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Neural-network quantum states at finite temperature
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We propose a method to obtain the thermal-equilibrium density matrix of a many-body quantum system
using artificial neural networks. The variational function of the many-body density matrix is represented
by a convolutional neural network with two input channels. We first prepare an infinite-temperature state,
and the temperature is lowered by imaginary-time evolution. We apply this method to the one-dimensional
Bose-Hubbard model and compare the results with those obtained by exact diagonalization.
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I. INTRODUCTION

One of the challenging problems in physics is the deter-
mination of the properties of quantum many-body systems.
Quantum many-body problems are difficult to solve, since
the size of the Hilbert space exponentially increases with
the size of the system. An approximate method to overcome
this difficulty is the variational method, in which the huge
Hilbert space is represented by a variational wave function
with a tractable number of variational parameters. How-
ever, the variational method relies greatly on the physical
insight of researchers to find sophisticated variational wave
functions [1,2].

Carleo and Troyer [3] proposed the use of artificial neural
networks to represent variational wave functions for quantum
many-body states. It is known that artificial neural networks
are very flexible and can approximate any function if the
number of hidden units in the neural networks is sufficient.
Using artificial neural networks as variational functions, there-
fore, we expect that quantum many-body wave functions can
be approximated efficiently, in which the essential features
of quantum many-body states are automatically captured as
variational network parameters are optimized. This method
has been applied to a variety of quantum many-body prob-
lems, and various properties of quantum many-body states
represented by neural networks have been investigated [4–27].

Recently, artificial neural networks were also used to rep-
resent the density matrices of open quantum many-body sys-
tems [28–32]. A density operator ρ̂ contains more information
than a pure state |ψ〉, and open quantum systems need more
representation ability of neural networks than closed quan-
tum systems. In Refs. [29–32], the master equations in the
Lindblad form are solved using the variational Monte Carlo
method, and the steady states of dissipative spin systems are
obtained. The successful use of neural networks to represent
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density matrices opens up the application of machine learning
not only to dissipative quantum systems, but also to finite-
temperature states of quantum many-body systems.

Although the Boltzmann machine was used in previous
studies [28–32], in this paper, we use a convolutional neural
network (CNN) [33] to represent the density matrix of a
finite-temperature state. The CNN has been used to represent
the ground states, i.e., pure states, of quantum many-body
systems [10,16,18,22]. In the case of the pure state |ψ〉, for the
base |n〉, a configuration of particles or spins n is input into the
CNN, and the output of the CNN gives the amplitude 〈n|ψ〉.
For the density matrix, in the present study, we input n and n′
into the CNN with two input channels, and the output of the
CNN gives the matrix element 〈n|ρ̂|n′〉 of the density operator
ρ̂. We first prepare the density matrix at infinite temperature
with β = (kBT )−1 = 0, and the imaginary-time propagator
e−�βĤ is applied successively to the density matrix to obtain
ρ̂ = e−βĤ at each β. A similar imaginary-time method was
used to obtain the thermal equilibrium in matrix product
states [34–36]. We apply our method to the Bose-Hubbard
model, which describes cold bosonic atoms in optical lattices
[37]. We calculate the finite-temperature density matrix of the
Bose-Hubbard model in one-dimensional space and compare
the results with those obtained by exact diagonalization. We
also investigate the dependence of the accuracy of our method
on various conditions, such as CNN structures.

This paper is organized as follows. Section II explains the
method, Sec. III shows the numerical results, and Sec. IV
provides the conclusions of the study.

II. METHOD

To demonstrate the neural-network method for obtaining
the finite-temperature density matrix, we apply it to the Bose-
Hubbard model in one-dimensional space. The Hamiltonian is
given by

Ĥ = −
∑
〈i, j〉

âiâ
†
j + U

2

∑
i

n̂i(n̂i − 1), (1)

where U is the on-site interaction energy, âi is the annihilation
operator of a boson at the ith site, n̂i = â†

i âi is the number
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FIG. 1. Schematic illustration of the CNN to represent the den-
sity matrix ρ(n, n′) = 〈n|ρ̂|n′〉. The one-dimensional configurations
of bosons n and n′ on M sites are input into the two input channels.
Successive NL convolutional layers are followed by a fully connected
layer, which gives output u(out). The matrix element of the density
matrix ρ(n, n′) is given by eu(out)

.

operator, and 〈i, j〉 represents adjacent sites. The energy is
normalized in such a way that the hopping coefficient be-
comes unity. Such a system can be realized by ultracold
bosonic atoms loaded in an optical lattice [37]. We assume
the periodic boundary condition âM+1 = â1, where M is the
number of sites. A pure quantum state can be expanded by the
Fock-state bases |n〉, where n = (n1, n2, . . . , nM ) represents
the number of bosons in each site. We consider a canonical
ensemble at temperature T = (kBβ )−1 with a total number
of bosons N . The number of Fock-state bases |n〉 satisfying∑

i ni = N is Nbase = (N + M − 1)!/[N!(M − 1)!], which in-
creases exponentially with N and M. We restrict ourselves to
the case of N = M in the following analysis. In this case, at
zero temperature, the system becomes a Mott insulator for
large U , and the system exhibits superfluidity for small U . At
finite temperature, the normal phase emerges [38] around the
Mott insulator and superfluid regions in the phase diagram.
Since all the matrix elements 〈n|e−εĤ |n′〉 for infinitesimal
ε > 0 can be taken to be real and non-negative without loss
of generality, all the matrix elements of the thermal density
matrix 〈n|e−βĤ |n′〉, which are decomposed to matrix products
of 〈n|e−εĤ |n′〉, can be taken to be real and non-negative [39].

We employ the CNN [33] to represent the density matrix
〈n|ρ̂|n′〉 ≡ ρ(n, n′) of the system (see Fig. 1). The inputs into
the CNN are vectors of integers n and n′, and the CNN outputs
a single real value u(out). The matrix element of the density
matrix is represented as

ρ(n, n′) = eu(out)
. (2)

We generate the thermal density matrix as follows. We first
prepare the initial CNN that represents the density matrix at
infinite temperature β = 0, which is used as the initial density
matrix of the imaginary-time evolution. In general, we can
construct a CNN that approximates a desired density matrix
ρtarget (n, n′) by the method described below. The initial CNN

can thus be constructed with

ρtarget (n, n′) = lim
β→0

〈n|e−βĤ |n′〉 = δn,n′ . (3)

Next, we set the target as ρtarget (n, n′) = ρ�β (n, n′) =
〈n|e−�βĤ |n′〉, and construct another CNN that represents this
target. Repeating this procedure, we obtain CNNs that repre-
sent ρ2�β, ρ3�β, . . . , successively.

We can calculate matrix elements of the density matrix
ρβ+�β (n, n′) at β + �β using ρβ (n, n′) at β as

ρβ+�β (n, n′) = 〈n|e−(β+�β )Ĥ |n′〉
=

∑
n1,n2

〈n|e− �βĤ
2 |n1〉ρβ (n1, n2)〈n2|e− �βĤ

2 |n′〉.

(4)

We expand e−�βĤ/2 with respect to �β as

ρβ+�β (n, n′) � ρβ (n, n′) − �β

2

∑
n1

[〈n|Ĥ |n1〉ρβ (n1, n′)

+ ρβ (n, n1)〈n1|Ĥ |n′〉]

+ �β2

8

∑
n1

[〈n|Ĥ2|n1〉ρβ (n1, n′)

+ ρβ (n, n1)〈n1|Ĥ2|n′〉]

+ �β2

4

∑
n1,n2

〈n|Ĥ |n1〉ρβ (n1, n2)〈n2|Ĥ |n′〉

+ · · · + (terms proportional to �βK ), (5)

where we cut off O(�βK+1) terms in Eq. (5). By this approx-
imation, the number of terms in Eq. (5) is reduced to O(MK ),
since the number of nonzero matrix elements 〈n|ĤK |n′〉
is O(MK ). We can thus calculate any matrix elements of
ρtarget (n, n′) = ρβ+�β (n, n′), when we have the CNN that
represents the density matrix ρβ (n, n′).

The above method to obtain the imaginary-time evolution
is based on the technique to construct a CNN that approxi-
mates ρtarget (n, n′). This is done by minimizing

L = 1

2

∑
n,n′

[ρ(n, n′) − ρtarget (n, n′)]2, (6)

where ρ(n, n′) is the density matrix represented by the CNN
to be optimized. Usually the gradient of L with respect to the
network parameters is used to update the network parameters
for minimizing L. Here, instead of such a gradient [Eq. (A2)],
we introduce a modified gradient in Eq. (A7) to stabilize the
network updates and facilitate the reduction of L (see the Ap-
pendix). Using the modified gradient with the Adam optimizer
[33,40], we can optimize a CNN to approximate ρtarget (n, n′).
Using this technique with Eq. (3), we can construct a CNN
that represents ρ0, and using this technique with Eq. (5),
we can construct the CNNs that represent ρ�β, ρ2�β, . . . ,

successively. To prepare the CNN that represents ρ0, we use
random network parameters to start the above optimization.
After that, to facilitate convergence, the initial values of the
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network parameters are set to those of ρ(n−1)�β to construct
the CNN for ρn�β .

The expectation value of an observable Â is written as

〈Â〉 = Tr(ρ̂Â)

Tr ρ̂
=

∑
n,n′ ρ(n, n′)〈n′|Â|n〉∑

n ρ(n, n)

=
∑

n

P(n)A(n), (7)

where Tr indicates trace, P(n) = ρ(n, n)/
∑

n ρ(n, n), and
A(n) = ∑

n′ ρ(n, n′)〈n′|Â|n〉/ρ(n, n). The summation in the
second line of Eq. (7) is calculated by the Monte Carlo method
with a Metropolis sampling of n with probability distribution
P(n). To evaluate

∑
n′ in A(n), the number of nonzero matrix

elements 〈n′|Â|n〉 should not be exponentially large with
respect to the system size.

Here, we briefly describe the structure of the CNN [33]
to make the present paper self-contained. The input into
the CNN is n and n′, which we denote as u(0)

1 and u(0)
2 ,

respectively, i.e., the CNN has two input channels, with each
of size M. The first hidden layer is calculated as

u(1)
m, j =

2∑
k=1

F1−1∑
p=0

W (1)
k,m,pu(0)

k, j+p + b(1)
m , (8)

and these are propagated to the deeper layers as

u(l )
m, j =

Cl−1∑
k=1

Fl −1∑
p=0

W (l )
k,m,p f

(
u(l−1)

k, j+p

) + b(l )
m , (9)

where W (l )
k,m is the one-dimensional filter with size Fl , b(l ) is

the bias, and Cl is the number of channels in the lth hidden
layer. In Eqs. (8) and (9), the subscripts m and k identify the
channels. The number of units in each channel in the input and
hidden layers is M, i.e., u(l )

m = (u(l )
m,1, u(l )

m,2, . . . , u(l )
m,M ), which

satisfies the periodic boundary condition u(l )
m,M+1 = u(l )

m,1. We
use the rectified linear unit (ReLU) [33] as the activation
function f ,

f (x) =
{

x (x � 0),

0 (x < 0),
(10)

which is frequently used in the application of the CNN. After
NL convolutional layers, the CNN finally gives a single output
value u(out) through the fully connected layer as

u(out) =
CL∑

m=1

M∑
j=1

W (fc)
m, j u(L)

m, j . (11)

The network parameters are thus the filters W (l )
k,m and biases

b(l ) in the convolutional layers, and weights W (fc)
m in the fully

connected layer, which are all taken to be real, and therefore
the output u(out) is real. Using the output u(out) in Eq. (11), the
matrix element of the density matrix is represented by Eq. (2).
In the present model, all the matrix elements of the density
matrix are positive, and therefore the positive definiteness is
assured. However, the Hermiticity of the density matrix is not
assured, since ρ(n, n′) is not always equal to ρ(n′, n) in the
CNN representation of the density matrix. Our CNN repre-
sentation is thus redundant compared with the Boltzmann-

machine representation proposed in Ref. [28]. Nevertheless,
the correct density matrix is obtained by the imaginary-time
evolution, as demonstrated in the next section.

III. RESULTS

We consider a system of M = 5 sites with N = 5 parti-
cles. The CNN consists of NL = 4 convolutional layers with
filter size F1 = F2 = F3 = F4 = 5 and C1 = C2 = C3 = C4 =
16 channels. The imaginary-time evolution is generated with
�β = 0.01, where we take the terms up to the second order
of �β in the expansion in Eq. (5) (i.e., K = 2). We take 2000
samples in the Metropolis sampling to calculate the gradient
in Eq. (A7) in each Adam optimization step. The optimization
steps are performed 104 times to obtain the next density
matrix ρβ+�β from ρβ in the imaginary-time evolution. In the
Adam optimization, the learning rate is decreased from 10−3

to 10−8 quadratically as (10−3 − 10−8)(1 − steps/104)2 +
10−8. In order to suppress exponential growth or decay of
the matrix elements 〈n|e−βĤ |n′〉 in the imaginary-time evo-
lution, we subtract an average energy from the Hamiltonian
Ĥ − 〈Ĥ〉β to obtain ρβ+�β . By this subtraction, numerical
errors are reduced, while the results with and without the
subtraction are mathematically equivalent to each other since
e−�β(Ĥ−〈Ĥ〉β )/2ρ̂e−�β(Ĥ−〈Ĥ〉β )/2 ∝ e−�βĤ/2ρ̂e−�βĤ/2.

Figure 2(a) shows the imaginary-time evolution of the
expectation value of the energy 〈Ĥ〉 obtained by our method
for U = 1, 4, and 10. In Fig. 2(a), we also plot the exact
energy E exact

β obtained by the exact diagonalization of the
Hamiltonian. The lines of 〈Ĥ〉 almost overlap with those of
E exact

β . In Fig. 2(b), we plot the mean-squared error in the
matrix elements of the density matrix, defined as [31]

δρ = 1

N2
base

∑
n,n′

[
ρβ (n, n′) − ρexact

β (n, n′)
]2

, (12)

where ρexact
β (n, n′) is the density matrix obtained by exact

diagonalization of the Hamiltonian, and the summation is
taken over all n and n′. In calculating δρ, the density matrix
is normalized as

∑
n ρβ (n, n) = 1. The error δρ in Fig. 2(b)

is less than 10−8. Thus, our method works well for the whole
temperature region and both for superfluid and Mott insulator
regimes.

In Fig. 2(b), δρ increases for the early stage of the
imaginary-time evolution, and then δρ decreases with β. This
is because the imaginary-time evolution e−�βĤ/2ρ̂e−�βĤ/2

eliminates excited states in ρ̂, and then also eliminates errors
arising during the imaginary-time evolution. For β → ∞, the
density matrix converges to the ground state, even if errors
arise during the imaginary-time evolution.

The errors arise from various sources: the cutoff in the
expansion in Eq. (5), the representation ability of the CNN,
the statistical errors due to the Monte Carlo sampling, and
insufficient convergence in the Adam optimization. Figure 3
shows the dependence of the results on various conditions. We
see that the errors are increased by reducing the cutoff order
in Eq. (5) from K = 2 to K = 1 [line (ii) in Fig. 3]. The errors
are also increased by reducing the number of convolutional
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FIG. 2. Imaginary-time evolution of the density matrix repre-
sented by a CNN for U = 1, 4, and 10. (a) Expectation value of
the Hamiltonian 〈Ĥ〉. The lines of the energies E exact

β obtained by
exact diagonalization (ED) are also drawn, which however almost
overlap with the lines obtained by our method and cannot be seen.
The horizontal lines represent the exact energies of the ground states.
The inset shows the error in the energy δE = 〈Ĥ〉 − E exact

β . (b) Mean-
squared error δρ defined in Eq. (12).

layers from NL = 4 to NL = 2 [line (iii)]. We have confirmed
that the errors for K = 3 and those for NL = 6 are similar
to the errors in line (i), and therefore K = 2 and NL = 4 are
sufficient for the present system. We also confirmed that the
accuracy is lowered by reducing the number of samples in the
Metropolis sampling or the number of iterations in the Adam
optimization.

To identify the errors arising from the cutoff in Eq. (5),
we examined the imaginary-time evolution of the full density
matrix in Eq. (5) (data not shown). The errors for the full
density matrix with K = 1 are intermediate between lines (i)
and (ii) in Fig. 3. The errors for the full density matrix with
K = 2 are δρ � 10−11, which are much smaller than line (i).
This indicates that the cutoff errors of O(�β3) are almost
negligible in line (i), and the errors in line (i) are mainly due
to the reasons other than the cutoff. This indicates again that
K = 2 is sufficient in the present condition. We also confirmed
that reduction of �β does not improve the accuracy.

In Fig. 3, we also examine a different form of ex-
pansion of e−�βĤ instead of the symmetric expansion in
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FIG. 3. Dependence of the accuracy on various conditions for
U = 4, where (i) the same as in Fig. 2, (ii) the cutoff order in
Eq. (5) is reduced to K = 1, (iii) the number of convolutional layers
is reduced to NL = 2, and (iv) the asymmetric expansion in Eq. (13)
is used with K = 2. (a) Expectation value of the Hamiltonian 〈Ĥ〉.
The inset shows the error in the energy δE = 〈Ĥ〉 − E exact

β . (b) Mean-
squared error δρ defined in Eq. (12).

Eq. (5),

ρβ+�β (n, n′) = 〈n|e−(β+�β )Ĥ |n′〉
=

∑
n′′

〈n|e−�βĤ |n′′〉〈n′′|e−βĤ |n′〉

�
K∑

k=0

(−�β )k

k!

∑
n′′

〈n|Ĥk|n′′〉ρβ (n′′, n′), (13)

where the propagator e−�βĤ always operates from the left-
hand side of ρβ . Line (iv) in Fig. 3 shows the result using this
asymmetric expansion with K = 2. The mean-squared error
δρ monotonically increases for Eq. (13) and never decreases.
This is because the operator e−�βĤ in the asymmetric form
in Eq. (13) only eliminates excited states in the ket vectors in
the density operator, and therefore, once errors arise in the bra
vectors during the imaginary-time evolution, the errors remain
for β → ∞.

Finally, we consider how the method scales with the system
size M. In the numerical procedure, the computationally most
expensive part is the evaluation of ρtarget (n, n′) in Eqs. (A5)
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and (A8), which is calculated by the expansion in Eq. (5).
Since the number of terms in ĤK is O(MK ), and the evaluation
of ρβ using the CNN costs O(M ), the total efficiency scales as
O(MK+1). The size of the CNN should also be increased with
M, which is expected to be at most polynomial in M [27].

IV. CONCLUSIONS

We proposed a method to represent a many-body density
matrix using a convolutional neural network (CNN), where
the particle configurations n and n′ are input into the CNN
to produce the value of 〈n|ρ̂|n′〉. We also proposed a method
to obtain the density matrix at finite temperature through the
imaginary-time evolution of the density matrix represented
by the CNN. We applied our method to the one-dimensional
Bose-Hubbard model, and demonstrated the imaginary-time
evolution, which showed that the finite-temperature density
matrix obtained by our method agrees well with that obtained
by exact diagonalization of the Hamiltonian. We have also
investigated the dependence of the accuracy on different
conditions.

Neural-network quantum states are also efficient for repre-
senting the many-body states of fermions [9], and therefore
we expect that our method can also be used to investigate
the finite-temperature properties of fermions, which may be
complementary to the path-integral quantum Monte Carlo
method. The present method can also be extended to higher
spatial dimensions in a straightforward manner. For these
purposes, we need to suppress computational cost to study
larger systems efficiently [41].
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APPENDIX: A METHOD TO OPTIMIZE
NETWORK PARAMETERS

We can optimize a CNN so as to represent a desired density
matrix ρtarget (n, n′) by minimizing

L = 1

2

∑
n,n′

[ρ(n, n′) − ρtarget (n, n′)]2, (A1)

where ρ(n, n′) is the density matrix represented by the CNN
to be optimized. We can reduce the value of L using its
gradient with respect to the network parameters as

∂L

∂w
=

∑
n,n′

∂ρ(n, n′)
∂w

[ρ(n, n′) − ρtarget (n, n′)], (A2)

where w is one of the network parameters. Since the sum-
mation

∑
n,n′ cannot be taken exactly for a large system,

we may evaluate the summation in Eq. (A2) by the Monte
Carlo method with a random sampling of n and n′, i.e., taking
random samples of N sets of (n, n′), we can evaluate Eq. (A2)
as

1

N
∑

sampling

∂ρ(n, n′)
∂w

[ρ(n, n′) − ρtarget (n, n′)], (A3)

where
∑

sampling represents the sum over the samples. How-
ever, for the huge Hilbert space, the random sampling is
inefficient and we need importance sampling. To do this, we
take the gradient of ln L as

∂ ln L

∂w
= 2

∑
n,n′

∂ρ(n,n′ )
∂w

[ρ(n, n′) − ρtarget (n, n′)]∑
n,n′ [ρ(n, n′) − ρtarget (n, n′)]2

,

= 2
∑
n,n′

P(n, n′)
∂ρ(n, n′)

∂w

1

ρ(n, n′) − ρtarget (n, n′)
,

(A4)

where

P(n, n′) = [ρ(n, n′) − ρtarget (n, n′)]2∑
n,n′[ρ(n, n′) − ρtarget (n, n′)]2

(A5)

can be regarded as a probability distribution satisfy-
ing

∑
n,n′ P(n, n′) = 1. Since the probability distribution

P(n, n′) emphasizes the samples with larger deviation
|ρ(n, n′) − ρtarget (n, n′)|, we expect that this is an appropriate
probability distribution for the importance sampling. Taking
N sets of samples (n, n′) using Metropolis sampling with
probability P(n, n′), Eq. (A4) is evaluated as

2

N
∑

sampling

∂ρ(n, n′)
∂w

1

ρ(n, n′) − ρtarget (n, n′)
. (A6)

However, using this form of gradient to update the network
parameters, we found that numerical instability arises, which
may be due to accidental small denominators in the sum-
mation in Eq. (A6). To avoid the instability, we introduce a
modified gradient instead of Eqs. (A2) and (A4),∑

n,n′
P(n, n′)

∂ρ(n, n′)
∂w

[ρ(n, n′) − ρtarget (n, n′)]. (A7)

Taking the Metropolis sampling with probability P(n, n′), this
is evaluated by

1

N
∑

sampling

∂ρ(n, n′)
∂w

[ρ(n, n′) − ρtarget (n, n′)]. (A8)

Using this modified gradient, the network parameters are
updated using the Adam scheme [33,40], until ρ(n, n′) con-
verges sufficiently. We found that this scheme numerically
stabilizes the network updates, and reduces L efficiently.
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