−1∑
j=1

[
Sx

j S
x
j+1 + Sy

j S
y
j+1 + �

(
Sz

jS
z
j+1 − 1

4
I

)]
. (2)

Here, Sα
j = σα

j /2 are the spin-1/2 operators and σα
j the Pauli

matrices acting on site j. The parameter � is the anisotropy
which determines the quantum phases that appear in an
isolated system. The identity I is added for convenience.
For |�| � 1 the ground state of the XXZ Hamiltonian is
a gapless Tomonaga-Luttinger liquid. For values |�| > 1 a
gapped phase occurs which corresponds to a ferromagnetic or
antiferromagnetic ground state, respectively. N is the number
of sites and we assume in the following for convenience N to
be an even number.

The second term describes the dissipative coupling to
the environment in Lindblad form D[ρ] = D1[ρ] + DN [ρ],
where

D j[ρ] = �
(
LjρL†

j − 1
2 L†

j L jρ − 1
2ρL†

j L j
)
. (3)

Here, � is the effective dissipation strength, and Lj are the
jump operators which act only at the boundary sites j = 1
and j = N and target the density matrix belonging to the
eigenstate |↑x〉 of the spin operator in the x direction defined
by σ x|↑x〉 = |↑x〉. Explicitly, L1 = Sy

1 + iSz
1 and LN = Sy

N +
iSz

N . We can show that in this situation a unique steady state
exists [20].

In the Zeno limit of large dissipative coupling � → ∞,
the boundary spins to lowest order are pinned in the steady
state to the states defined by D1,N [|↑x〉1,N 〈↑x |1,N ] = 0. The
dissipation free subspace of the system is thus the whole
Hilbert space spanned by the bulk spins and fixed boundary
spins 1, N which are collinear and oriented in the positive x
direction, i.e., |↑x〉.

Previous studies [17,19,21] have found that for many
choices of the boundary dissipation a fine tuning of the
anisotropy �∗

m = cos[ϕm + δϕ/(N − 1)] with the angle ϕm =
(2πm)/(N − 1), with m = −N/2 . . . N/2, generates a pure
steady state which is a spin-helix state,

|m〉 = 1√
2N

N⊗
j=1

(
e− i

2 ( j−1)(ϕm+δϕ)

e
i
2 ( j−1)(ϕm+δϕ)

)
, (4)

where δϕ is a twist angle between the targeted boundary
polarizations. We use the �∗ to denote the fine-tuned values
and the subindex m in order to distinguish the helicity of the
arising state. Here, the state on each site is represented in the
basis chosen along the z direction and the spin precesses in

FIG. 1. (a) von Neuman entropy and (b) winding amplitudes
vs the anisotropy � for N = 6 and � = 250J obtained by exact
diagonalization. The black dashed vertical lines mark the special
values of �∗, where the rank-2 helical state is expected in the Zeno
limit. The insets in (b) show the spin orientation of the two helical
components of the state projected into the xy plane at the special
points. The red dashed vertical line marks the value � = 1.

the XY plane around the z axis. However, this steady state will
become unstable if the spin states targeted at the boundaries
become collinear δϕ = 0 and m 	= 0, as is the case in the
chosen situation. We found similar results for δϕ = π .

For the situation, where the spins are locked to the
dissipation-free subspace, the system can be viewed as a spin
chain on a ring, where the site 1 and N are glued to the
same site. Within this configuration, important quantities are
the winding numbers of the spin along the ring. They can
be determined by the discrete Fourier transform

wm = 2

N − 1

N−1∑
j=1

〈S+
j 〉e−iϕm ( j−1), (5)

where m = −(N − 2)/2, . . . , (N − 2)/2 denotes the winding
number around the z axis and the amplitudes wm can be inter-
preted as the corresponding weights. Due to the symmetry of
the considered system, the relation wm = w−m holds.

We note that in a finite system states corresponding to
different winding numbers can overlap. However, this overlap
vanishes exponentially with system size. In the limit of infinite
system size the states corresponding to different winding
numbers become orthogonal and the winding number corre-
sponds to a topological invariant.

An intriguing behavior can be seen in the von Neumann
entropy S = −∑

i pi log2(pi ), where pi are the eigenvalues of
the density matrix ρ. In Fig. 1 we show the dependence of the
von Neumann entropy on the anisotropy � for a small system
(N = 6) and a strong amplitude of the dissipative driving
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� = 250J . For this small system, exact diagonalization is
used to solve the quantum master equation (1). A drastic
behavior in the von Neumann entropy can be seen at the values
�∗

m = cos ϕm with the angle ϕm = 2πm/5 with m ∈ {1, 2}.
At �∗

m two amplitudes w±m of the winding numbers become
dominant, whereas the other values become negligible. This
signals that a helical state of rank 2 with two opposite winding
numbers arises as the steady state.

Below, after showing further numerical analyses, we will
use perturbative arguments to analytically derive that the
steady state in the Zeno limit is of the form

ρ (0) = |↑x〉1〈↑x |1 ⊗ (b|s〉〈s|
+ (1 − b)|a〉〈a|) ⊗ |↑x〉N 〈↑x |N , (6)

with |s〉, |a〉 being orthogonal linear combinations of the
spin-helix states | ± m〉|bulk, restricted to sites 2, . . . , N − 1,
with opposite chiralities, |s〉 = As(|m〉 + |−m〉)|bulk and |a〉 =
Aa(|m〉 − |−m〉)|bulk with b, As, and Aa weights.

Additional particularities occur at � = 1, where the en-
tropy drops to zero, signaling a pure state which is a helical
state corresponding to the winding number m = 0, and at
� = 0 where a totally mixed state appears.

This result demonstrates that steady states with different
winding numbers can be reached by a fine tuning of the
anisotropy. For finite dissipation strength � and fine-tuned
anisotropies, we find numerically (not shown) that the steady
state is approached as tr[ρ2(�) − (ρ (0) )2] ∝ (J/�)2, where
ρ(�) denotes the steady state at a finite value of �. The states
at �∗ seem not to be protected by a gap in the spectrum of
the Lindbladian—defined as the absolute value of the smallest
nonvanishing real part of the eigenvalues of the Lindbladian—
as can be seen from Fig. 2 where we show that the gap in
the Zeno limit closes as 1/�. This is in contrast to previous
findings, where the topologically interesting states were pro-
tected by a gap [8]. However, the stability of the rank-2 helical
state follows from the dissipative nature of the Lindbladian
dynamics, the so-called attractor dynamics. Since the steady
state is unique for the chosen dissipators, any initial quantum
state is guaranteed to approach the targeted rank-2 state (6)
asymptotically in time. In particular, also if a perturbation is
applied over a certain time, the state relaxes back to the rank-2
helical state. Further, the transition from one helical state to
the other goes via the intermediate values of the anisotropy.
In Fig. 1, this transition is performed via states which are
composed of many different winding numbers and have a
much larger von Neumann entropy. For the point which is
close to �∗

±2, we have a relatively slow dependence, whereas
the point corresponding to �∗

±1 has a very steep dependence.
Let us note that the behavior around the special points �∗
steepens with increasing system length.

In order to verify that this is not just a particularity of
the small system size, we used a purification implementation
of the matrix product state (MPS) method for open quantum
systems [22–24] as described in Ref. [25] to determine the
steady states for larger systems. We have chosen to double the
system size to N = 12.

To obtain the steady state, we use the time-dependent MPS
method based on a second-order Suzuki-Trotter decomposi-
tion with time step �t to compute the long-time evolution

FIG. 2. (a) The dependence of the gap above the steady state in
the Lindblad operator spectrum vs anisotropy � discretized in steps
of 0.002 for � = 250J and N = 6 calculated using exact diagonal-
ization. (b) Dependence of the gap on the dissipation strength � at
different values of the anisotropy � for N = 6. As a comparison the
algebraic decay as (J/�)α with α = 1, 2 are plotted as dotted lines.

of an arbitrary state which in this case is chosen to be the
Néel state. To overcome the problem of slow relaxation during
the attractor dynamics we employ a gradual time evolution
procedure. As we are only interested in the steady state and
the exact dynamics is irrelevant, we first apply an evolution
in a fast-relaxing parameter regime to prepare the initial state
ρ ini for the final evolution (see Supplemental Material [26] for
details).

This enables us to provide simulation results for different
parameter ranges of the interaction anisotropy � and the
dissipative coupling �. The simulation is based on an efficient
compression scheme that is well controlled by observing
the so-called truncation weight. We verified convergence in
this parameter and confirmed that our main findings are not
affected by the compression. The final time evolution was
computed for a duration of T = 1000/J using a maximal
truncation error of ε = 10−12 and a time step �t = 0.1/J . The
steady-state expectation values of the required observables are
extracted by calculating the average over the last 2000 time
steps and are shown in Fig. 3.

Also for these larger systems one can nicely see a sim-
ilar behavior as described for N = 6. As can be seen in
Fig. 3(a), the behavior around the point �∗

±5 shows that only
the winding numbers m = ±5 have an appreciable amplitude
and the amplitudes of the other winding numbers rise slowly
in its neighborhood. This is compatible with the analytically
expected rank-2 steady state decomposed of the two different
winding numbers. The steepness of the rise of the amplitudes
of additional winding numbers at the special points depends
on the system size. In particular, with increasing system size
the required value of � in order to resolve the special point
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FIG. 3. (a) Winding amplitude wm vs anisotropy � around the
value �∗

±5 for � = 50J . (b) Winding amplitudes vs inverse dissipa-
tion strength 1/� at �∗

±5. The inset shows a zoom of small value
regions and the results have been obtained for a system N = 12, a
maximal truncation weight ε = 10−12, and a time step �t = 0.1/J .

rises. This is accompanied by an exponential increase of the
timescales, such that it becomes very difficult to resolve the
steady state in the Zeno limit at �∗ for very large system sizes.

The approach of the Zeno limit can be clearly seen in the
dependence on the value of �. One finds that the expectation
value of the boundary spins collapses already for relatively
low values of � and becomes locked to the expected value of
the dissipation-free subspace around the value of � ≈ 100J
(not shown). This validates the interpretation that in the large
� limit the system is close to a ring in which the winding
numbers can be associated with topological invariants. Fur-
ther, as shown in Fig. 3(b) for the value �∗

±5, the amplitudes of
the winding numbers rapidly approach the expected values for
the predicted helical state for increasing �, i.e., all amplitudes
become negligible except for the amplitudes for m ± 5 which
remain finite.

In the following we justify analytically the appearance
of the steady state of rank 2 occurring in the Zeno limit at
the points �∗. To this end, we expand the density matrix of
the steady state in orders of 1/� as ρ(�) = ∑∞

n=0 ρ (n)�−n.
Inserting this ansatz into the Lindblad equation, one can
decompose the equation in different orders. The zero-order
condition leads to the condition that the density matrix of
the boundary spins lies in the dissipation free subspace, i.e.,
ρ (0) = |↑x〉1〈↑x |1 ⊗ R0 ⊗ |↑x〉N 〈↑x |N , where R0 is the still
undetermined bulk part.

In the first order of expansion (see the Appendix), we
obtain the condition

[R0, Heff] = 0. (7)

Here, Heff acts in the Hilbert space of the internal bulk sites
2, . . . , N − 1 only. It is given by a XXZ Hamiltonian with

boundary fields

Heff =
N−2∑
i=2

hXXZ
i,i+1(�) + J

2
Sx

2 + J

2
Sx

N−1 − J

2
�, (8)

hXXZ
i, j (�) = J

[
Sx

i Sx
j + Sy

i Sy
j + �

(
Sz

i Sz
j − 1

4
I

)]
. (9)

For anisotropies �∗
m the helix states | ± m〉 (4), restricted

to the internal sites 2 to N − 1, are eigenstates of Heff with
eigenvalue 0, i.e., Heff| ± m〉|bulk = 0. Thus, the condition (7)
is fulfilled by the ansatz R0 = b|s〉〈s| + (1 − b)|a〉〈a| which
has rank 2. We would like to emphasize that the condition
(7) derived perturbatively is very useful for locally acting
dissipation and might prove to be useful for a variety of
different setups.

In order to find the weight b, we investigate the compati-
bility conditions arising in the second order in 1/�. Among
other conditions (see the Appendix) we obtain

b = (1 + |η|)2

2 + 2|η|2 , (10)

η = 〈m| − m〉|bulk =
N−2∏
j=1

cos

(
2π jm

N − 1

)
= 22−N , (11)

where the last equality holds for m and N − 1 coprime. The
overlap η vanishes exponentially with system size and the
predicted rank-2 steady state has contributions of the two
helical states | ± m〉〈±m|.

Further conditions (see the Appendix) need to be fulfilled
by the steady state, so that the rank-2 state Eq. (6) is not neces-
sarily the steady state. Considering our numerical findings (up
to N = 13), we come to the conjecture that the state Eq. (6)
is the true steady state at the fine-tuned anisotropy �∗

±m in
the Zeno limit, whenever N − 1 and m are coprime. If the
coprime condition is violated, i.e., the ratio m/(N − 1) can
be simplified, then we find that the nonequilibrium steady
state has higher rank r > 2. Details on the occurring states
are presented in Ref. [27].

One very interesting open question which remains is what
happens to these findings in the thermodynamic limit. In this
limit the fine-tuned values of the anisotropy become dense
and the states of different winding numbers become close.
It would be interesting to see whether the rank-2 steady
states remain stable solutions and how a crossing between the
different states can take place.

To summarize, we have found that helical states can be the
steady states of a XXZ model of finite size which is coupled
at its boundaries to dissipation. We see that in this case the he-
lical states are not protected by gaps in the Lindblad spectrum
and that the transition between helical states with different
winding numbers goes via highly mixed states. This opens
the question of whether other examples exist of topologically
interesting states in dissipatively driven systems which are not
protected by a gap in the Lindbladian. A further interesting di-
rection would be the investigation of these transitions between
a topological state in dissipative quantum systems using the
quantum Fisher information [28].
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APPENDIX: PERTURBATIVE ARGUMENT FOR THE
RANK-2 ZENO STEADY STATE

Here, we present details on the analytical justification for
a winding numbers m around the z axis. Our argumentation
is based on a perturbative expansion of the master equation
in 1/�. We make the ansatz for the steady state ρ(�) =∑∞

k=0 ρ (k)�−k .
Inserting the expansion of the steady state into the time-

independent master equation −i[H, ρ] + �D[ρ] = 0, and
comparing the orders of �1/k , we obtain recurrence relations
for k � 0 given by

D[ρ (0)] = 0, (A1)

D[ρ (k+1)] − i[H, ρ (k)] = 0. (A2)

Taking the trace over the boundary sites 1 and N , these
relations lead to the requirement [29]

Tr1,N [H, ρ (k)] = 0. (A3)

In the following we discuss how we can obtain the pro-
posed rank-2 state in Eq. (6) in the main text from these
relations. We note that this perturbative argumentation has
been used more commonly and typically the derived equa-
tions can be solved using the so-called “adiabatic elimination
technique” of virtual excitations [30–32]. Here, an additional
challenge is the large dissipation-free Hilbert space and the
complicated structure of the spectrum of the Lindbladian due
to the locality of the dissipation. We circumvent this challenge
by deriving additional conditions which are simpler to treat.
We would like to point out that the derivation here is very
general for the cases of local dissipation.

The zeroth-order Eq. (A1) only gives information at the
boundary sites and is satisfied by the ansatz ρ (0) = ψ1

0 ⊗ R0 ⊗
ψN

0 and ψ
1(N )
0 = |↑x〉1(N )〈↑x |1(N ).

To obtain information about the bulk part of R0, we need
to consider the higher-order relations. To obtain information
from these, it is convenient to decompose the Hamiltonian as
an operator acting in the tensor product space H0 ⊗ H1, where
H0 is a Hilbert space of the two boundary spins 1, N , and H1

is the Hilbert space of the remaining bulk spins 2, . . . , N − 1.
We introduce an orthonormal basis e0, e1, e2, e3 in H0 by

e0 = |↑x〉1 ⊗ |↑x〉N , e1 = |↓x〉1 ⊗ |↑x〉N ,

e2 = |↑x〉1 ⊗ |↓x〉N , e3 = |↓x〉1 ⊗ |↓x〉N . (A4)

The Hamiltonian with respect to this basis becomes

H =
∑
i,k

Hi,k ⊗ |ei〉〈ek|, (A5)

Hi,k = 〈ei|H |ek〉. (A6)

One can show that the matrix elements between the zeroth and
third state vanish, i.e.,

H0,3 = H3,0 = 0.

We introduce H0,0 ≡ Heff which is given by Eq. (8) in the main
text. The commutator in Eq. (A2) for k = 0 can be rewritten
using this decomposition as

[H, ρ (0)] =
∑

k=1,2

(Hk,0R0|ek〉〈e0| − R0H0,k|e0〉〈ek|)

+ [Heff, R0] ⊗ |e0〉〈e0|. (A7)

Using this representation and taking the trace over the
boundary sites the condition simplifies to

[R0, Heff] = 0, (A8)

which is given in Eq. (7) in the main text. The condition can
be fulfilled if we assume the form

R0 =
∑

α

να|α〉〈α|. (A9)

Here, |α〉 are eigenvectors of Heff and να are some real valued,
non-negative coefficients. They fulfill the condition

∑
α να =

1 to give Tr[ρ (0)] = 1. There exist some subtle issues con-
nected to possible degeneracies of Heff. These in particular can
lead to the existence of steady states with higher ranks, which
goes beyond the scope of the current Rapid Communication
[27].

Further, we can use the representation of the commutator
in order to obtain information about ρ (1) from Eq. (A2) using
the relations

D[|ek〉〈e0|] = − 1
2 |ek〉〈e0|, k = 1, 2, (A10)

D[|e0〉〈ek|] = − 1
2 |e0〉〈ek| k = 1, 2. (A11)

We obtain

ρ (1) = − 2i
∑

k=1,2

(Hk,0R0|ek〉〈e0| − R0H0,k|e0〉〈ek|)

+ M1 ⊗ |e0〉〈e0|, (A12)

where M1 ⊗ |e0〉〈e0| is an arbitrary element from the kernel
of the dissipator D to be determined by higher orders of the
recurrence relations. Inserting the above into Eq. (A3) for k =
1, and again using Eq. (A5), we obtain after some algebra

Q = i

2
Tr1,N [H, ρ (1)]

=
2∑

k=1

(H0,kHk,0R0 + R0H0,kHk,0 − 2Hk,0R0H0,k )

+ i

2
[Heff, M1] = 0.
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Finally, noting H0,k = H†
k,0 (see also Ref. [33] for details),

and writing down the matrix elements 〈α|Q|α〉 = 0, we obtain
after some straightforward algebra for any value of α,∑

β 	=α

wαβνβ = να

∑
β 	=α

wαβ, (A13)

wαβ = |〈β|H1,0|α〉|2 + |〈β|H2,0|α〉|2. (A14)

In Eq. (A13) we recognize the steady-state equation of a
Markov process with wαβ being the rate of the transition from
the state α to state β. The explicit form of H1,0, H2,0 can be
calculated from Eq. (A6) (see, e.g., Ref. [17]) and is given by

H1,0 = J

2

(
Sy

2 + iSz
2

)
(A15)

H2,0 = J

2

(
Sy

N−1 + iSz
N−1

)
. (A16)

Note that the index of the spin operators denotes the sites to
which the operator is applied. The Perron-Frobenius theorem
guarantees an existence of a unique solution of Eq. (A13) with
nonnegative entries, which sum up to 1. The quantities να

thus have the double meaning of the eigenvalues of Eq. (A9)
in the original quantum Markov process and of steady-state
probabilities of configurations in a classical Markov process
with rates wαβ associated with it (see also Ref. [34]).

Now, the rank-2 state assumption, in terms of the associ-
ated Markov process Eq. (A13), means that the two states
0,1 form a closed set, with weights b, 1 − b which is a
generalization of an absorbing state. The closed set property is
w0,β = w1,β = 0 for all β > 1. We have checked numerically
that the closed set property is satisfied for our setup for all
N � 13, when N − 1 is a prime number [35]. Thus, Eq. (A13)
for α = 0, 1 becomes a closed equation for b, i.e.,

b w01 = (1 − b)w10, (A17)

where

wαβ = |〈β|H1,0|α〉|2 + |〈β|H2,0|α〉|2, (A18)

(A19)

from which we obtain the weights b.
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