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Vector-borne epidemics are progressively becoming a global burden, especially those related to flaviviruses,
and the effects of different factors such as climate change or the increase of human mobility can sensibly increase
the population at risk worldwide. Such outbreaks are the result of the combination of different factors including
crossed contagions between humans and vectors, their demographic distribution and human mobility among
others. The current availability of information about all those ingredients demands their incorporation into
current mathematical models for vector-borne disease transmission. Here, relying on a Markovian formulation
of the metapopulation dynamics, we propose a framework that explicitly includes human-vector interactions,
mobility, and demography. The analysis of the framework allows us not only to derive an expression of the
epidemic threshold capturing the conditions for the onset of the epidemics but also to highlight some unseen
features of vector-borne epidemics, such as abrupt changes in the unfolding patterns of the disease for small
variations of the degree of mobility. Finally, driven by these insights, we obtain a prevalence indicator to rank
populations according to their risk of being affected by a vector-borne disease. We illustrate the utility of this
indicator by reproducing the spatial distribution Dengue cases reported in the city of Santiago de Cali (Colombia)
from 2015 to 2016.
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I. INTRODUCTION

The explosive dissemination of Zika virus across the Amer-
icas has been one of the major concerns of public health
organizations across the world in recent years [1]. Zika’s
global threat is, unfortunately, the last example of the ex-
tremely rapid dissemination of mosquito-borne flaviviruses
over the past two decades. From Dengue to Zika, through
West Nile and Chikungunya viruses, more than one billion
people are infected and more than one million people die
from vector-borne diseases (VBD) every year [2]. According
to the World Health Organization (WHO), VBD are respon-
sible for one-sixth of the illness worldwide and more than
half of the human population live in risk areas for these
diseases [3].

The threat of emergent VBD in tropical and equatorial
regions progressively span across more temperate areas as a
byproduct of climate change. As temperature rises, the areas
that are conducive to mosquitoes expand, meaning more op-
portunities for VBD to spread [4–9]. Another important driver
of many recent VBD outbreaks is the explosion of human
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mobility we have witnessed over the last decades, including
urban, regional and long-range displacements [10–14]. In
spite of the social and economic benefits, the expansion of
human mobility networks produced, as a consequence, the
speed-up of epidemic waves and the emergence of correlated
outbreaks in faraway regions.

When facing these VBD outbreaks, public health systems
have to respond quickly and efficiently to mitigate the spread
of the disease. Although vaccines are a long-term solution, up
to now, the ones available for some flaviviruses have limited
impact [15,16]. Thus the most common way for preventing
local Aedes-VBD outbreaks is tackling the vectors by the use
of pesticides, larvivorous fishes, or Wolbachia bacteria [17].
The use of geolocalized control strategies, however, may not
always be as effective when facing the threat of a global-
scale pandemic [18]. On the contrary, the fast transcontinental
movement of VBD demands a coordinated action of all the
involved actors for the efficient use of local control means.
This implies taking into account that those populations at
risk are not isolated and, as for human-human transmission
diseases [19], human mobility plays a key role in the spread
of VBD across different populations [20]. Therefore, incor-
porating human mobility into disease transmission models
has become a must when proposing mathematical frameworks
aimed at capturing the contagions patterns observed in actual
epidemic scenarios. So, the creation of new policies could rely
on those refined models to generate better strategies involving
human mobility to contain epidemics spreading.
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Metapopulation models, originally proposed in the field
of ecology [21–23], enable the mixing of mobility and con-
tagion dynamics into a single formulation. These models
can be described as networks in which nodes account for
geographic locations (such as neighborhoods in cities, cities
within countries, etc.), i.e., subpopulations where large collec-
tivities live and interact. In addition, the links of the network
represent (and quantify) trips made by individuals between
different subpopulations. From the first studies making use
of metapopulations for the study of infectious diseases trans-
mission [24–29], the field has advanced both in its theoret-
ical grounds [30–35] and its use for large-scale agent-based
simulations [36–38]. The latter approach incorporates many
realistic aspects of human interactions with the goal of being
useful for making epidemic forecast and the design of efficient
prevention policies. On the other hand, the theoretical part
has been spurred by the increasing spatiotemporal resolution
of current data gathering techniques and many efforts have
been devoted to bridge the gap between theory and realistic
models during the last years [39]. First attempts in this direc-
tion involved displacement kernels [40,41] to model a local
range of movement around an area that, in the last years,
led the way to the inclusion of more sophisticated mobility
patterns, such as the commuting nature of human mobility
[42–46], the high order memory of human displacements [47],
or the coexistence of different transportation behaviors [48].
These sophisticated theories allow to capture the temporal
and geographical spread of diseases while providing insights
about the mechanisms driving the observed patterns.

In the case of VBD, the use of metapopulation models
has been recently fostered due to recent outbreaks such as
Zika and Chikungunya. This way, epidemic models for VBD
transmission have abandoned mean-field and well mixed hy-
pothesis to consider patchy environments subjected to hu-
man flows. On the theoretical side, and pretty much as for
metapopulations models of human-human transmission dis-
eases, the frameworks rely on important assumptions that
allow its analytical study. One of these assumptions is to
consider the random diffusion of humans across patches
[49–51] or displacement kernels [52] instead of realistic mo-
bility patterns. On the other hand, when actual ingredients
of human mobility, such as its recurrent nature, are taken
into account both random diffusion [53,54] and displacement
kernels models [55] fail to provide insights about the role
that real mobility networks play on the transmission of VBD.
Thus metapopulation theories are still far from incorporating
the many aspects influencing the onset of VBD outbreaks and
lack the predictive power provided by data-driven agent-based
simulations [56,57].

The main goal of this work is to provide a benchmark
that allows the study of large-scale vector-borne epidemics
in a unified way and, more importantly, enabling the test of
coordinated control strategies at the light of available data
about vector incidence together with human demography and
mobility datasets. To this aim, we first elaborate a metapop-
ulation model for the transmission of VBD that allows us to
derive the conditions under which epidemics take place. The
analytical expression of the epidemic threshold is revealed
by a matrix encoding the probability of crossed infections
between humans and vectors of different subpopulations.

Importantly, the spectral analysis of this matrix reveals the risk
associated with each patch, pointing out those subpopulations
triggering the epidemic onset. We confirm these results by
testing synthetic metapopulations and a real case, the city
of Cali (Colombia). To round off, taking advantage of the
theoretical insights and analytical expressions provided by the
formalism, we propose a metric capturing the risk associated
with each patch. We implement this metric in the city of
Cali obtaining a very good agreement between the estimated
risk and the actual distribution of Dengue incidence across
districts, highlighting the important role of recurrent human
mobility patterns for explaining the spatial dissemination of
VBD.

II. METAPOPULATION MODEL FOR
VBD TRANSMISSION

In the following, we focus on the description of a vector-
borne contagion dynamics in a complex metapopulation. To
this aim, we consider a set of N populations or patches
in which contagion processes occur governed by the Ross-
Macdonald (RM) model. The RM model [58–60] assumes
that both vectors and individuals can be either susceptible
of contracting the disease or infectious entities capable of
fostering the disease. In this sense, this model was one of the
first attempts to address the impact of human-vector crossed
contagions on the spread of diseases. However, let us remark
that, the original RM model has some limitations such as
assuming that VBD do not confer long-lasting immunity to
infected individuals after overcoming the disease or including
a closed population of both humans and vectors. Nevertheless,
despite these assumptions, it is able to capture the essential
ingredients involved in the transmission of many VBD that do
not confer immunity after infection, e.g., Malaria, or those dis-
eases conferring immunity but having several co-circulating
serotypes within the same population, e.g., Dengue.

Additionally, here, we mainly focus on VBD provoked by
flaviviruses, in which humans act as reservoir of the disease
and mosquitoes are the vectors intermediating its transmission
among individuals. We choose the original formulation of the
RM model since it constitutes the minimal model of crossed
infections enabling the analytical study of the interplay be-
tween human mobility and the spread of VBD. However,
different disease-specific contagion patterns, such as human-
human contagions in Zika [61,62], different epidemiological
features such as passive immunity [63], or the effects of vol-
untary vaccination [64,65] can still be easily accommodated
by introducing small refinements to our original framework.

The relevant variables of the RM dynamics are (i) the
fraction of infected humans at time t , ρH (t ), and (ii) the
fraction of vectors infected at time t , ρM (t ). The evolution
of these two variables is given as a product of the elementary
processes described in Fig. 1(a). Namely, susceptible humans
become infected with probability λMH after being bitten by
an infected vector whereas healthy vectors become infectious
with probability λMH when interacting with an infected hu-
man. In addition, we assume that each vector makes a number
of β contacts with (healthy or infected) humans. This way, no
human-human or vector-vector direct infections are allowed.
Finally, infected humans become susceptible with probability
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FIG. 1. Ross-Macdonald model and metapopulation approach. (a) Schematic representation of the processes described in the RM model.
Relevant parameters are (i) the probability that an infected vector transmits the disease to a healthy individual, λMH ; (ii) the probability that an
infected human transmits the disease to a healthy vector, λHM ; (iii) the feeding rate of vectors β; (iv) the probability that an infected human
recovers, μH ; and (v) the mortality rate of vectors, μH . In (b) and (c), we show schematically the two basic stages of each Monte Carlo
step in our metapopulation approach. As shown in (b), individuals are associated with one of the 3 nodes of a network. Namely, starting
from the subpopulation in the top (1) and following clockwise we have populations composed of 8, 10, and 4 humans with 5, 3, and 9
vectors respectively. Once the movement has been done [see (c)] individuals mix and, consequently, the instant populations of humans at each
node change to 6, 8, and 8. The RM dynamics then takes place among the individuals and vectors coexisting at that moment in the same
subpopulation. Finally, after these interactions, the individuals go back to their respective associated nodes and the configuration is again the
one of (b). Note that we consider that vectors do not move from their corresponding node.

μH , while (healthy or infected) vectors die with probability
μM , being replaced by newborn healthy ones.

Although the RM dynamics captures the elementary con-
tagion processes taking place inside each population, the
dynamical evolution of each patch depends strongly on the
others, since they are not isolated. On the contrary, many
individuals with residence in one subpopulation may visit
others during, for instance, their daily commuts to other
geographical locations. On the other hand, the mobility of
vectors is rather limited, hence they are assumed not to move
from their original population. This assumption is valid for
many VBD such as Dengue, Zika, or Chikungunya since their
carriers, Aedes mosquitoes, typically fly an average of 400
meters [66]. Thus it is the mobility of infectious individuals
(who pass the diseases to healthy vectors living in distant
subpopulations) what triggers the propagation of local disease
outbreaks across the whole system.

To characterize the mobility of individuals, we denote each
area as a patch in a metapopulation. Each patch i has a
population of ni individuals and mi vectors and, importantly,
they may be different from one population to the other,
as they are derived from the demographic partition of the
population and the observed vector prevalence in each patch.
Each individual is associated to one subpopulation, say i,
considered as her residence. This way, the population ni of the
patch i is the number of individuals whose residence is node i.
Simultaneously, nodes are connected in pairs forming a com-
plex weighted and directed network encoded in an adjacency
matrix R, whose entries Ri j account for the probability that
a trip departing from patch i has as destination population j
[see Fig. 1(b)]. Matrix R can be computed from the observed

number of trips between each pair of nodes (i, j), Wi j , as

Ri j = Wi j∑N
l=1 Wil

. (1)

Thus matrix R encodes the information provided by mobility
datasets.

The former two dynamical processes at work—RM dy-
namics and human movements—interplay in each time step of
the metapopulation dynamics as follows. We start with a small
fraction of infected humans and/or vectors. The initial quan-
tity, being small, can be homogeneously distributed across the
populations or localized in one or few nodes in case of being
interested in determining those patches boosting epidemic
spreading in its early stage. Once the initial infectious seed
has been placed, the following microscopic processes are
considered.

(1) At each time step, t , healthy agents decide to move
from their residence with probability p or remaining in it
with probability (1 − p). Moreover, as symptoms associated
to some VBD are severe, we also include the possibility of
rescaling the infected agent mobility to αp with α ∈ [0, 1].

(2) If an agent leaves her residence, say i, she goes to a
different subpopulation chosen among those connected to i.
The choice is dictated by matrix R in Eq. (1), being Ri j the
probability of moving from i to subpopulation j.

(3) Once all the individuals have been placed in the patches
[see Fig. 1(c)], humans and vectors that are currently at
the same patch interact as dictated by the RM model. This
way, both humans and vector update their dynamical states
[susceptible or infected as shown in Fig. 1(a)] as a result of
the contagion and recovery processes.
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(4) Once the epidemic state of the agents have been up-
dated, each individual moves back to her residence and the
process starts again for time t + 1.

III. MODEL EQUATIONS

Once defined the basic steps of the mechanistic simula-
tions, we now tackle the mathematical formulation of the
processes described above. To this aim, for each patch i
(i = 1, . . . , N) we have two variables: the probabilities that
humans with residence in i, ρH

i (t ), and vectors associated to
i, ρM

i (t ), are infectious at time t , respectively. These 2N vari-
ables evolve according to the following Markovian equations:

ρH
i (t + 1) = ρH

i (t )(1 − μH ) + (
1 − ρH

i (t )
)
IH
i (t ), (2)

ρM
i (t + 1) = ρM

i (t )(1 − μM ) + (
1 − ρM

i (t )
)
IM
i (t ), (3)

where IH
i (t ) and IM

i (t ) account for the probability that a
healthy human with residence in subpopulation i and a healthy
vector associated to i are infected at time t respectively. The
former infection probability reads

IH
i (t ) = (1 − p)PH

i (t ) + p
N∑

j=1

Ri jP
H
j (t ) , (4)

where PH
i (t ) is the probability that an agent placed in popula-

tion i at time t is infected. This probability can be written as

PH
i (t ) = 1 −

(
1 − λMHρM

i

1

neff
i (ρH (t ), α, p)

)βmi

. (5)

Finally, neff
i (ρh(t ), α, p), which is the number of humans

placed in (but not necessarily residing in) population i can be
expressed as:

neff
i (ρH (t ), α, p) = [

1 − p
(
1 − (1 − α)ρH

i (t )
)]

ni

+ p
N∑

j=1

Rji
(
1 − (1 − α)ρH

j (t )
)
n j . (6)

In the same fashion, the expression for IM
i (t ) in Eq. (3) reads

IM
i (t ) = 1 −

(
1 − λHM ieff

i (t )

neff
i

)β

(7)

where ieff
i (t ) is the number of infected humans placed in

population i at time t

ieff
i (t ) = (1 − αp)niρ

H
i (t ) + αp

N∑
j=1

Rjin jρ
H
j (t ) . (8)

The above equations describe the time evolution for the
VBD incidence, �ρH (t ) = {ρH

i (t )} and �ρM (t ) = {ρM
i (t )}, in a

collection of connected patches with arbitrary demographic,
�n, and vector, �m, distribution. Thus, by iterating Eqs. (2) and
(3) starting from a given initial condition �ρH (0) and �ρM (0),
we can monitor the spatiotemporal propagation of VBD and
evaluate the steady epidemic prevalence on each geographical
area.

Let us first study the steady epidemic prevalence across
patches �ρH as a function of the contagion probabilities
λMH , λHM , and the degree of human mobility p in the
population. To reduce the number of parameters and without

loss of generality, let us define λHM = λMH = λ. We start
analyzing the case in which human mobility is governed by
an unweighted undirected Barabási-Albert network (BA) [67]
of N = 50 patches and average degree 〈k〉 = 4, all of them
homogeneously populated by ni = 1000 agents. Concerning
vector distribution, we consider that the ratio between vectors
and humans populations inside a patch i, denoted in the fol-
lowing as γi, is randomly drawn from a uniform distribution
within the range γi ∈ [0.3, 1.7]. The top panels in Fig. 2
reveals the great agreement between the predictions obtained
by iterating Eqs. (2)and (3) and the results obtained from
mechanistic simulations for both the cases in which infected
agents mobility is totally restrained, i.e., α = 0 [Fig. 2(a)], and
when there is no influence of the disease on agent mobility,
α = 1 [Fig. 2(b)].

Finally, we check if the formalism is able to capture the
spatiotemporal unfolding of VBD. For this purpose, we start
by setting a seed localized in a single patch of the BA network,
and then monitor the temporal evolution of the fraction of
the population affected by the disease inside each area. The
bottom panels of Fig. 2 show the evolution obtained by iterat-
ing Eqs. (2) and (3) [Fig. 2(c)] and by tracking the individual
state of each agent in Monte Carlo simulations [Fig. 2(d)].
Again, it becomes clear that the formalism also reproduces
the different propagation pathways of VBD in the synthetic
metapopulation, despite the noise induced by the stochastic
nature of the mechanistic simulations.

IV. ESTIMATION OF THE EPIDEMIC THRESHOLD

The validation of the Markovian formalism offers the
possibility of saving computational costs by iterating 2 × N
equations instead of performing lengthy agent-based simula-
tions. However, the advance behind Eqs. (2)–(8) is that they
also allow for deriving metrics and analytical results about
the dynamical behavior of VBD in large metapopulations. A
relevant quantity that can be analyzed is the epidemic thresh-
old, i.e., those conditions that turns the epidemic state into a
stable solution of Eqs. (2)–(8). To address it, let us assume
that the disease has reached the stationary state so ρH

i (t +
1) = ρH

i (t ) = ρH
i , ρM

i (t + 1) = ρM
i (t ) = ρM

i ∀i. In this case,
Eqs. (2) and (3) turn into

μHρH
i = (

1 − ρH
i

)
IH
i , (9)

μMρM
i = (

1 − ρM
i

)
IM
i . (10)

As we are interested in computing the epidemic threshold,
we now assume that the impact of the disease is finite but
negligible for all geographical areas, which in mathematical
terms implies that ρH

i = εH
i � 1, ρM

i = εM
i � 1 ∀i. This as-

sumption allows us to linearize Eqs. (9) and (10) yielding:

εH
i =

N∑
j=1

λMHβ

μH

(
pRi j

mj

ñeff
j

+ (1 − p)δi j
mi

ñeff
i

)
︸ ︷︷ ︸

Mi j

εM
j , (11)

εM
i =

N∑
j=1

λHMβ

μM

(
αpRji

n j

ñeff
i

+ (1 − αp)δi j
ni

ñeff
i

)
︸ ︷︷ ︸

M̃i j

εH
j , (12)
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FIG. 2. Validation of the Markovian formalism. (Top) Epidemic size ρH as a function of the contagion rate between vectors and humans
λHM = λMH = λ and the human mobility p (color code). Dots correspond to results of averaging 50 stochastic realizations whereas solid lines
represent the theoretical predictions obtained by iterating the equations of the formalism. Model parameters have been fixed to (β,μH , μM ) =
(1, 0.3, 0.3). The values assumed for the restriction of the mobility of infected agents are (a) α = 0 and (b) α = 1. (Bottom) Temporal evolution
of the fraction of infected agents (color code) inside each patch obtained by iterating Eqs. (2)–(8) (c) and by tracking the individual state of
each agent while performing a single Monte Carlo simulation (d). Infectivity is fixed to λ = 0.3 whereas mobility parameter p is set to p = 0.3.
The rest of parameters are the same as in (a).

where ñeff
i has been defined as ñeff

i = neff
i (0, α, p). Note that

the form of the elements of these two matrices depends on
both the mobility properties (p, R) and the demographic
distribution of both agents and vectors (�n, �m). For the sake of
clarity, let us write the former system of equations in a more
compact way:(

�ε H

�ε M

)
=

(
0 βλMH

μH M
βλHM

μM M̃ 0

)(
�ε H

�ε M

)
. (13)

Equation (13) makes evident the bipartite nature of the
processes involved in the spread of VBD with matrices M and
M̃ capturing vector-to-human and human-to-vector infections,
respectively. Thus, in order to quantify indirect infections
between humans mediated by vectors and vice versa, we
should iterate Eq. (13) obtaining(

�ε H

�ε M

)
= β2λMHλHM

μMμH

(
MM̃ 0

0 M̃M

)(
�ε H

�ε M

)
. (14)

From Eq. (14) it becomes clear that nontrivial solutions for
�ε H correspond to the eigenvectors of matrix MM̃. Specifi-
cally, given a metapopulation defined by �n, �m, R, and p, the

stationary solutions with infinitesimal incidence correspond to
eigenvectors of MM̃ whose eigenvalues can be written as

	i = μMμH

β2λMHλHM
. (15)

Under these conditions, the maximum eigenvalue 	max(MM̃)
encodes the combination of the RM parameters that corre-
sponds to the epidemic threshold, namely,

β2λMHλHM

μMμH
	max = 1 . (16)

The former equation reveals the minimum infectivities, either
λHM or λMH , that trigger the epidemic outbreak. To derive a
simple critical infectivity one can set λMH = δλHM , so that

λMH
c =

√
μHμM

δβ2	max(MM̃)
. (17)

To test the validity of Eq. (17) we have carried out ex-
tensive numerical simulations in synthetic metapopulations
considering λMH = λHM = λ. The top panels in Fig. 3 show
the epidemic diagrams ρH (p, λ) by computing the fractions
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FIG. 3. Epidemic threshold and evolution of the leading eigenvector of matrix MM̃. (a)–(c) in the top show three epidemic diagrams
ρH (p, λ) in a synthetic metapopulation of N = 50 patches. Each panel corresponds to a different rescaling value (α) for the mobility of
infected humans, namely: (a) α = 0, (b) α = 0.5 and (c) α = 1. In addition, we have set λHM = λMH = λ while the rest of the RM parameters
are: μH = 0.3, μM = 0.3, and β = 1.0. The color code show the incidence ρH as obtained from agent-based simulations while the solid
curve represent the prediction for the epidemic threshold λc, calculated from Eq. (17). (d)–(f) show the evolution, as a function of p, of the N
components of the eigenvector of matrix MM̃ corresponding to maximum eigenvalue 	max(MM̃).

of humans infected ρH as a function of λ and p. From these
diagrams it becomes clear that, for each value of p, there
exists a critical value λc so that for λ > λc the epidemic
phase appears. The border of this region [solid curves in
Figs. 3(a)–3(c)] is the function λc(p) calculated with Eq. (17),
showing an excellent agreement with the results obtained from
numerical simulations.

V. ABRUPT TRANSITIONS OF LEADING PACTHES

Apart from the agreement between Eq. (17) and the nu-
merical simulations, the evolution of the epidemic threshold
λc(p), reported in the three upper panels points out a nontrivial
dependence with the degree of human mobility. Contrary to
what naively expected, human mobility can be detrimental to
epidemics, as clearly illustrated in the panels for α = 0.5 and
1.0. This counterintuitive effect of mobility was already found
for SIR and SIS diseases in networked metapopulations [46]
as a result of the redistribution of the effective populations
across patches due to mobility. In the case of VBD, this
process corresponds to an homogeneization of the effective
ratios between vectors and humans so that a high risk patch
with large γi = mi/ni tends to decrease its effective value due
to the increase of neff

i caused by human mobility.
A more striking phenomenon reported in the epidemic dia-

grams of Fig. 3 is revealed by the sharp variations in the slope
of the curves λc(p). These abrupt changes are the product of
collisions between the two maximum eigenvalues of matrix
MM̃ as p varies. This way, the two maximum eigenvalues
interchange their order at some critical mobility value pc.
These collisions do not have an strong impact in the epidemic

threshold since the function λc(p) is continuous. However,
they are the fingerprint of a sudden change in the form of the
eigenvector corresponding to the maximum eigenvalue, �vmax,
of matrix MM̃. This abrupt transition is of utmost importance
since the components of �vmax encode the most important
patches driving the unfolding of the epidemics.

Let us recall that matrix MM̃ incorporates the demographic
information, �n, the mobility patterns, R and the vector distri-
bution, �m, having as unique parameter the degree of mobility
p. Thus, for each value of p the spectral analysis of MM̃
gives us the epidemic threshold λc and the distribution of
patches triggering the epidemic onset in the components of
�vmax. The evolution of the components of �vmax as a function
of p is shown in the bottom panels, (d–f), of Fig. 3. From
these plots, it becomes clear that the discontinuities of the
slope of λc(p) correspond to abrupt changes in the form
of �vmax. Namely, in the three cases, patch number 26 is
the one causing the epidemic onset for p = 0 and p � 1.
This is obvious since patch 26 is the one with largest ratio
γi = mi/ni in the synthetic metapopulation. However, as p
increases, the leading patch changes, being replaced by patch
18 in the case of α = 0 (d) and α = 0.5 (e), while for α = 1
(f) the leading patch is replaced by a collection of them.
Remarkably, the case α = 0 shows a second abrupt transition
at p′

c 	 0.92.
From a practical point of view, these abrupt changes point

out that containment strategies targeting a certain neighbor-
hood can sharply change from efficient to useless due to
subtle changes in human mobility. In Appendix A, we confirm
numerically these abrupt changes in the suitability of targeted
immunization policies.
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VI. EPIDEMIC RISK OF GEOGRAPHICAL AREAS

Spurred by the ability of the Markovian formalism to
capture the dynamics of VBD and the insights provided by
the spectral properties of matrix MM̃ for identifying the areas
triggering the onset of epidemics, we move one step further
and evaluate the epidemic risk associated with each patch.
To this aim, we propose a theory-driven prevalence indicator
which serves as a proxy to determine the most exposed areas
to the spread of VBD.

For this purpose, let us analyze the elements of the matrices
M and M̃, defined in Eqs. (11) and (12). From these equations
we realize that the elements Mi j (M̃i j) contain all the possi-
ble microscopic contagion processes from vectors (humans)
associated with patch j to humans (vectors) associated with
i. Therefore it is possible to estimate the effective number
of human-human interactions mediated by vectors that an
individual from subpopulation i receives from those with res-
idence in j. This quantity, denoted as Ci j , can be obtained as

Ci j =
N∑

k=1

MikM̃k j . (18)

After introducing the expressions of Mj and M̃k j from
Eqs. (11) and (12) and after some algebra, the explicit expres-
sion for the indirect human-human contacts reads

Ci j = δi j (1 − αp)(1 − p)
mini(
ñeff

i

)2

+αp(1 − p)Rji
min j(
ñeff

i

)2

+ (1 − αp)pRi j
mjn j(
ñeff

j

)2

+ αp2
∑

k

RikR jk
mkn j(
ñeff

k

)2 . (19)

This expression takes into account all the possible infection
pathways connecting humans in patch j to an individual with
residence in node i. In particular, those infections may take
place in four possible ways [each one encoded by the terms
of Eq. (19)]: (i) when an infected individual from patch j
remains at his/her residence, transmits the disease to one
vector in j which then transmits the disease to another resident
in j; (ii) when an infected individual from patch j visits patch i
and infects a vector that will later pass the disease to a resident
of patch i; (iii) when a resident of patch j infects a vector there
and a healthy human traveling to from i to j gets infected; and
(iv) when both the infected individual from j and the healthy
individual from i travel to a contiguous third patch k where
the infection takes place mediated by a vector.

Finally, in order to make predictions about the impact of
the VBD on a geographical area, i, we must account for all
the possible infections from each patch of the metapopulation
and to weight the resulting number by the population of i.
This way, the epidemic risk indicator for each patch i, in the
following denoted as ERi, can be defined as

ERi = ni

N∑
j=1

Ci j = ni

N∑
j=1

(MM̃)i j . (20)

The evaluation of ERi, as defined above, can be done directly
without the need of neither numerical simulations nor making
the integration of the Markovian equations. In fact, once data
about demography, vector distribution and mobility patterns
are available, one can estimate the epidemic risk of each
subpopulation.

To validate the Epidemic Risk measure, we now move to a
real metapopulation, the city of Santiago de Cali (Colombia).
With a population of more than 2 millions of inhabitants,
it offers the possibility of comparing our predictions in a
scenario for which severe epidemic outbreaks of VBD are
recurrently found. In particular, due to its location and cli-
mate, Cali is a Dengue endemic city in which records of the
historical incidence of this disease are available for compar-
ison. To this aim, we collected demographic and mobility
datasets [68] whereas vectors abundance across districts was
obtained from entomological reports made yearly by the local
authorities [69] (further information in Appendix B). With this
information at hand, and by using Eq. (20), we assign the
epidemic risk of each of the 22 districts in which the city of
Cali is divided. These epidemic risk values are compared to
the observed Dengue incidence across the 22 patches during
the years 2015 and 2016 [70,71].

In Fig. 4, we show this comparison by normalizing the
values of both epidemic risk and Dengue incidence by their
maximum observed value (in both cases that of district 13). In
particular, we find a coefficient of determination of R2 = 0.81,
indicating that the proposed prevalence indicator is able to
capture the spatial distribution of Dengue cases across the
city. On more general grounds, this agreement points out that
given the demography, the commuting patterns and the spatial
distribution of vectors across a given population, one can use
Eq. (20) to identify areas where containment measures should
be promoted to reduce the impact of possible outbreaks.

VII. CONCLUSIONS

The control of infectious diseases represents one of the
major societal challenges. Understanding the complex inter-
dependency between human activity and contagion processes
is key to explain the onset and development of large-scale
epidemics. Here, focusing on VBD, we have integrated in-
formation from urban daily commutes and the geographic
distribution of humans and vectors to estimate the epidemic
risk associated with different connected regions. In particular,
we have provided a metapopulation formalism to assess the
role that the former ingredients play on the propagation of
VBD. We have proved that this formalism constitutes a very
reliable and time-saving platform, since its Markovian equa-
tions enable to reproduce very accurately not only the global
incidence of VBD but also the spatiotemporal spreading pat-
terns observed in Monte Carlo simulations.

Based on this agreement, we have derived an analytical
expression of the epidemic threshold that captures the critical
conditions which leads to the onset of epidemics. Apart from
the detrimental effect that mobility may have on the spread
of diseases, the study of the epidemic threshold has revealed
interesting phenomena such as the existence of abrupt changes
in the way epidemics unfold. In particular, we have shown
that the subset of patches leading the epidemic onset can
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FIG. 4. Real Dengue incidence vs estimated epidemic risk in
the city of Cali (Colombia). (Top) Normalized epidemic risk
(ER/ERmax) vs normalized Dengue incidence (I/Imax) for each of
the 22 districts of Cali. Color encodes the Epidemic Risk, from
the lower (yellow) to the highest (blue).The correlation between the
two variables yields a coefficient of determination of R2 = 0.81.
(Bottom) Spatial distributions of the normalized Dengue incidence
in the city of Cali (left) and the normalized epidemic risk (right)
according to Eq. (20). The parameters concerning agent mobility
have been set to (p, α) = (0.36, 0.75).

suddenly change as human mobility varies. This phenomenon
highlights the need of incorporating real human mobility pat-
terns into the design of containment policies targeting specific
geographical areas, for efficient policies can turn useless due
to a small variation of human mobility habits.

Finally, relying on the matrix containing the information
about the effective number of human-human contagions, we
have derived an epidemic risk indicator that allows us to
classify the patches according to their exposure to VBD.
By computing this epidemic indicator, we have reproduced
with great accuracy the geographical distribution of Dengue
incidence in the city of Santiago de Cali (Colombia), where
Dengue in an endemic disease, thus being able to identify the
most vulnerable areas where prevention measures should be
promoted.

In a nutshell, our results point out that the spread of
VBD is the result of a delicate interplay between commuting
flows, human census and vector distribution. This interplay
is captured both in the analytical expression of the epidemic
threshold and in the epidemic risk indicator. As a result, we

have shown that small variations of the former ingredients,
such as the degree of mobility, can lead to abrupt changes
in the way epidemics unfold. Our framework, although con-
taining several simplifying assumptions to allow the analytical
treatment, has shown useful to integrate human and contagion
dynamics and it can be readily implemented to identify those
regions where immunization policies should be reinforced and
to forecast the consequences of control strategies focused on
mobility restrictions.

As future work, the formalism here presented paves the
way to the incorporation of additional features that, together
with human mobility, are key for the dissemination of vector-
borne diseases. Among these features we find (a) the inclusion
of seasonality modulating both, the population and the bitting
rate of vectors [72] or the effects of climate change on vectors
census [6–9], both ingredients can be incorporated as an
external driver for each patch through the use of the multiplex
formalism [73–75]; (b) the time-varying nature of human
contact patterns [76–79] and the adaptability of mobility be-
haviors in epidemic scenarios [80,81]; and (c) the possibility
of incorporating more refined compartmental models with
the addition of multiple states [82,83] to address the impact
that direct human-human transmission in some VBD such
as Zika has on the epidemic threshold [62], or the interplay
of several VBD with competitive or cooperative interactions
[84–86]. These ingredients can be readily incorporated into
the Markovian model, improving its capacity to evaluate the
risk of specific VBD in particular regions.
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APPENDIX A: EFFICIENCY OF TARGETED
IMMUNIZATION POLICIES

The study of the critical properties of VBD in the main text
has revealed the existence of some mobility values, denoted
as pc, for which the components of the leading eigenvec-
tor change abruptly. Translated into epidemiological words,
this phenomenon pinpoints the change in the most affected
patches, which is of great relevance since targeted policies
in specific areas can pass from useful to useless as human
mobility varies.

To prove it, we now study the effects of applying preven-
tion measures in specific locations selected according to the
largest components of the leading eigenvector of the critical
matrix MM̃. We consider the synthetic network used in the
main text and set α = 0.5, for which the change in the leading
patch happens at p = pc = 0.38 (see Fig. 3). To study the
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FIG. 5. Temporal evolution, according to the Markovian equations, of the number of infected agents by a VBD which spreads over a BA
network. The black line denotes the original curve where no policy has been implemented whereas dashed lines correspond to the case in which
patches 26 (red) and 18 (blue) are immunized. The epidemic parameters have been set to (α, λHM , λMH , μH , μM ) = (0.5, 0.25, 0.25, 0.3, 0.3).
The values for human mobility are (a) p = 0.1 (p < pc) and (b) p = 0.5 (p > pc).

effects of containment measures, we assume that immunized
agents are no longer susceptible of contracting the disease,
so λMH = 0 for them. Finally, we target two different sub-
populations for the immunization policies: patch 26 that is
the leading patch for p < pc, and patch 18 that sustains the
epidemic outbreak when p > pc.

Figure 5 confirms that the effectiveness of targeted policies
against VBD is strongly influenced by aspects concerning hu-
man mobility. In fact, immunizing agents from patch 18 leads
to the extinction of the disease for p = 0.5 > pc, whereas it
is almost ineffective for mobility values below this threshold
(p = 0.1 < pc). This result, along with the others presented
in the main text, highlights the importance of designing con-
tainment policies taking into account the complex interplay
between human mobility patterns, census data and vector
abundance.

APPENDIX B: DESCRIPTION OF CALI DATASET

One of the most important contributions of this work is the
formulation of a new framework which can easily incorporate
mobility data of real cities to address real epidemic scenarios.
In the main text, we tackle the spread of VBD in the city
of Cali (Colombia), whose geographical and meteorological
features make it an endemic region for several VBD such as
Dengue, Chikungunya or Zika. In particular, here we focus on
the spread of Dengue.

To assess the effect of mobility on the spread of Dengue
in Cali, it is necessary to reconstruct the mobility network
of its inhabitants from data. For this purpose, we divide
the city into 22 districts, which correspond to the official
administrative divisions called comunas. Regarding demog-

raphy, the population distribution across comunas has been
extracted from census data that the municipality facilitates
[68]. Mobility flows connecting comunas are extracted from
urban commuting surveys [87]. As a result, more than 105

trajectories were recorded, which suppose a representative
sample of Cali’s commuting flows. Once all the data have
been gathered, an origin-destination matrix, encoded in our
formalism by matrix R, is computed as

Ri j = Wi j∑N
l=1 Wil

, (B1)

where the numerator corresponds to the number of trips
between patches i and j while the denominator counts
all the reported trips departing from patch i. The result
is a weighted directed network encoding the probability
that an agent visits other neighborhoods different from its
residence.

Apart from the mobility network, the distribution of vectors
across the city also plays a crucial role in the outcome of
the disease. The number of vectors inside a geographical
region is strongly linked to environmental features such as al-
titude, temperature and humidity but also to human-dependent
factors like health and economic conditions. To model vec-
tor distribution across comunas, we use as a proxy the so-
called recipient index. This quantity encodes the probability
of finding vector pupae in different recipients which have
been previously distributed across the city. A high value of
the index means a higher probability of finding vectors. For
this reason, we assume that the ratio between the number of
vectors and humans inside each patch in our model is directly
proportional to its recipient index, which is extracted from
entomological data of the year 2015 [69].
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