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Geometry along evolution of mixed quantum states
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The metric underlying the mixed state geometric phase in unitary and nonunitary evolution [Phys. Rev. Lett.
85, 2845 (2000); 93, 080405 (2004)] is delineated. An explicit form for the line element is derived and shown to
be related to an averaged energy dispersion in the case of unitary evolution. The line element is measurable in
interferometry involving nearby internal states. Explicit geodesics are found in the single qubit case. It is shown
how the Bures line element can be obtained by extending our approach to arbitrary decompositions of density
operators. The proposed metric is applied to a generic magnetic system in a thermal state.
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I. INTRODUCTION

A quantum-mechanical metric underlies the notion of sta-
tistical distance that measures the distinguishability of quan-
tum states [1,2]. Such measures can be used to quantify
quantum entanglement [3–5], but have also found applications
in the study of quantum phase transitions [6,7]. Similarly, the
related concept of path length has been used to find time-
optimal curves in quantum state spaces [8] and to establish
the speed-limit of quantum evolution [9–11].

Like the geometric phase (GP), the metric is closely related
to the ray structure of quantum states. To each form of GP
there is a corresponding metric. For pure states, the GP is
the Aharonov-Anandan phase [12] with the corresponding
Fubini-Study metric [13,14], both arising from the horizon-
tal lift to the one-dimensional rays over the quantum state
space. For mixed states, the GP can be taken as the Uhlmann
holonomy [15] with the corresponding Bures metric [16] both
arising from the horizontal lift to the possible decompositions
of density operators. The horizontal lifts guarantee that the
geometric quantities are properties of state space.

The mixed state geometric phase (GP) in unitary [17] and
nonunitary [18] evolution has been proposed as an alternative
to Uhlmann’s holonomy along paths of density operators.
A key point of the mixed state GP is that it is operational
in the sense that it is directly accessible in interferometry.
Indeed, it has been studied on different experimental plat-
forms [19–21]. Although the mixed state GP is now a well-
established concept in a wide range of contexts, the physics
of the corresponding metric [22] has not been explored so far.
The intention of the present work is to fill this gap.

*erik.sjoqvist@physics.uu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

To understand the conceptual basis of our approach, we
note that the corresponding mixed state GP in the case of
unitary evolution reads [17]

�g = arg
∑

k

pkeiβk (1)

with pk and eiβk being eigenvalues and eigenstate GP factors,
respectively, of the evolving density operator ρ. In other
words, the spectral decomposition of ρ plays a central role.
Therefore, the corresponding metric must fundamentally be
based on a distance for spectral decompositions of density op-
erators. Here, we describe how such a metric can be designed.
We further discuss various applications of this metric as well
as its relation to the Bures’ metric.

II. DERIVATION OF LINE ELEMENT

Consider a smooth path t �→ ρ(t ) of density operators
representing the evolving state of a quantum system. We
shall assume that all nonzero eigenvalues of ρ(t ) are non-
degenerate. In this way, the gauge freedom in the spec-
tral decomposition is the phase of the eigenvectors; thus, a
nondegenerate density operator ρ(t ), assumed to have rank
N , is in one to one correspondence with the N orthogonal rays
{ei fk (t )|nk (t )〉| fk (t ) ∈ [0, 2π )}. To capture this, we let

B(t ) = {
√

pk (t )ei fk (t )|nk (t )〉}N
n=1 (2)

represent the spectral decompositions along the path. We
further assume that all fk (t ) are once differentiable.

We propose the line element connecting two nearby points
to be the minimum of the distance

d2(t, t + dt ) =
∑

k

‖
√

pk (t )ei fk (t )|nk (t )〉

−
√

pk (t + dt )ei fk (t+dt )|nk (t + dt )〉‖2. (3)
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To find this minimum, we expand the squares yielding

d2(t, t + dt ) = 2 − 2
∑

k

√
pk (t )pk (t + dt )

× |〈nk (t )|nk (t + dt )〉| cos λk (t, t + dt ), (4)

where λk (t, t + dt ) = ḟk (t )dt + arg [1 + 〈nk (t )|ṅk (t )〉dt] +
O(dt2). The line element is thus given by

ds2 = d2
min(t, t + dt )

= 2 − 2
∑

k

√
pk (t )pk (t + dt )|〈nk (t )|nk (t + dt )〉|, (5)

being reached when all λk (t, t + dt ) vanish to first order in dt ,
which is equivalent to

ḟk (t ) − i〈nk (t )|ṅk (t )〉 = 0, (6)

for all k. Equation (6) is precisely the connection underly-
ing the mixed state GP [17,18], itself a direct extension of
the Aharonov-Anandan connection for pure states [12]. The
connection provides the necessary link between the mixed
state GP [17,18] and the metric concept considered here.
Equation (5) can be put on a more useful form by expanding to
lowest nontrivial order in dt . We suppress the t argument (for
notational simplicity) and make use of the identities 〈nk|n̈k〉 +
〈n̈k|nk〉 = −2〈ṅk|ṅk〉 and

∑
k ṗk = ∑

k p̈k = 0, which follow
from the normalization conditions 〈nk|nk〉 = 1 and

∑
k pk =

1. We find

ds2 =
∑

k

pkds2
k + 1

4

∑
k

d p2
k

pk
, (7)

where

ds2
k = 〈ṅk|(1̂ − |nk〉〈nk|)|ṅk〉dt2 (8)

is the pure state Fubini-Study metric (infinitesimal line ele-
ment) along |nk〉 [13] and d pk = ṗkdt . Note the structural
similarity between the first term of the right-hand side of
Eq. (7) and the expression for the mixed state GP in Eq. (1),
both being weighted sums of the corresponding pure state
quantities. The second term we recognize as the Fischer-Rao
information metric for classical probability distributions [23].
In the following, we shall examine various applications of the
line element in Eq. (7).

III. APPLICATIONS

A. Unitary evolution, time-energy uncertainty

Let us first consider the case of unitary time evolution
ih̄ρ̇ = [H, ρ] governed by some Hamiltonian H . Here, the
Fischer-Rao term vanishes since the probability weights pk

are constant. By using the geometric time-energy relation in
Ref. [14], we find

ds2 = 1

h̄2 �E
2
dt2, (9)

with the mixed state energy dispersion �E
2 = ∑

k pk (�kE )2.
Here, �kE is the energy dispersion of |nk〉. Thus, the speed by
which the eigendecomposition of the density operator changes
along the path is ds/dt = (1/h̄)�E .

Note that the energy dispersion �E
2

is different
from the standard quantum-mechanical dispersion �ρE2 =
Tr(ρH2) − [Tr(ρH )]2. However, the inequality

�E
2 � �ρE2 (10)

relates the two. To prove this, we note that �E
2

and �ρE2 are
independent of zero-point energy and are therefore unchanged
under the shift H → H̃ ≡ H − Tr(ρH ). We find �ρE2 =
Tr(ρH̃2) and thus �E

2 = Tr(ρH̃2) − ∑
k pk〈nk|H̃ |nk〉2 =

�ρE2 − ∑
k pk〈nk|H̃ |nk〉2, which implies Eq. (10) since∑

k pk〈nk|H̃ |nk〉2 � 0.
A time-energy uncertainty relation similar to those of

Refs. [14,24] can be formulated. Consider two unitarily con-
nected states and assume smin is the shortest distance be-
tween them, as measured by ds in Eq. (7). Let 〈�E〉 =
(1/�t )

∫ �t
0 �Edt and 〈�ρE〉 = (1/�t )

∫ �t
0 �ρEdt be the

time-averaged energy dispersions for the traversal time �t
between the two states. Equation (9) combined with Eq. (10)
implies

〈�ρE〉�t � 〈�E〉�t � smin h̄, (11)

which provides a geometric lower bound for the energy-time
uncertainty. This geometric bound is apparently tighter for
〈�E〉 than for 〈�ρE〉.

B. Interferometry

We now address the operational significance of the line
element ds2. In the unitary case, the proposed line element
can be related to measurable quantities by using the technique
of Ref. [17]. Consider a Mach-Zehnder interferometer with
a pair of 50-50 beam splitters acting as |x〉 �→ 2−1/2[|x〉 +
(−1)x|x ⊕ 1〉] on the beam states x = 0, 1, and ρ describing
the “internal” state of the particles injected into the interfer-
ometer.

Assume the input state |0〉〈0| ⊗ ρ hits the first beam splitter
followed by a unitary |0〉〈0| ⊗ U (δt ) + |1〉〈1| ⊗ V , δt being
a small but finite time interval and [V, ρ] = 0. Thus, in the
0 beam the internal state undergoes the transformation ρ �→
U (δt )ρU †(δt ), while it remains unchanged in the 1 beam:
ρ �→ V ρV † = ρ; see Fig. 1. By writing V = ∑

k ei fk |nk〉〈nk|,
we obtain the probabilities

P0 = 1 − P1 = 1

2
+ 1

2
Re

∑
k

pk〈nk|U (δt )|nk〉e−i fk (12)

to find the particles in the two beams after passing the sec-
ond beam splitter. We write U (δt ) = 1̂ − i

h̄ Hδt − 1
2h̄2 H2δt2 +

· · · , where H is the Hamiltonian acting on the internal degrees
of freedom of the particles, and maximize P0 over each of the
phases fk , yielding to lowest nontrivial order in δt ,

P0,max = max
{ fk}

P0 = 1 − 1

4
δs2. (13)

Here, δs2 = 1
h̄2 �E

2
δt2 is Eq. (9) for a finite but small time

interval.
In order to generalize the interferometric setting to the

nonunitary case, the purification-based technique described in
Ref. [18] can be used. That is, one adds an auxiliary system
and prepares the combined system in a pure internal input
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FIG. 1. Interferometer to measure the line element induced by
the unitary U (δt ) in the |0〉 beam. The reference beam |1〉 is exposed
to a unitary V that commutes with the internal input state ρ. Its role
is to maximize the output probability P0 in the horizontal beam. To
leading nontrivial order in δt , one has P0 = 1 − 1

4 δs2, which gives
direct experimental access to the line element for a small but finite
time δt .

state |	〉 = ∑
k
√

pk|nk〉 ⊗ |ak〉 with 〈ak|al〉 = δkl , thus satis-
fying ρ = Tra|	〉〈	|. Now, the above unitary that is applied
between the beam splitters is replaced by the extended unitary
|0〉〈0| ⊗ W (δt ) + |1〉〈1| ⊗ V ⊗ 1̂a. Here, W (δt ) acts on the
combined system as W (δt )|	〉 = ∑

k

√
pk + δpkU (δt )|nk〉 ⊗

|ak〉, while V ⊗ 1̂a|	〉 = ∑
k ei fk

√
pk|nk〉 ⊗ |ak〉. The reduced

states in the two beams undergo the transformations ρ �→
U (δt )

∑
k (pk + δpk )|nk〉〈nk|U †(δt ) and ρ �→ V ρV † = ρ. By

superposing the two beams at the second beam splitter, we
obtain the output state

|	out〉 ∝
∑

k

(
√

pk + δpkU (δt )|nk〉 + ei fk
√

pk|nk〉) ⊗ |ak〉,

(14)

which results in the probability in Eq. (13) with the Fischer-
Rao-like term 1

4

∑
k δp2

k/pk being added to δs2. Compared
to the above unitary interferometric setting, the nonunitary
scheme is clearly more demanding as it would require a
substantially higher level of control of interacting quantum
systems.

C. Qubit geodesics

Geodesics contain important information about the curved
space that is described by the metric. Here, we demonstrate
that the geodesics associated with ds in Eq. (7) and connecting
arbitrary nondegenerate (r 
= 0) states of a single qubit can be
found analytically.

First note that ds2
0 = ds2

1 = 1
4 (dθ2 + sin2 θdφ2) ≡ 1

4 ds2
S2

with θ and φ the polar angles on the Bloch sphere. We fur-
ther write p0 = 1 − p1 = 1

2 (1 + r), r 
= 0, in terms of which
Eq. (7) takes the form [25]

ds2 = 1

4

(
dr2

1 − r2
+ ds2

S2

)
. (15)

0.25 0.5 0.75 1 x

−0.25

0.25

0.5

0.75

1
z

FIG. 2. Single-qubit geodesic curves in the xz plane of the Bloch
ball starting and ending at polar coordinates (r1, 0) and (r2, θ12 ),
respectively. The curves have the form r(θ )(sin θ, 0, cos θ ) with
r(θ ) given by Eq. (18). We have chosen r1 = r(0) = 0.1, 0.4, 0.7, 1
and r2 = r(θ12) = 0.05. The angular position of the end points are
θ12 = π

4 (orange curves) and θ12 = π (blue curves).

The geodesics are found by minimizing
∫

ds over all curves
connecting pairs of points in the Bloch ball. The curve that
provides the minimum for a given pair must lie in a plane
that contains the origin of the Bloch ball. By choosing the
xz plane (φ = 0), we look for a curve that connects points at
polar coordinates (r1, 0) and (r2, θ12). We thus wish to find the
curve θ ∈ [0, θ12] �→ rg(θ ) that minimizes the length

l (θ12) = 1

2

∫ θ12

0

√
1 + r′2

1 − r2
dθ = 1

2

∫ θ12

0
L(r, r′)dθ, (16)

where we use the shorthand notation r′ = d
dθ

r(θ ) and r =
r(θ ). The Euler-Lagrange equation can be solved by means
of Beltrami’s identity,

∂L
∂r′ r

′ − L = c, (17)

the constant c being determined by the boundary conditions
r(0) = r1 and r(θ12) = r2. We find

rg(θ ) = sin

[
arcsin r1 + (arcsin r2 − arcsin r1)

θ

θ12

]
. (18)

Figure 2 shows some examples of geodesic curves in the
Bloch ball.

The length of the geodesics can be computed by inserting
Eq. (18) into Eq. (16) and performing the integration. One
finds

lg = 1
2

√
θ2

12 + (arcsin r2 − arcsin r1)2. (19)
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We note that the geodesics for r2 = r1 are circle arcs of
length θ12/2, which is half the geodesic distance on S2. For
pure (r1 = r2 = 1) states, this is consistent with the Fubini-
Study distance for single qubits [14]. lg measures the distance
between nondegenerate qubit states.

D. Thermal magnetic systems

We illustrate the metric in Eq. (7) by considering the
response of a magnetic system in a thermal state to changes
in temperature T and in an applied magnetic field b. This is
modeled by the Hamiltonian H (b) = H0 + bSz, H0 being a
generic Hamiltonian describing interactions between a collec-
tion of spins and Sz is the total spin of the system. Let {|m(b)〉}
and {εm(b)} be eigenstates and eigenvalues, respectively, of
H (b). The thermal state takes the form ρ = e−βH (b)/Z with
Z = Tr(e−βH (b) ) the partition function and β the inverse tem-
perature. The following analysis shows that the metric can be
related to thermodynamic quantities.

Let us first consider changes in temperature. One finds

ds2 = CV

4β2
dβ2, (20)

where CV is specific heat for a Boltzmann distribution, be-
ing related to the energy fluctuations according to CV =
β2(〈ε2〉 − 〈ε〉2). Here and in the following, 〈·〉 is the thermo-
dynamic average obtained by means of the Boltzmann factors
pm = e−βεm (b)/Z . For changes in the applied magnetic field,
we find

ds2 =
(

βχM

4
+

∑
m

pmχF,m

)
db2 (21)

with the magnetic susceptibility χM = β[〈(∂ε/∂b)2〉
− 〈∂ε/∂b〉2] and the fidelity susceptibility [7]

χF,m(b) =
∑
m′ 
=m

|〈m′|Sz|m〉|2
(εm − εm′ )2

(22)

of state m.

IV. RELATION TO BURES’ METRIC

Before concluding, we justify our distance concept by
demonstrating that the Bures metric [16,24] can be obtained
if we extend Eq. (3) to arbitrary decompositions of ρ(t ). We
use that the set

A(t ) =
{∑

l

√
pl (t )|nl (t )〉Vlk (t )

}
(23)

of subnormalized vectors is a decomposition of ρ(t ) for any
unitary N ′ × N ′ matrix V with N ′ − N zero vectors added

[26,27]. If B(t ) is replaced by A(t ) in Eq. (3), we find the
distance

d̃2(t, t + dt ) = 2 − 2ReTr[Mt (dt )V (t + dt )V †(t )], (24)

where [Mt (dt )]kl = √
pk (t )pl (t + dt )〈nk (t )|nl (t + dt )〉 is

the overlap matrix. By means of the polar decomposition
Mt (dt ) = |Mt (dt )|Ut (dt ), we find the line element

ds̃2 = d̃2
min(t, t + dt ) = 2 − 2Tr|Mt (dt )|, (25)

by choosing V such that Ut (dt )V (t + dt )V †(t ) = I. One
may use the spectral form of ρ(t ) and ρ(t + dt ) and the
orthonormality of {|nk (t )〉} to obtain

√
ρ(t )ρ(t + dt )

√
ρ(t ) =

⎛⎝∑
k,k′

|nk (t )〉|Mt (dt )|kk′ 〈nk′ (t )|
⎞⎠

×
⎛⎝∑

l ′,l

|nl ′ (t )〉|Mt (dt )|l ′l〈nl (t )|
⎞⎠,

(26)

from which we conclude√√
ρ(t )ρ(t + dt )

√
ρ(t ) =

∑
k,l

|nk (t )〉|Mt (dt )|kl〈nl (t )|.

(27)

By taking the trace, we see that Eq. (25) can be expressed as

ds̃2 = 2 − 2Tr
√√

ρ(t )ρ(t + dt )
√

ρ(t ), (28)

which is precisely the Bures line element [16,24].

V. CONCLUSIONS

The concept of metric associated with the spectral de-
composition of mixed quantum states is delineated and its
physical significance discussed. This completes the theory of
mixed state GP proposed in Ref. [17], in the same way as
the Fubini-Study metric and the Bures metric complete the
theory of pure state geometric phase and Uhlmann holonomy,
respectively. The relation to energy-time uncertainty and ther-
modynamics found above suggests that the proposed metric
can be expected to find applications in the problem of finding
time-optimal evolutions of mixed quantum states as well as in
the study of phase transitions in many-body quantum systems
at nonzero temperatures.
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