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Topological protection in non-Hermitian Haldane honeycomb lattices
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Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the
photonics and condensed-matter communities. In particular, the possibility of observing topologically protected
edge states in non-Hermitian lattices has sparked an intensive search for systems where this kind of states are
sustained. Here we present a study of the emergence of topological edge states in two-dimensional Haldane
lattices exhibiting balanced gain and loss. In line with recent studies on other Chern insulator models, we show
that edge states can be observed in the so-called broken PT -symmetric phase, that is, when the spectrum of the
gain-loss-balanced system’s Hamiltonian is not entirely real. More importantly, we find that such topologically
protected edge states emerge irrespective of the lattice boundaries, namely, zigzag, bearded, or armchair.

DOI: 10.1103/PhysRevResearch.2.013387

I. INTRODUCTION

Over the last years, topological phenomena have attracted a
tremendous interest in a wide variety of disciplines, including
condensed-matter physics [1,2], photonics [3–11], Floquet
systems [12], ultracold atomic gases [13–16], acoustics [17],
electronics [18,19], and even chemistry [20]. Among different
models where topological phenomena have been predicted
and observed, the Haldane honeycomb lattice constitutes a
paradigmatic example of a Hermitian system featuring a topo-
logical phase transition [21]. Indeed, the Haldane model rep-
resents a unique system where the quantum Hall effect [22] is
contained as an intrinsic lattice-band-structure property, rather
than an external effect due to the presence of a strong magnetic
field [23]. Even though it was originally believed impossible
to be implemented experimentally [21], the Haldane model
has been fundamental in the understanding of topological
insulating (and conducting) phases, and, more importantly,
it has been the test bed for the experimental demonstration
of topological edge-state protection in periodically modulated
Floquet systems [24] and ferromagnetic insulators [25].

Hitherto, topological effects have been mostly explored in
Hermitian systems [26–29]. Yet there is a growing interest
in analyzing topological structures in non-Hermitian systems
[30], particularly in conditions where balanced gain and loss is
introduced, that is, in PT -symmetric systems. As first demon-
strated by Bender and Boetcher [31], PT -symmetric systems
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constitute an important subset of open quantum and classi-
cal systems, whose corresponding Hamiltonians are invariant
under the combined operation of space and time reflection.
Notably, depending on the gain-loss rate, these systems may
exhibit a purely real or partially complex spectrum. When the
former is observed, it is said that the system has an unbroken
PT -symmetry, whereas when the spectrum is completely (or
partially) complex, the system is said to be PT -symmetry
broken [32–36].

Quite recently, it has been shown that topological phase
transitions may occur in non-Hermitian PT -symmetric pho-
tonic systems [8,37,38], as well as in photonic honeycomb
lattices with armchair terminations [39]. In particular, a re-
cent work by Xiao and co-workers [40] has demonstrated
the existence of topologically protected edge states in one-
dimensional PT -symmetry broken photonic networks, thus
showing that PT symmetry is not an essential condition for
the observation of one-dimensional edge states.

Notably, the existence of topological protection in non-
Hermitian systems has led to the creation of a new re-
search line which focuses on the development of so-called
topological lasers [7,41,42]. In the light of these findings,
and since standard topological invariants—such as the Chern
number of the momentum-bulk Hamiltonian—may fail to
correctly predict the existence of topological edge states in
non-Hermitian systems [30,43–48], many efforts are being
devoted to investigate the benefits of the interplay between
topology and PT symmetry [49–53]. Prominently, there is
an ongoing quest to generalize the bulk-boundary correspon-
dence for non-Hermitian systems [54–56], which has revealed
new phenomena exclusive to such non-Hermitian topological
systems [57,58].

In the present work we show that topological protected
states can also be found in a two-dimensional finite lattice, in
contrast with Ref. [55] and as it was predicted in Refs. [59,60].
As prototype system we use a Haldane topological lattice with
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FIG. 1. (a) Schematic representation of the non-Hermitian honeycomb Haldane lattice with zigzag, bearded, and armchair edges. The blue
(orange) dots represent the amplifying (lossy) sites in the lattice. Note that the Haldane model includes two types of interactions between sites,
a nearest-neighbor interaction t1, shown as green arrows, and second-nearest-neighbor couplings t2, with a constant phase e±iφ for clockwise
(anticlockwise) coupling direction, depicted by the red arrows. In order to implement balanced gain and loss, we set the on-site energies of the
blue sites to i� and those of the orange sites to −i�. (b) and (c) The time evolution of an edge state over a 60 × 31 sites Haldane-ribbon lattice
for t1 = 1.0 s−1, t2 = 0.3 s−1, and φ = π/2. Panel (b) shows the free evolution of the edge state, whereas panel (c) shows its propagation in
the presence of a rectangular defect on the right edge of the lattice. (d), (e), and (f) The real (blue line) and imaginary (orange line) energy
eigenvalues per lattice mode for � = 0 s−1, � = 0.1 s−1, and � = 1.0 s−1, respectively. The eigenvalues related to the topologically protected
edge states are shown in the region encircled by the black ellipse. Note that in panel (f) � exceeds the critical gain-loss ratio �c = 0.7 s−1, so
no purely real eigenvalues are observed.

balanced gain and loss, and we show that edge states can be
observed even when the spectrum of the system’s Hamiltonian
is not entirely real. Furthermore, we find that this behavior is
universal in the sense that any geometry of the lattice edge,
namely, zigzag, bearded, or armchair supports topological
protection. This result contrasts with previous findings, where
the observation of edge states in PT -symmetric hexagonal
lattices was conditioned to armchair edges [39,60]. Our find-
ings thus help enlighten the role of gain and loss in two-
dimensional topological phenomena.

II. THE MODEL

To study the emergence of edge states in non-Hermitian
Haldane two-dimensional finite lattices (also known as Hal-
dane ribbons), we consider the honeycomb lattice shown in
Fig. 1(a). As originally described by Haldane [21], the dy-
namics of a single excitation in this type of lattice is described
by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + Ĥ3, (1)

where the various Ĥn (with n = 1, 2, 3) contributions describe
the energy features of each lattice subunits (or sites), as well

as the interaction between them. In particular

Ĥ1 ≡ t1
∑
〈n,m〉

ĉ†nĉm (2)

describes the nearest-neighbor interaction, with 〈, 〉 denoting
the summation over the nearest neighbors and t1 being the
coupling coefficient between them. The excitation creation
and annihilation operators are denoted by ĉ†n and ĉn, respec-
tively. Note that this term is needed in the Hamiltonian in
order to obtain the so-called Dirac points and thus break
the Inversion Symmetry (IS) and Time Reversal Symmetry
(TRS), which ultimately leads to the generation of topologi-
cally protected edge states [61].

Furthermore, to gap out the Dirac cones that we created
with Ĥ1, adding a second-nearest-neighbor complex coupling
through the Hamiltonian Ĥ2 is required [21],

Ĥ2 ≡ t2
∑

〈〈n,m〉〉
e±iφ ĉ†nĉm, (3)

where the phase φ is defined along the arrows, being pos-
itive (negative) for clockwise (anticlockwise) coupling, as
depicted in Fig. 1(a). Note that the coupling t2 denotes the
interaction coefficient between second nearest neighbors, and
so 〈〈, 〉〉 stands for summation over them. Interestingly, this
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term breaks the TRS as φ is changed; in particular, it allows
the Hamiltonian to commute with the TRS operator, T̂ for
φ = {0, π}; whereas TRS breaks for φ �= {0, π}.

Finally, in order to produce a topological phase transition,
Haldane showed that breaking the IS is also required [21].
This can easily be done by adding an energy difference
between sites. In the original Haldane model this was done by
adding a real mass term +M(−M ) for odd(even) sites. Here,
we break the IS by adding an imaginary balanced gain-loss
parameter +i�(−i�) in odd(even) sites with the term

Ĥ3 ≡ i�
∑
n odd

ĉ†nĉn − i�
∑

n even

ĉ†nĉn. (4)

A similar type of IS breaking has been employed in previous
studies of non-Hermitian systems [34,39,62–66], typically in
the form of neighboring regions or strips of gain and loss.
We want to emphasize that in our approach gain and loss are
dispersed over the lattice, such that each unit cell contains
both. Yuce et al. [66] investigated such an interspersed gain-
loss distribution in the context of the two-dimensional Su-
Schrieffer-Heeger model, but no real-valued edge states were
found.

III. RESULTS

In the results that follow, we consider a finite rectangular
Haldane ribbon comprising 1860 sites. Although we have
explored different terminations for the lattice, here we present
the results for a lattice with armchair-bearded termination.
Similar results (that we provide in the Appendix) can be found
for zigzag-armchair and bearded-zigzag terminations, which
implies that, in general, the edge geometry of the sample
does not play a role in the observation of topological edge
protection as long as the system is described by a ribbon.
Interestingly, this contrasts with the findings of Harari and
co-workers, where the observation of edge states in PT -
symmetric hexagonal lattices is conditioned to armchair edges
[39]. The Hamiltonian parameters are set to t1 = 1 s−1, t2 =
0.3 s−1, and φ = π/2, and � takes values within the range
0 � � � 1. It is worth pointing out that the location in the
space of parameters (φ, t2) determines the topological gap
proportional to t2 sin(φ) [7]. This is why we fix the value of
the flux to be φ = π/2, where the maximum energy band gap
is reached for any value of t2.

The band dispersion diagram for the Haldane model has
an open band gap with two edges traversing the bulk with
opposite velocities, and these modes cannot be moved out
from the gap by modifying the edge terminations [61]. The
time evolution of the system thus shows the topological pro-
tection of the edge-mode unidirectional propagation, which is
caused by the TRS breaking and consequently the absence of
counterpropagating modes at the same frequency as the edge
modes; see Fig. 1(b). As the excitation can move only in one
direction, the presence of a lattice defect does not affect its
propagation, and thus it travels around the imperfection, as
depicted in Fig. 1(c). It is important to remark that in order
to find the proper initial condition for the observation of edge
modes, we need to compute the spectrum of the Hamiltonian
in Eq. (1) and identify the energies corresponding to the
edge modes, which are located at the topological band gap

FIG. 2. Critical value of the gain-loss rate �c (defined as the
maximum value of gain-loss for which at least 20 edge states remain
within the dissipation- or amplification-free region) as a function of
the Haldane flux, φ for bearded-armchair (blue), armchair-zigzag
(purple), bearded-zigzag type 1 (red), and bearded-zigzag type 2
(green). As discussed in the text, the topological phase transition
occurs in a flux range defined by 0 < φ < π . Note that for the
bearded-armchair termination, �c = 0.70 s−1, while for armchair-
zigzag termination, �c = 0.61 s−1. For bearded-zigzag type 1 and 2,
we obtain �c = 0.38 s−1 and �c = 0.42 s−1, respectively.

between the two bulk energy states [top and bottom parts of
the blue curve of Fig. 1(d)]. Note that in order to identify
the protected edge states, we have followed the analysis
presented by previous authors [39,67], where the finiteness,
or quasiperiodicity, of the lattice does not allow one to obtain
a periodic band diagram. Finally, once we identified the
edge-mode eigenfunctions, we generate the initial condition
as a Gaussian distribution around the central eigenmode,
which constitutes the proper state to observe topological edge
protection.

One of the main goals of this work is to analyze the behav-
ior of topological protection in the presence of non-Hermitian
contributions. As we show next, there exists a critical gain-
loss ratio �c below which we find completely real regions
in the spectrum of the Hamiltonian in Eq. (1). Interestingly,
this region contains the eigenvalues (and corresponding eigen-
vectors) that preserve topological protection [see Fig. 1(e)],
and thus we can still find the proper initial condition for
the generation (and preservation) of edge states even at the
PT -broken phase. As one might expect, when increasing � to
larger values topological protection is lost, as all eigenvalues
become complex; see Fig. 1(f). To be precise, we define �c

as the maximum value of gain loss for which at least 20
edge states remain within the dissipation- or amplification-
free region. It is important to remark that there is a close
relationship between the system size (the number of sites)
and the value of the critical gain-loss rate at which the system
supports unidirectional edge states �c: the larger the system,
the larger value of �c. In the model studied here, the critical
loss-gain value for the observation of topological protection is
found to be �c = 0.7t1 for bearded-armchair termination and
�c = 0.61t1 for armchair-zigzag termination, whereas �c =
0.38t1 and �c = 0.42t1 for bearded-zigzag type 1 and 2 termi-
nations (see the Appendix for details on the armchair-zigzag
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FIG. 3. (a)–(c) Schematic representation of the three geometries considered in this section. In (a.1)–(c.1) we show the free time evolution of
an edge state over a 61 × 30 site Haldane-ribbon lattice with armchair-zigzag, bearded type 1-zigzag, and bearded type 2-zigzag terminations
for t1 = 1.0 s−1, t2 = 0.3 s−1, and φ = π/2; whereas (a.2)–(c.2) show the propagation of the edge state in the presence of a finite triangular
defect.

and bearded-zigzag terminations). Finally, we have explored
the relation between �c and the Haldane flux, φ. Figure 2
shows the results for Haldane ribbons with four different
terminations. In the case of the bearded-armchair termination,
it is shown that the �c reaches its maximum at φ = π/2, while
for the other cases, �c can be reached for some π

4 � φ < 3π
4 .

Note that for all terminations there exists a region in the
parameter space (�, φ), the area below the points plotted
in Fig. 2, where protected edge states are supported. This
is particularly relevant for experimental realizations of the
model, where a precise control of the Haldane flux might be
cumbersome to reach.

It is an interesting matter to examine how the Chern
number of the Hermitian bulk Haldane model Ĥ1+2(�k) =
d01 + �d · �̂σ [68,69] correctly predicts the existence of edge
states only for a finite range of the parameter �. To do so
we first realize that, in Bloch space, the non-Hermitian term
Ĥ3 contributes as Ĥ3(�k) = i�σ̂z. This manifests as a constant
displacement of the torus into the complex plane �d (kx, ky) →
(dx(�k), dy(�k), dz(�k) + i�). In fact, a formal redefinition of
the origin (0, 0, 0) → (0, 0, i�) readily shows that the Chern
number remains unchanged. However, as � increases, it acts
partially as a real mass term on the bands ε±(�k) = d0 ±√

d2
x + d2

y + d2
z + 2idz� − �2, indicating that eventually they

may touch and become degenerate. In this way, for sufficiently
large �, the Chern number loses its meaning and can no longer
be used to predict the existence of edge states.

IV. CONCLUSION

In summary, we have shown the emergence of topologi-
cal edge states in honeycomb two-dimensional lattices with
balanced gain and loss. Surprisingly, we found that edge
states can be observed even when PT symmetry is broken.
Furthermore, we have found that this behavior is universal
in the sense that any geometry of the lattice edge, namely,
zigzag, bearded, or armchair supports edge states. This con-
trasts with previous findings, where the observation of topo-
logical protection in hexagonal lattices was conditioned to
armchair edges. Our results thus help elucidate the role of
PT symmetry in two-dimensional topological phenomena
and demonstrate that topological protection can exist in the
archetypal Haldane model even in the presence of gain and
loss.
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FIG. 4. (a)–(i) Real (blue line) and imaginary (orange line) parts of the lattice eigenmodes for (a), (d), (g) � = 0 s−1, (b), (e), (h) � =
0.1 s−1, and (c), (f), (i) � = 1.0 s−1. Panels (a)–(c) correspond to armchair-zigzag terminations, whereas (d)–(f) and (g)–(i) correspond to
bearded-zigzag type 1 and bearded-zigzag type 2 terminations, respectively. The eigenvalues related to the topologically protected edge states
are shown in the region encircled by the black ellipse. Note that in (c), (f), and (i) � exceeds the critical gain-loss ratio for all the geometries,
so purely real eigenvalues are completely absent.
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APPENDIX: TOPOLOGICAL-PROTECTION ANALYSIS
IN DIFFERENT LATTICE-EDGE TERMINATIONS

For the sake of completeness, we show in Figs. 3 and 4
the results for a Haldane ribbon composed of 1830, 1680,
and 1740 sites with armchair-zigzag and the two types of
bearded-zigzag terminations [see Figs. 3(a)–3(c)]. In the same

fashion as in the bearded-armchair termination case, the
band dispersion diagram of the Haldane model features edge
modes connecting the bulk bands, thus it can support the
back-scattering-free propagation; see Figs. 3(a.1)–3(c.1). The
edge excitation is not hampered by a defect of any shape
or size, as depicted in Figs. 3(a.2), 3(b.2), and 3(c.2), now
with triangular defects of 11 × 10 sites. Finally, the eigen-
values of the Haldane ribbon with these lattice terminations
also show a region where they remain purely real, in these
cases for � � 0.61 s−1, � � 0.38 s−1, and � � 0.42 s−1 for
armchair-zigzag, bearded-zigzag type 1, and bearded-zigzag
type 2, respectively; see Figs. 4(b), 4(e), and 4(h). Beyond this
value all the eigenvalues become complex and the topological
protection is lost, as shown in Figs. 4(c), 4(f), and 4(i).
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