PHYSICAL REVIEW RESEARCH 2, 022002(R) (2020)

Rapid Communications

Time crystallinity in dissipative Floquet systems

Achilleas Lazarides ®,"2 Sthitadhi Roy,3’4 Francesco Piazza,! and Roderich Moessner

1

' Max-Planck-Institut fiir Physik komplexer Systeme, Nothnitzer Strafe 38, 01187 Dresden, Germany
2Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough,
Leicestershire LE11 3TU, United Kingdom
3Physical and Theoretical Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
4Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, United Kingdom

® (Received 29 April 2019; accepted 5 March 2020; published 3 April 2020)

We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit
a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we
point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic
oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a short-
ranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic
oscillations stabilized by the dissipation. We also show that this is fundamentally different from the disordered
discrete time crystal previously found in closed systems, both conceptually and in its phenomenology. The
framework we develop here clarifies how fully connected models constitute a special case where subharmonic

oscillations are stable in the thermodynamic limit.
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Introduction. Understanding how statistical mechanics
emerges in closed quantum many-body systems undergoing
coherent dynamics with time-independent Hamiltonians has
been one of the major themes of physics research over the
last few decades. More recently, attention has been focused
on closed systems with time-periodic (“Floquet”) Hamilto-
nians, where fundamentally novel out-of-equilibrium phases
describable in macroscopic terms have been discovered; none
more prominent than the w-spin glass (SG) also termed the
discrete time crystal (DTC) [1-10].

Generically, a major obstacle to working with Floquet
systems is that they suffer heat death due to an unbounded
increase of entropy, approaching an infinite-temperature state
[11-13]. This can be avoided via disorder-induced localiza-
tion [14,15] or coupling the system to an external environ-
ment draining energy from the system. The former, used in
Ref. [1], additionally endows the Floquet eigenstates with
a discrete-symmetry broken spatial glassy order. Crucially,
the eigenstates connected by the symmetry are separated in
quasienergy by /T with T the driving period, leading to sub-
harmonic oscillation of an appropriate local observable. Ref-
erence [16] shows that an external Markovian environment,
unless explicitly fine-tuned, destroys the delicate coherence
required for the subharmonic oscillations, driving towards a
mixture with no spatial order (time dependent or not).
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Here we analyze general dissipative Floquet systems in a
different setting where the ordered phases, time-crystalline
or otherwise, are stabilized by the dissipation, and which
would be entirely absent without it. The mechanism, man-
ifestly different from that of the m-SG, involves a periodic
rotation between two “sectors” of a Hilbert space followed by
dissipative “cooling” to states distinguishable by a measure
such as magnetization.

This intuitively appealing picture ignores the possibility
that the dissipation also generates noise, leading to loss of
phase coherence in the oscillations. In terms of the den-
sity matrix of the system, the noise leads to the probability
distribution of the observable broadening, which we argue
destroys the DTC. We demonstrate this failure mode in a
one-dimensional (1D) chain and show how the broadening
may be avoided in 2D leading to a DTC. This broadening
mechanism can be absent altogether in mean-field dynamics
such as for fully connected models [17-20].

How a dissipative DTC can exist. First, let us describe
the general arguments for the stability or instability of DTCs
to dissipation before giving specific examples. For a visual
demonstration, see Fig. 1.

(1) The Hilbert space is divided into different (for concrete-
ness, two) sectors, H., which could be symmetry sectors or
simply based on an empirical criterion based on the expecta-
tion value of an observable, and

(2) each of these sectors has a manifold of states {|G+)}
which possess quantum order characterized by an observable,
M. Crucially,

(3) the two ordered manifolds (groups of states), {|G+)},
cannot be connected to each other via local operators, and

(4) the expectation value m of the order parameter, M,
is sufficiently narrowly distributed over the states within
each of the manifolds that the two distributions for the
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FIG. 1. Schematic of how a dissipative DTC can (a) survive
and (b) die: Evolution of the distribution and the mean (black
line) magnetization of a quantum spin system with time. Within a
period (of T') a unitary process effecting global spin rotation and
nonunitary cooling processes act together for 7, whereas for 7¢, the
cooling processes act alone. (a) and (b) show an example where the
magnetization distribution does not broaden in time. Consequently in
(a) the weight is always on the correct magnetization sector leading
to the persistent subharmonic oscillations, whereas in (b), the cooling
processes split the distribution as such that there is weight left behind
in the wrong sector which eventually kills the DTC.

two manifolds do not overlap (up to exponentially small
corrections).

In Fig. 1, the two sectors are the positive- and negative-m
halves of the vertical axis. Consider now a two-step dissipative
Floquet protocol such that

(1) In the first step (“rotation phase”), the system evolves
under the simultaneous action of a Hermitian rotation operator
Hp and the dissipation. In the absence of dissipation the
evolution over the step is unitary and given by Ug(6), mapping
neighbourhoods of the ground state manifold of one sector
to states of the other sector. For a particular 6,, Ug(6,) maps
{IG+)} exactly onto {|G<)}.

(2) In the second step (“cooling phase”), the system is
governed by a Hamiltonian for which {|G4)} are ground state
manifolds as well as by the same dissipation processes.

The dissipative processes cool the system so that under
their sole influence all states in the H. sector would be driven
to {|G+)}.

Such a quantum system, initialized in either of the ground
state manifolds, shows a time-crystalline response trivially if
0 = 0,, as the expectation value of M oscillates stroboscopi-
cally between that in {|G4)} and {|G_)} with a period twice
that of the Floquet drive, provided the dissipation is inactive
in the rotation cycle. The dissipation is expected to make the
temporal order robust to deviations of 6 from 6*: if the unitary
rotation does not take states from the ground state manifold
of one sector (say {|G4)}) entirely to {|G_)} but admixes
nearby excited states in the other sector, the cooling step of the
drive will push the weight back towards {|G_)}. Thus cooling
kills off the excitations left behind by the imperfect rotation,
stabilizing a DTC.

How a dissipative DTC can die. In a broad sense, the
dissipative processes have three effects:

(1) Hindering rotation during rotation phase. Recall that
{|G+)} are not connected via local operators. U then naturally

has the form of a global rotation of the degrees of freedom.
During the rotation, the state must become excited; this is
opposed by the dissipation, which cools it back down making
the rotation process less effective. Therefore rotation with
dissipation is less effective than without, trapping (part of) the
weight in the wrong sector. This is unfavorable to the presence
of a stable DTC.

(2) Correcting error caused by imperfect rotation during
cooling phase. Imperfect rotation potentially leaves the state
in the correct sector, but not in the |G ) manifolds; dissipation
corrects this, favoring the DTC.

(3) Broadening the distribution during both phases. The
rotation and the cooling acting in conjunction can, for short
times, increase the width of the distribution of the state’s
overlaps with the excited states such that the resulting state
is spread over both the sectors. In the following cooling cycle
of the Floquet drive, the weights in each sector get pushed to
their respective ground state manifolds, resulting in a finite
weight in the wrong sector (see later discussion and Fig. 1).
This is generally fatal to the DTC.

Of the three, the third (broadening) invariably causes the
DTC signal to decay eventually. In its absence, a stable DTC
phase is possible with the first two mechanisms determining
the parameter regime of the stability. Let us note that while
dissipation is favorable for the temporal order in the cooling
cycle, it is detrimental in the rotation cycle, and it is a priori
not obvious whether increasing the strength of the dissipation
favors or disfavors the temporal order.

In what follows, we introduce a microscopic model and
give three examples of dissipative processes. First we show
that dissipation cleanly separating the two sectors but broad-
ening the magnetization distribution leads to decay of the
oscillation. We then introduce spatially local dissipation pro-
cesses and show that (1) in 1D they fail to separate the two
sectors, cause broadening, and lead to a decaying oscillation.
In 2D, they cleanly separate the sectors and do not result in
broadening, so that in this case a stable DTC appears.

Quantum spin systems. To analyze the above ideas in a
concrete setting, we consider a system of spins 1/2, first
in 1D. Using as basis states product states of o* (hence-
forth denoted as {|«)}), the H. can be taken as the set of
product states {|o )} satisfying (s |Mloy) 2 0, respectively,
with M = > .0, [21]. This is a natural choice for a system
described by an Ising Hamiltonian

Hrpg = — ZUZUZZH +gZng, (D
¢ ¢

as in the limit of g — 0, {|«)} is a possible set of eigenstates
while for g # 0, |G.) are adiabatically connected to the |1})
(all-up) and |{}) (all-down) states as long as the Hamiltonian
is in the ferromagnetic phase, |g| < 1. Note that so defining
the two sectors allows us to label the basis states with the
magnetization density m = (M) /N (N being the system size).

The unitary operator Ug, which in the thermodynamic
limit maps states {|G+)} <> {|lo—)}, is given by Ug(0) =
exp[—if ) , 0,1 with 6 € (7 /4, 7w /2] and is produced by the
action of the Hamlltoman Hy = 9 Z ; crj over time fz. It
follows that for 6, = 7 /2, Ur(6,) premsely maps the all-up
state to the all-down state. In fact, since the ground state
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of the system breaks the Z, symmetry of the Hamiltonian
spontaneously, Ur(6,) connects the two ground states exactly
throughout the ferromagnetic phase. As anticipated, the rota-
tion Ug(#) is manifestly a nonlocal operation. In the thermo-
dynamic limit, a product state with definite magnetization m
is mapped to a (in the o* basis, nonproduct) state with definite
magnetization m cos(20), so that the rotation operation does
not result in broadening.

Depending on the dissipative processes involved, this
model can show decaying (bottom of Fig. 1) or persistent (top)
subharmonic oscillations depending on whether broadening
occurs or not. In the following, we use three explicit Marko-
vian dissipative processes to show how the absence (presence)
of broadening due to them favors (disfavors) the persistence of
the temporal order.

Lindblad dynamics. Focusing on Markovian dissipative
processes, the equation of motion for the density matrix of
the system is governed by the Lindblad equation

. AT BN
8 p=—ilH®), p] + Z <Lipo - E{L,TLZ-, p}>, 2

where H(t) is the time-dependent (in our case, time-periodic)
Hamiltonian, {L;} is the set of time-independent quantum
jump operators which arise due to the coupling to the dis-
sipative environment, and i runs over all operators acting
on the system. Our binary Floquet protocol with period
T =tc+1tgis

. g 0Lt <t
H(t) = {IR Zsz R 3)

Hrps tr <t < tg + e

We focus mostly on the g — 0 limit of Hrrv.

Direct jump operators. To demonstrate the deleterious
effects of broadening we begin by considering a set of jump
operators {L,}:

Ly = /y[O(ma) ) (] + O(=ma) [U) (el], D

where m, denotes the magnetization of the product state
|a) and y is a scalar parameter fixing the rate. These jump
operators take the weight from any diagonal product state and
transfer it directly to the ground state of the corresponding sec-
tor, providing very efficient cooling. However, they broaden
the distribution leading to decay of the oscillatory signal. To
show this explicitly, we study the magnetization of the system
starting from the |{}) state, using translational invariance to
access large system sizes [22]. Increasing ytg leads to shorter
lifetime, while increasing y ¢ to longer, so that dissipation has
opposite effects during the two parts of the driving (Fig. 2).

The magnetization vanishes with time due to the state
stroboscopically being in a mixture of both ground state
manifolds, with opposite magnetizations. One then expects
that an observable finite and equal in both the ground states
will remain finite in a statistical mixture of the two. Such an
observable is the correlator

1
Ct) = 53 > Trlp)ojorf], )
L#r

persistent oscillations of which are shown in the rightmost
column of Fig. 2. This is a fundamental difference between

14 ﬂ Al e 1073 P/. ]
W ~1.0-16 i i
A Blﬂi’ K N
2 ’ L
) S14-20 [C i : M A A
201 108y ® S05 0= te =05
"ﬂ Ytc = 1.0
‘ 12 3 = It =120
-1 # (2) ~te e
14 g 210"\ 0
~0.05 ~0.4 kY
~01 08 [ o] b
. -0.2 =16 ? R\ N
£ 01 4 ‘\ b0.57 T PEEIT P
244 L} YR =02
(¢) - g 04
| 95 92 gl - tr=08 1111
0 0p 20 0 Oy "

FIG. 2. Direct jump operators: The first column shows the in-
stability of the subharmonic oscillations for the jump operators (4)
for (a) ytg = 0.1 and different values of ytc and (d) y7c = 10 and
different values of y . The lifetimes t are shown in the second col-
umn, revealing an exponentially increasing and at least polynomially
decreasing lifetime with yzc and y1g, respectively. The data is for
N =51, and 0 = 0.457 and 6 = 7 /2 for the top and bottom rows,
respectively. Stability of the persistent oscillations of the correlation
function C, Eq. (5), is shown in the third column. For fixed ytz [=0.1
in (c)], the oscillation amplitude increases with y#c as dissipation
corrects the error induced by imperfect rotations. By contrast, for a
fixed ytc [=2 in (f)], the amplitude decreases with y#x as dissipation
hinders the rotation. Here N = 51 and 8 = 0.4x.

this dissipative Floquet phase and the s-spin glass, where
persistent oscillations of C imply those of an initially finite
m. This order is also induced by dissipation, as evidenced by
the increase of the amplitude with yzc.

The direct jump operators demonstrate that the broaden-
ing of the distribution in magnetization is fatal to the time-
crystalline order, even when the dissipation cleanly separates
the two sectors.

Domain-wall annihilating jump operators. We now intro-
duce a set of jump operators which avoid broadening in a
natural way. These operators cause dynamics that only move
domain walls (DWs): a freestanding DW can move but not
disappear. However, two DWs can move into each other and
annihilate. Such dynamics are fundamentally different in the
1D and 2D cases.

Denoting the neighbors of a site £ by {r,}, to each product
state |o) and site £ there corresponds a jump operator

oy, Myya=0
La,[ = \/? 7)i,sf’ X
11;[ o, sgn(My,.) = £1,

(©)

where M|, o is the net magnetization of the spins in {r¢} and
Pi e is a projector onto the spin at site i in spin state s7 =1
/ {.The corresponding Lindblad dynamics along the diagonal
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FIG. 3. Instability of the DTC to domain-wall annihilating oper-
ators in 1D: (a) Results obtained from classical Monte Carlo in one
dimension show that the distribution of the state in magnetization
for the jump operators in Eq. (6) broadens with time. (b) The mean
magnetization (dashed lines) stays constant over Monte Carlo times,
whereas the standard deviation (solid lines) grows, indicating broad-
ening of the distribution. (c),(d) Numerically solving the Lindblad
equation with the time-periodic Hamiltonian (3) and the jump op-
erators (6) shows an exponential decay of the time-crystalline order
with polynomially decreasing lifetime with y#g. For the numerical
solutions, 8 = 7 /2 and ytc = 100.

is governed by a Pauli master equation

8;,00«1 = Z YaBPBp — Z YBa | Paa (7)
B B

with the y determined according to the rules above while the
off-diagonals decay exponentially.

In 1D, the dynamics along the diagonal amounts to the
DWs executing a random walk, i.e., diffusing. The probability
distribution of magnetization starting from a sharp value m
broadens at short times (Fig. 3, top left), and at long times
becomes bimodal with two peaks at =1 of height such that
—p(—1) + p(1) = m (Fig. 3, top right), as found by solving
Eq. (7) using a classical kinetic Monte Carlo approach. The
resulting destruction of the DTC is shown in the bottom two
panels.

For d > 2, this type of domain-wall dynamics eventually
eliminates the minority phase by effectively causing a line (or
surface) tension, tending to minimize the area of the interface
between two nonconserved phases and suppressing interfacial
fluctuations in the thermodynamic limit, far from the bulk
critical point [23] (see Fig. 4 for two examples of allowed
transitions and the Supplemental Material [22] for a demon-
stration of how the dynamics minimizes the interface length)
so that the dissipation cleanly separates the two sectors. In the
Supplemental Material we also show results for finite g.

In general, local dissipative processes lowering the energy
of (ferromagnetic) Ising-type Hamiltonians in d > 2 will
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FIG. 4. Examples of the local jump operators leading to a persis-
tent DTC in two dimensions: In general and for individual product
states, these operators tend to either decrease the length of domain
walls, such as the transition shown on the left, or cause minority
regions to vanish, as on the right.

behave in a qualitatively similar way. Less obviously, the
dissipative dynamics does not broaden the magnetization dis-
tribution starting from a state sharp in magnetization, Fig. 5. It
then follows that a DTC phase may be stable; this is supported
by the lower panels of Fig. 5 where a rapid rotation is shown
to result in persistent subharmonic oscillations, while a slow
rotation in a ferromagnetic phase in which the magnetization
never changes sign.

In order to show this explicitly on finite-sized systems a
numerical solution of the full Lindblad equation is desirable.
Details of the numerical approach are given in the Supplemen-
tal Material. Figure 4 shows examples of allowed transitions
in our dynamics, while the resulting system dynamics is
displayed in Fig. 5, clearly showing a regime of persistent
oscillations.
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FIG. 5. Stability of the DTC to domain-wall annihilating opera-
tors in 2D: (a) Results obtained from classical Monte Carlo in two
dimensions for the jump operators in Eq. (6). The magnetization
distribution remains sharp. (b) The mean magnetization (dashed
lines) saturates to unity, whereas the standard deviation (solid lines)
decreases with system size. (c),(d) Numerically solving the Lindblad
equation for square lattices (of size N, x N,) shows a persistent
time-crystalline response of the magnetization for low ytg, and an
oscillating ferromagnet at high y7z. For the numerical solutions,
0 =m/2, ytc =100, and y’ = y/10.
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Conclusions and outlook. We have discussed general mech-
anisms leading to dissipative (de)stabilization of DTCs in
disorder-free dissipative Floquet systems, and have shown
that any driving protocol such that there is no broadening
during either rotation or cooling may display a regime of
persistent subharmonic oscillations.

Our example of a dissipation-stabilized DTC is completely
distinct, relying on a fundamentally different mechanism,
from the m-spin glass introduced in [1,16]. Phenomenologi-
cally, a crucial difference between the two is that in the latter
the oscillations in the magnetization can decay even though
its correlation function, C(¢), oscillates persistently; in the
former, one implies the other.

While the mechanism of obtaining period doubling from
periodic switching between distinct sectors of Hilbert space
is intuitively transparent, our analysis of its failure modes
we believe also sheds light on recent work finding stable
subharmonic oscillations [17-19]. In these systems the Hamil-
tonian is fully connected, typically leading to a stochastic
description with noise vanishing with diverging system size,
thus a density matrix with no broadening over the time
evolution [24,25].

We believe that, generally, treatments for short-range mod-
els based on approximate mean-field and other approaches
involving only a few effective degrees of freedom may er-
roneously find stable time-crystalline behavior by neglecting
this mechanism. Our proposal is that the role provided by
long-range interactions can, however, be replaced by the
effectively macroscopic rigidity of the ordered component of
a symmetry-broken system.

Finally, we have only considered Markovian dissipation.
An open and interesting problem is to understand whether
the physics unveiled here is changed qualitatively in the
non-Markovian case, and whether there are non-fine-tuned
non-Markovian environments that lead to interesting new
examples of oscillatory dynamics in quantum systems.
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