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Analogues of gravity-induced instabilities in anisotropic metamaterials
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In the context of field theory in curved space-times, it is known that suitable background space-time geometries
can trigger instabilities of fields, leading to exponential growth of their (quantum and classical) fluctuations,
a phenomenon called vacuum awakening in the quantum context, which in some classical scenarios seeds
spontaneous scalarization or vectorization. Despite its conceptual interest, an actual observation in nature of
this effect is uncertain since it depends on the existence of fields with appropriate masses and couplings in
strong-gravity regimes. Here, we propose analogues for this gravity-induced instability based on nonlinear optics
of metamaterials which could, in principle, be observed in laboratory.
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I. INTRODUCTION

The influence of a background material medium on the
propagation of mechanic and electromagnetic waves is well
known to be formally analogous to that of an effective curved
space-time geometry. This idea was first presented, in the
electromagnetic context, by Gordon in 1923 [1] and it has
since been developed in a number of different scenarios, par-
ticularly after Unruh’s [2] and Visser’s [3] works on acoustic
analogues of black holes and their associated Hawking-type
radiation. More recent applications of this formal analogy
include mimicking in material media quantum light-cone
fluctuations [4] and anisotropy in cosmological space-times
[5]. The most appealing feature of these condensed-matter
analogues of gravitational backgrounds is the possibility of
observing in laboratory subtle but conceptually interesting
effects which can be virtually unobservable in their original
contexts, Hawking radiation being certainly the most emblem-
atic among them, with claims of having already been observed
in laboratory [6-8].

An interesting effect in the context of (quantum) fields
in curved space-times is the triggering of field instabili-
ties due to the background space-time geometry, a phe-
nomenon called vacuum awakening in the quantum context
[9-12]. These gravity-induced instabilities exponentially am-
plify vacuum fluctuations to the point they decohere and seed
classical perturbations [13], which, depending on field pa-
rameters, eventually evolve to a nonzero classical field con-
figuration (“spontaneous scalarization” in the case of scalar
fields [14—17]), stabilizing the whole system. More recently,
this mechanism was also predicted to occur for massless
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spin-1 fields through appropriate nonminimal couplings [18]
and, in analogy with the scalar case, the stabilization pro-
cess was termed “spontaneous vectorization.” To the best of
our knowledge, condensed-matter and optical analogues of
these gravity-induced instabilities have not been proposed
to this date. In this work, we propose and explore possible
analogues of gravity-induced instabilities in the context of
electromagnetism in polarizable and magnetizable anisotropic
(meta)materials.

Electromagnetic instabilities in flat space-time are ex-
pected to occur in some materials. One celebrated example
appeared in the context of plasma physics in the late 1950s
and became known as Weibel instability [19]. The system, a
neutral plasma whose components have anisotropic velocity
distribution, possesses growing electromagnetic transverse
waves. Related effects have been studied since then, with
recent applications to solar plasma instability [20] and solid-
state devices [21]. Moreover, causal aspects of classical prop-
agation in active materials were discussed in Ref. [22], where
properties of the refractive index were established. Neverthe-
less, aside from the fairly recurrence in the literature, usually
quantization in such scenarios is not considered [23-25] or it
is regarded as inconsistent [26,27].

It is noteworthy that instability of the electromagnetic
field is always accompanied by evolution of the background,
ending with the stabilization of the system as a whole. In
the case of gravity-induced instability, the gravitational field
changes with time, whereas electromagnetic instability in the
presence of plasmas involves growing plasmons. In the case
of electromagnetic fields in the presence of matter, for what-
ever form of the interaction with the background, the field’s
evolution is ruled by Maxwell’s equations in the presence of
polarizable and magnetizable media, and the interaction with
the background is encapsulated in the functional dependence
of the electric displacement (magnetic) vector field D (H)
with the true (microscopic) fields E and B. If the magnitudes
involved are small (e.g., in the beginning of the instability
action), these functional relations become linear and one may
find the form of the coefficients for such systems. For the case
of Weibel instability, for instance, if the velocity anisotropy is
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taken in the z direction, the instability is modeled by a negative
squared refractive index in the direction perpendicular to z.

We apply Gordon’s method to propose a family of optical-
based analogue models for electromagnetic fields presenting
instabilities in curved space-times. We show how anisotropies
of the background enter the effective equations in the form of
nonminimal couplings, and in the case of strong anisotropy
(just like for the Weibel instability), this coupling results in
unstable solutions. We also discuss that for these systems the
stabilization process occurs through the nonlinear nature of
the background, which may seed spontaneous vectorization
in analogy to the Einstein’s field equations in the gravitational
scenario.

The paper is organized as follows. In Sec. II, we present
the covariant formalism of electromagnetism in anisotropic
polarizable and magnetizable materials, establishing the for-
mal analogy with nonminimally coupled electromagnetism
in curved space-times. In Sec. I A, we consider a particular
type of nonminimal coupling inspired by one-loop quantum
electrodynamics (QED) corrections to electromagnetism in
curved space-times. In Sec. III, we apply the formalism
presented in the previous section to the scenario of a plane-
symmetric anisotropic medium at rest in an inertial frame.
Although plane-symmetric curved space-times (in four di-
mensions) are not really (physically) appealing, we consider
this scenario for its simplicity and for its possible implications
for the physics of the material medium. We construct the
electromagnetic quantum-field operator A (in the generalized
Coulomb gauge) in the standard-vacuum representation, dis-
cuss the conditions for appearance of instabilities and their
types (Sec. IIT A), and present a concrete example (homoge-
neous medium; Sec. III B) where calculations can be carried
over to the end. In Sec. IV, we repeat the treatment of the
previous section, but now for a more appealing scenario
on the gravitational side: spherically symmetric, stationary
anisotropic media. Conditions for triggering instabilities and
their types are shown to be very similar to those in the
plane-symmetric case (Sec. IV A). As a concrete applica-
tion, in Sec. IVB we show how to mimic QED-inspired
nonminimally coupled electromagnetism in the background
space-time of a Schwarzschild black hole. Then, Sec. V is
dedicated to discuss possible stabilization mechanisms which
might bear analogy to some curved-space-time phenomena,
such as spontaneous vectorization [ 18] and particle bursts due
to tachyonic instability [28]. Finally, in Sec. VI we present
some final remarks. We leave for an Appendix tedious calcu-
lations related to the orthonormalization of modes of Sec. IV.
We adopt the abstract-index notation to represent tensorial
quantities (see, e.g., Ref. [29]) and, unless stated otherwise,
we use natural units (in which iz = ¢ = 1).

II. COVARIANT ELECTROMAGNETISM IN
ANISOTROPIC MATERIAL MEDIA

Electromagnetism in material media, in flat space-time and
in the absence of free charges, is described by two antisym-
metric (observer-independent) tensors, F,;, and G, satisfying
the macroscopic covariant Maxwell’s equations

9,G* =0, (D
a[anc] = 07 (2)

where 9, is the derivative operator compatible with the flat
metric 14, (but in arbitrary coordinates) and the square brack-
ets denote antisymmetrization over the indices enclosed by
them. These equations must be supplemented by medium-
dependent constitutive relations between F;, and G, as well
as initial and boundary conditions, in order to provide a well-
posed problem. These constitutive relations are usually set at
the level of (observer-dependent) fields E,, B¢, D%, and H,,
related to F;, and G through

E, = Fyu’, 3)
D* = G%u, 4)
B — _%GadeFbcud, (5)
Hy = —eapeaG™u’, (6)

where u“ is the four-velocity of the observer measuring these
fields and €4 1s the Levi-Civita pseudotensor [with €p123 =
/=1, 1 :=det(n,,)]. Moreover, the constitutive relations
usually take a simpler form in the reference frame in which
the medium is (locally and instantaneously) at rest.

Here, we consider a polarizable and magnetizable medium
whose constitutive relations in its instantaneous rest frame
take the form

D¢ = &‘abEb, (7)
H, = paB’, ®)

where the tensors £*’ and ., may depend on space-time
coordinates, and the system is assumed dispersionless. We
return to this point later. The fact that Eqs. (7) and (8) are valid
in the medium’s instantaneous rest frame means that the fields
E,, B¢, D, and H, appearing in them are related to F; and G
through Eqs. (3)-(6) with u* = v?, the medium’s four-velocity

field. We proceed by splitting the “spatial” [30] tensors £** and
Wap Into isotropic and traceless anisotropic parts,
e = e h + X5, ©)
tab = 1 hap + X3l (10)

where h9 := §; + vy, is the projection operator orthogonal
to v?. Inverting Egs. (4) and (6) (with u* = v?),

G =201pP — el y,, a1
and substituting Eqs. (7)—(10) and (3) and (5), we obtain

G™ = (" g" + X" VFea, (12)
where we have defined the tensors

ab . 1 ab

g = ﬁ[n

Xabcd — (Z _ l)ga[cgd]b _ ZX([:)\[C vd]v\b]
I

— (= DHv™?y, (13)

1
+ Eeabefecdghxg(él)vah’ (14)
and the squared refractive index n? = wue. The idea, then, is to
consider the symmetric tensor g, defined through g =
8¢, as an effective metric of a curved background space-time
perceived by the electromagnetic field F,,. Note that the
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components of g?? and 5 satisfy
det(g"”) = det(n*”) (15)

and, thus, \/—n = /—g, where g := det(gqp). One can easily
check that g, is explicitly given by

21
8ab = \/ﬁ|:nab + %Uavb}- (16)

Therefore, in an arbitrary coordinate system, Eq. (1) reads as

_ 1 afN 1 af
0 ﬁaa(ﬂG ) \/_—gE?a(«/_gG ). (A7)

Up to this point, it was understood that the physical
background metric 7., and its inverse 7% were responsible
for lowering and raising tensorial indices. Now, with the
introduction of an effective metric g,;, we should be careful
when performing these isomorphisms. In order to minimize
chances of confusion, we shall avoid lowering and raising
tensorial indices using the effective metric, making explicit
most appearances of g, and g*° in the equations below, with
few exceptions which will be clearly stated. One obvious
exception is the definition of g, as the inverse of g. Another
such exception is the use of V, to denote covariant derivative
compatible with g,;. With this in mind, from Egs. (2) and (17),
the electromagnetic tensor F, satisfies

0= V£, (18)
0 = V [(g“g" + x““F.ql. (19)

Notice that Eqs. (18) and (19) applied to homogeneous
(Vaee =V,u =0), isotropic (X(“Sb) =0= X;Z)) materials,
with arbitrary four-velocity field v%, lead to the same equa-
tions which rule minimally coupled vacuum electromag-
netism in a curved space-time with metric /pu/n gqp. Optical
analogue models in these configurations with u = 1 were
studied in [31,32]. Here, we shall focus on electromagnetism
in anisotropic materials, more specifically, materials with
only “shearlike” anisotropies: X([f)b l=0= X[(,ﬁ,)]- In this case,
the tensor ¢ defined in Eq. (14) has the same algebraic
symmetries as the Riemann curvature tensor, namely, y ¢ =
x99 and x“Pcdl = 0, in addition to x®°? = ylebled]l which
is always true.

Equations (18) and (19) can be seen as analogous to
some nonminimally coupled electromagnetic field equations
in curved space-time. Although in general x“**? is inde-
pendent of the Riemann tensor associated with the effective
metric g5, one can construct cases where they are related.
This is interesting because some one-loop QED corrections
to Maxwell’s field equations in curved space-time [33,34] can
be emulated by such nonminimal coupling, as we shall discuss
below, in Sec. IT A.

Before considering particular applications of the equations
above, let us define a sesquilinear form on the space of
complexified solutions, which will be relevant when apply-
ing the canonical quantization procedure. As usual, let us
solve Eq. (18) by introducing the four-potential A, such that
Fup = V,Ay — VpA,. Then, let Fy, and F), be two complex
solutions of Eq. (19), associated to A, and A, respectively.
With overbars representing complex conjugation, we contract

A, (respectively, A,) with Eq. (19) applied to F, (respectively,
F..;) and subtract one from the other, arriving at

V(g + x4V ALF,, — Ay Fq)] = 0. (20)

This continuitylike equation ensures that the quantity

(A,A) =i /E d¥ Ny(g“g + x“"NAF., — ApFea)
Q1)

is independent of the spacelike hypersurface ¥ where the
integration is performed, provided we restrict attention to
solutions satisfying “appropriate” boundary condition, where
d¥ is the physical volume element on ¥ and N, = 1,N?,
with N¢ being a unit, future-pointing vector orthogonal to
¥ (according to 1,,). More specifically, considering that the
system of interest is contained in the space-time region M =
T x X, where T C R is a real open interval, then the appro-
priate boundary condition amounts to imposing that the flux
of the (sesquilinear) current appearing in Eq. (20) vanishes
through 7' x ¥ (where S denotes the boundary of the space
S). In particular, in stationary situations which we shall treat
here, this condition translates to

/ dS 5a(g“ g + X" OVAEL — AvFu) =0, (22)
>

where dS is the physical area element on 3 and s° is the
unit vector field normal to 7 x % (according to 7n,p). Thus,
these conditions being satisfied, Eq. (21) provides a legiti-
mate sesquilinear form on the space Sc¢ of complex-valued
solutions of Egs. (18) and (19). Notice that for pure-gauge
solutions, i.e., A, = V, ¥, for some scalar function ¥ —,
(A, A) = 0. (The converse, however, is not true.)

The relevance of this sesquilinear form is that it provides
a legitimate inner product on a (nonunique choice of) sub-
space S(g C Sc of “positive-norm solutions,” which, together
with its complex conjugate S & Sc, generates all solutions
Sc: Sé ® S¢ = Sc- Loosely speaking, upon completion, S(EC
yields a Hilbert space H from which the (symmetrized) Fock
space J;(H) is canonically constructed to represent states of
the electromagnetic field. In particular, choosing S(é to be
generated by positive-frequency solutions (those proportional
to e~ with @ > 0), the vacuum state of this Fock represen-
tation corresponds to the usual physical vacuum state of the
field.

A. QED-inspired nonminimal couplings

As mentioned earlier, Egs. (18) and (19) can be interpreted
as ruling electromagnetism in curved space-times with some
QED-inspired nonminimal coupling x“**? with the back-
ground geometry. In fact, in the one-loop QED approximation
[33,34],

Xabcd — Ol]Rade + azR[al[cgdjle + Ol3R ga[cgd]b’ (23)

with o) = —ap/13 =203 = —a/(90nm§), where o is the
fine-structure constant, m, is the electron’s mass, and R%¢?,
R®_ and R are, respectively, the Riemann, Ricci, and Ricci-
scalar curvature tensors associated with the (effective) metric
gap- By leaving «, op, o3 unconstrained, Eq. (23) represents
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a three-parameter family of couplings of the electromagnetic
field with the background effective geometry (see Ref. [35]
for some interesting particular cases).

For a generic medium, x“**? is not related to the geometry
associated with g,,. However, we can simulate couplings
given by Eq. (23) by conveniently relating n» and v* (which
determine g,;) with p and the anisotropic tensors X(“gb) and
X;Z ) (which appear in x*°?). From Egs. (14) and (23), and
their contractions with g,

, 3/(n XS n3/?
abed _ [ ° ac (¢) ab _cd (1)
8oa X" = 2<u 1>g ton T 588 Xu
= (o1 + 2/2)R* + (a2/4 + 3a3/2)R g*, (24)

Sac8ha X! = 6(2 - 1) = (o +3a2/2 + 6a3)R,  (25)

we can solve for p and the anisotropic tensors, obtaining

n
= , 26
H 14 (01 /6 + /4 4+ a3)R (26)

R
,3/2)((621; — —20[1 <RadeV(;Vd + _H(lb>

12
+= <R"b - %‘”’), @7)
’13/2)(55) = 2061( acbdVV+ 152 ab)
G Yot o) 2+ “”(R“” i ””>, 28)

where V¢ = n3/4v is the four-velocity of the medium normal-

ized according to the effective metric g,, and H,, := gu» +
V,Vp. In Eqgs. (27) and (28), indices are lowered and raised by
the effective metric and its inverse Notlce that, unless o =
ar = 0, which implies X(s) =0= X ab , as a consequence

of X(E)vb =0= x(") b , only geometries associated with g,
which can be put in the form given by Eq. (16) and satisfying

R"bvb = —v9, 29)

for some timelike four-vector v“, can be emulated by these
anisotropic media, with v* then set as the medium’s four-
velocity. Using Einstein’s equations to map this constraint to
the stress-energy-momentum tensor 7 of the corresponding
gravitational source, we have that

T
T4’ = 70" (30)

where, again, the effective metric and its inverse are used to
lower and raise indices (and T := T%). One can easily check
that in case of perfect fluids, characterized by a proper energy
density p and (isotropic) pressure p, Eq. (30) is only satisfied
for p = —p, i.e., for a cosmological-constant-type “fluid.”
However, if one allows for sources with anisotropic pres-
sures (p1, p2, p3), described by the stress-energy-momentum

tensor

3

T = pu'u’ + Y piele’, 3D
j=1

with {u?, e{, €5, €5} being a tetrad and u timelike, then

3
p+32 =0 (32)

and

(Vae}) (o +pj) =0, j=1.2,3. (33)
In particular, if V¢ = u“, then Eq. (32) is the only additional
constraint to be enforced.

Returning attention to the background-effective geometry
and recalling that all the geometric tensors are obtained from
gap given in Eq. (16), we see that Eq. (29) actually comprises a
system of four differential equations which »n and v must sat-
isfy. Electromagnetism with nonminimal coupling described
by Eq. (23) can only be simulated in these anisotropic media if
the background space-time geometry is associated to solutions
of this system [via Eq. (16)]. We shall treat a particular
solution to these differential equations later.

III. PLANE-SYMMETRIC ANISOTROPIC
MEDIUM AT REST

In this section, we consider the simplest case of an
anisotropic medium: a plane-symmetric medium at rest in the
inertial laboratory frame. The purpose of this section is not
yet to establish an analogy with some interesting gravitational
system, but to present the analysis in a simple context. In
Sec. IV we apply the analysis to a more appealing scenario.

Let us consider a medium at rest in an inertial laboratory,
such that in inertial Cartesian coordinates {(z, x, y, z)} = R® x
7 € R* we have v* = (1,0, 0,0), & = u(z), ¢ = e(2),

xeh = (A®)/3) (20288 — 528P — 5257, (34)

and
1= (AW)3) (25585 — 8355 — 8)53). 35)
with A® = A®(z), AW = AW(z), z € Z. (T is an open real

interval.) This simply means that

D/ =¢ E;, j=x,y (36)
D* = ¢ E,, (37)
Hj=pul'B, j=xy (38)
H, =y 'B?, (39)

where g —e1=A®, QeL+e)/3=¢, pu' —pi'=
AW and 2uT" + ,,Lﬁl)/3 =p!

In these coordinates, g,, = Jn diag(—n’z, 1,1,1). For
convenience, we shall work in the generalized Coulomb gauge
[36] in which A;, = (0, A) and 9, - (¢;A )+ 9.(g)A;) =0
where we have defined A | := (A, Ay), 3, := (0x, ). In this
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gauge, the t component of Eq. (19) is automatically satisfied,
while the spatial components lead to

1 1.\
L 2% + <—az) A,
M1 ANy IXas

1
= —— w3, (u7'91) — 7' 9. ()0 )14, (40)
l/«J_Mll

1 1 \?
[—“—laf +—3 + (—az> :|(8AZ) —0. 41)
E1 ELE) &1

First, let us consider solutions A such that A, = 0, which
describe electric fields which are perpendicular to the z direc-
tion (transverse electric modes A‘™, for short [37]). In this
case, our gauge condition ensures that there exists a scalar
field ¥ such that A™ = 9,y and A™®) = —d,yr. Moreover,
making use of the staticity and planar symmetry of the present
scenario, we can write ¥ = =@ kX0 £0 (TE)(z) where x| =

(x,9,0), k. = (ky, ky, 0), k. = |k |, and f<TE>(z) satisfies

-+ OB =0, 42
|: ISRV T

with ¢ being a spatial coordinate such that d¢ = u, dz. Equa-
tion (42) must be supplemented by boundary conditions for
Sk (TE) . Imposing Eq. (22) to these modes leads to

d d
(TE) (TE) (TE) (TE)

[f‘“"i ag o ok g ok }
where [. . .]|; denotes the flux of the quantity in square brack-
ets through 7. This condition restricts the possible values of
?. Let ESE) be the (k -dependent) set of w values for which

Egs. (42) and (43) are satisfied for ;" 2 0. For w, o' €

=0, (43)

Sgi) : S,SE) a Ri, we can orthonormalize these modes ac-
cording to
(TE) 4 (TE) A(TE) 4 (TE)
(Aka Aa) k’ ) - (Aa)kl Aw k )
= 5(0(9’ S(kl - kl), (44)
(TE) 4 (TE)
(Awkj_ Aw 'K ) =0 (45)

(8w being the appropriate Dirac-delta distribution on & (TE))

where the sesquilinear form given in Eq. (21), applied to the
current scenario, takes the form

(A,A) = i/ dxle (AL - A — A -3A))
x
+ ¢ (AZB,A; — A;a,AZ)]. (46)
We obtain (up to a global phase)
k;, xn .
(TE) __ L Z  —i(wr—k,-x,) £(TE)
ok, = T———=—¢ wk, (@) 47)
M 2k V2w Jok.
with
/ dz26.12) FOP @) FTP @) = buer 48)

andn, := (0,0, 1).
The second set of solutions of Eqgs. (40) and (41), which
describe magnetic fields which are perpendicular to the

z direction (transverse magnetic modes A™  for short
[37]) is obtained by conveniently setting A{™ = &,"'91 ¢,
where ¢ is an auxiliary function. Our gauge conditlon then
leads to A (™ —8l13 0,0, j = x,y. Using, again, staticity
and planar symmetry, we find solutions of the form ¢ =
R (TM)(z) where f,, (TM) () satisfies

- =0, 49
[ e " (ﬂb‘u el ﬂf”’“ @
with & being a spatial coordinate such that d§ = ¢, dz. The
boundary condition imposed by Eq. (22) now leads to

d d
“A(TM) (TM) _ 72 ¢(TM) (TM) _
[ Do gglont = oL g Ik N =0. (50)
Let 5,SIM) be the (k,-dependent) set of @ values for which
Egs. (49) and (50) are satisfied for f (TM) % 0. For v, €

Egz{) = 5 (TM) A R* we can normalize these modes accord-

ing to
(TM) 4 (TM) A(TM) 4 (TM)
(Awkl A 'K ) - (Awkl A 'K )
= Sww’ a(kj_ - kl), (51)
(A5 AT) = 0 (52)

(8, now being the appropriate Dirac-delta distribution on
E,ﬁ My, obtaining (up to a global phase)

(TM) —i(wr—ky x1) k2 k (TM)
A = —_—— , (53

with

f Az @ f@) FIN@) = by (54)

Moreover, modes Ag\f) and Agff) are orthogonal to modes
AUP and AUP.
L WK .

The solutions expressed in Eqgs. (47) and (53), dubbed
positive-frequency normal modes, play a central role in the
construction of the Fock (Hilbert) space of the quantized
theory, as described at the end of the previous section. With
these solutions, the quantum-field operator A is represented
by

Z / d’k, / L dolagg AR +He]. (55)
51

€{TE,TM}

where “H.c.” stands for “Hermitian conjugate of the pre-
ceding term and a(” (respectively, @ ) is the annihilation

(respectively, creatlon) operator assomated with mode Agl)u,

satisfying the canonical commutation relations:

[agn, s g ] = 8" 60w 8k — K1), (56)
(25 g, 1 =0. 57)

As an application of our quantization scheme, one can
use the above formulas to obtain, for instance, the Carniglia-
Mandel quantization [38] in a straightforward way. The sys-
tem in this case is composed by a dielectric-vacuum interface
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at z = 0 and a nonmagnetizable (i, = p; = 1) homogeneous
isotropic nondispersive dielectric (¢ = &, = ¢ = n?) filling
the half-space z < 0. These data enter Egs. (42) and (49), thus
describing the background in terms of effective potentials of
one-dimensional Schrodinger-type problems.

A. Instability analysis

In the analysis presented above, it was implicitly assumed
that all constitutive functions ¢, gy, 41, and ) are positive
functions of z € Z. This condition ensures that the field modes
presented in Eqgs. (47) and (53), together with their complex
conjugates, constitute a complete set of (complexified) solu-
tions of Maxwell equations in R3 x 7; in other words, the
boundary-value problems defined by Egs. (42) and (43) and
(49) and (50) admit solutions only for (a subset of) w? > 0.
This is easily seen by interpreting them as null-eigenvalue
problems for the linear operators defined in the square brack-
ets of Egs. (42) and (49). Experience with Schrodinger-type
equations teaches us that these equations have solutions pro-
vided the associated effective potentials (terms in parentheses)
become sufficiently negative in a given region, which implies
w? > 0 and, typically, the larger the k%, the larger the ’.

Here, however, we shall consider a more interesting situa-
tion. It has been known for almost two decades that materials
can be engineered so that some of their constitutive functions
can assume negative values [39-43]. These exotic materials
have been termed metamaterials. In this case, the effective
potentials appearing in Eqgs. (42) and (49) may become suf-
ficiently negative, granting solutions to these boundary-value
problems, without demanding @? > 0. For instance, if nyp <0
(with @y, e, > 0), then the larger the value of k,, the more
negatively it contributes to the effective potential of Eq. (42),
favoring the appearance of solutions with smaller (possibly
negative) values of w?. The same is true for Eq. (49) if g <0
and similar analysis can be done if any other constitutive
function becomes negative.

At this point, we must introduce an element of reality
concerning the constitutive functions. We have been treating
these quantities as given functions of z alone, neglecting
dispersion effects, since we are, here, interested in gravity
analogues. However, these material properties generally de-
pend on characteristics of the electromagnetic field itself,
particularly on its time variation (i.e., on w), in which case
Egs. (7) and (8) would be valid mode by mode, with the
constitutive tensors &%’ and u,;, possibly being different for
different modes. When translated to space-time-dependent
quantities, Egs. (7) and (8) would be substituted by sums over
the set of allowed field modes [44].

Therefore, the precise key assumption about our meta-
material media is that some of their anisotropic constitutive
functions ¢, &, (1, u) can become negative for some
on the positive imaginary axis w? < 0. Notwithstanding, the
less restrictive condition Im(w) > 0 would suffice for our
purposes. However, dealing with the case Im(w)Re(w) # 0
would involve quantization in active media, which we shall
treat elsewhere [44]. Moreover, our focus here is to show that
the electromagnetic field itself can exhibit interesting behavior
without need to exchange energy with the medium (which
occurs in dispersive/active media). This justifies our focus on

? < 0 in what follows. The possibility of having this type of
material will be discussed later.

Let w? = —Q2 (with Q > 0) be such value for which at
least one of the constitutive functions is negative for z € Z.
Thus, both the effective potentials of Eqs. (42) and (49) take
the general form

Verr = C1k] + 6%, (58)

with C; and G, being functions of z. Two interesting possibil-
ities arise:

(1) C; < 0: In this case, the larger the value of k,, the
more negative the effective potential gets. Therefore, it is quite
reasonable to expect that, for a given size of the interval Z, one
can always find “large enough” values of k; (certainly satisfy-
ing k2 > C,Q?/|C)) such that the Schrédinger-type equation
with effective potential V. admits null-eigenvalue solutions.
We shall refer to this situation as large-k, instability.

(i) C; > 0 and C, < 0: Under these conditions, the effec-
tive potential V¢, as a function of &k, is bounded from below:
Vet = —|C>|Q22. Therefore, a Schrodinger-type equation with
effective potential Vg only admits null-eigenvalue solutions
provided k; is “sufficiently small’ (certainly satisfying k3 <
|C,|2%/C)) and the size of the interval where Vg is negative
is “sufficiently large.” We shall refer to this situation as
minimum-width instability.

Let us call g(éiCL the null-eigenvalue solutions mentioned in
either case above, with J € {TE, TM} depending on whether
it refers to Eq. (42) or (49) with w? = —Q? (without loss
of generality, 2 > 0). These solutions are associated with
unstable electromagnetic modes whose temporal behavior is
proportional to e, Although it might be tempting not to
consider these “runaway” solutions [25,26], they are essential,
if they exist, to expand an arbitrary initial field configura-
tion satisfying the boundary-value problems set by Egs. (42)
and (43) and (49) and (50); in other words, the stationary
modes alone do not constitute a complete set of solutions
of Maxwell’s equations with the given boundary conditions.
And even if, on the classical level, one might want to restrict
attention to initial field configurations which have no contri-
bution coming from these unstable modes, which is certainly
unnatural, for causality forbids the system to constrain its
initial configuration based on its future behavior, inevitable
quantum fluctuations of these modes would grow, making
them dominant some time e-foldings (t ~ NQ~!, N > 1)
after the proper material conditions having been engineered.
Therefore, these modes are as physical as the oscillatory
ones. In fact, artificial inconsistencies have been reported in
the literature, regarding field quantization in active media
[25,26], which are completely cured when unstable modes are
included in the analysis [44].

It is interesting to note that depending on which consti-
tutive function is negative, Eqs. (42) and (49) may incur
different types of instabilities. For instance, if ©; < O for
a given w? = —Q? < 0, with all other constitutive functions
being positive, then Eq. (42) exhibits case (i) instability,
while Eq. (49) incurs in case (ii) instability. This means
that unstable TE modes, with some k; > JIEL Q, would
certainly be present, while unstable TM modes, with some
ki < ./lnile) 2, would only appear if the width of the
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material (size of the interval 7) is larger than some critical
value. We shall illustrate these facts in a simple example
below. But first, let us analyze some features of these unstable
modes. In order not to rely on particular initial field configu-
rations, let us focus on the inevitable quantum fluctuations of
these modes.

1. Unstable TE modes

Repeating the procedure which led us from Eq. (42) to

Eq. (47) for the stable modes, unstable TE modes A(s'sz)

properly orthonormalized according to

WTE) 4 WTE) _ TE) ; GTE)
(As;kL vAstlfkl) - _(As;kL ’Asg'kl)
= 8oo 8k —K/), (59)

(uTE) (uTE)
(Agk, - Agi’) =0 (60)

(and orthogonal to all other modes) read as (up to a time
translation)

(uTE) _ k, xn, eikl-ng(TE)(Z)
2k 4k A/ sink 2k,

X(thfiseLK/Z 4 e*QFHSiK/2)7 (61)

with0 <k < 7, gngf normalized according to

/ dzer D@ &M @) = s (62)
A

and s being the sign of the integral above. Calculating the

electric ngE) and magnetic BS‘EE) fields associated to these
L L

modes, we have

N |
E(uTE) — (l’l x kL)elerLg(TE)(Z)
A gk sine ok
x (eﬂtfisil(/2 _ e*QFHSELK/Z)’ (63)
ikL-Xl d
(uTE) ¢ 2 (TE)
= ——|[—ik n'+kl—)g (2)
2k, 4k A/Qsink ( L dz )° %
x (thfiSELK/Z + e*QFHséK/Z). (64)

2. Unstable TM modes

Now, turning to the TM modes, we repeat the procedure
which led us from Eq. (49) to Eq. (53) for the stable modes.
Unstable TM modes A%™ properly orthonormalized accord-
) Qk;

Ing to

(A(uTM) Ag:f(l'\/[)) — _(A(uTM) A(uTM))
L

Qk Qk | Q’k’J_
= 8qa 8(ky —K)), (65)
(Age” Agy”) =0 (66)

(and orthogonal to all other modes) read as (up to a time
translation)

(uTM) et k% ki d\ v

ok, — - —n +i—— gy (2)
4k Q3 sink \ €| e dz
x (th+iSi‘K/2 + e—szz—isjk/z)’ (67)

. TM) - . .
where, again, 0 < k < 7, g(ssz) is normalized according to

= dag, (68)

/dz M(z)ggi‘f)(z)ggﬁ)@
A

and slf is the sign of the integral above. Calculating the electric

Eg’EM) and magnetic B&TM) fields associated to these modes,
1L L
we have

ex 2k, d
()
Qky 4k /Qsink \ €| e dz)”
% (th+iSiJ;K/2 _ e—Qt—iSi‘K/Z)’ (69)

BT _ inivQ
Sk, 4k A/sink

% (te+iSiK/2 + e—Qt—iStK/z)‘ (70)

K, - ™
(nz X kL) etkL XLg(le)(Z)

The modes given by Egs. (61) and (67), if present, must
be added to the expansion of the field operator A given
in Eq. (55), along with their complex conjugates, with cor-

. e . ~(ul) . ~ul)F
responding annihilation ag,  and creation ag, ' operators,
J € {TE, TM}. The resulting operator expansion can then be
used to calculate electromagnetic-field fluctuations and corre-
lations. In the presence of unstable modes, it is easy to see
that the field’s vacuum fluctuations are eventually (r > Qh
dominated by these exponentially growing modes. Obviously,
this instability cannot persist indefinitely as these wild fluctu-
ations will affect the medium’s properties, supposedly leading
the whole system to a final stable state. In some gravitational
contexts, stabilization occurs by decoherence of these growing
vacuum fluctuations [13], giving rise to a nonzero classical
field configuration, a phenomenon called spontaneous scalar-
ization (for spin-0) [14—17] or vectorization (for spin-1 fields)
[18]. It is possible that something similar might occur in the
analogous system.

We shall discuss this point further in Sec. V.

B. Example

Let us consider a very simple system just to illustrate the
results above in a concrete scenario: a slab of width L (in the
region —L/2 < z < L/2), made of a homogeneous material
with, say, u; <0 for a given w?> = —Q? (Q > 0) and all
other constitutive functions positive. For concreteness sake,
here we assume that this value w? = —Q? is isolated and
that it is the most negative value of w? for which u; < 0.
This latter assumption is merely a matter of choice, while
the former only affects the measure on the set of quantum
numbers k: [d*ky — [d6 Y, 2mki /Ly, 8(kyp —K|) —
LLSkLkLS(G —0")/(2mky), where L, is the length scale asso-
ciated with the area of the “infinite” slab (L, > L).

According to the discussion presented earlier, in this sce-
nario, TE modes incur in case (i) (large-k, ) instability, while
TM modes undergo case (ii) (minimum-width) instability. The

013281-7



RIBEIRO AND VANZELLA PHYSICAL REVIEW RESEARCH 2, 013281 (2020)
Vegr pr=1/5 pr=-1 g=¢,=2
1 SN QL 58\
QL5035
g o =3 oY = E e Y e
Vi B
oF -1 Qv
2 92 = 2 =3
3 =
z + =
' -3
-4
-V 0 3 2 = 3x
a

FIG. 1. Effective potential well which represents the homoge-
neous slab with negative w ; for the unstable electromagnetic modes.

solutions g%}u of Egs. (42) and (49) with @? = —Q? are
given by the normalizable [according to Egs. (62) and (68)]
solutions of the null-eigenvalue, Schrodinger-type equation

d2 (J
<_d_12 * VEff>geA =0,

with Vi being the well potential represented in Fig. 1. The
depth of the potential is given by

Q24 g2 J=TE
T an
|ML|8LQZ—%ki, J=TM.

Although here we focus only on unstable modes, associated

with g(QLL, note that in this example there would also appear

stationary bound solutions associated with (g}i)

Gf g <0
for some wy € R), for some k7 > max{w§, (nfE)wo)z}, where
nﬂ_TE) = /I €1 is the transverse refractive index for the TE
modes. For such a hypothetical mode, the slab would act as
a waveguide, keeping the mode confined due to total internal
reflections at its boundaries. The only peculiar feature here
is that k; would assume arbitrarily large values (in practice,
limited only by the inverse length scale below which the
continuous-medium idealization breaks down) for a given wy.

Back to the unstable modes, a straightforward calculation
leads to the familiar even and odd solutions to the square-well
potential, with g(sjz}q (z) exponentially suppressed for |z| > L/2
and

)
m

m even

o N cos(2a,,z/L), O
8ar, () = N

<
= gin(2a,z/L), 1 <m odd

sin ay,

(72)

(—L/2 < z < L/2), where NV are normalization constants
and, for the TE modes, a,, > QL|n;|/2 (with nﬁ ‘= ,&))are
solutions of the transcendental equations

Q212
JULMM,Jl-jgg—M2H1—(nfD)2]

_ {—tan an, m even

m odd (73)

cot a,,

FIG. 2. Graphic representation of solutions of Eqgs. (73) and
(74). The solid black curves in the upper (respectively, lower) half
plane represent the left-hand side (lhs) of Eq. (73) [respectively,
minus the lhs of Eq. (74)], with a,, replaced by the variable a, for
different values of Q2L. The dashed blue lines (respectively, dotted
red lines) represent the function — tana (respectively, cota). The
values a,, appearing in Eq. (72) are determined by the crossing of
the corresponding solid black curve with the dashed blue lines (for m
even) and the dotted red lines (for m odd).

while for the TM modes, 0 < a,, < QL|n)|/2 and

Q212 T™)
VELE| WMﬁl[l +n V21— 1
m
_ Jtan dam, m even
B {— cot a,, m odd. (74)
The transverse momentum k; is given in terms of a,, by
2 2 2, Q212
(m) L ﬁ(arzn - |nH| 1 ), TE modes
k== (75)
Z\/%U”ﬁ i arzn), TM modes.

The explicit form of N is not particularly important, so
we only present its asymptotic behavior for k; — oo for the
TE modes

[ 20+ lpmy)
NTE) ~ Ley ’
m ~ ’
201+ () m odd
Leylpolmy

and for k;, — O for both TE and TM modes

/Z(Sr‘rlz/u\) m even

L b

- chkikQ (T
2(ertlpil) m odd

V  Leifpul

2(e1+lpil)

Lip > >
2(ei+pil)

Lei|pui] 7

(TE) ~
No?

m even
, kL < Q. (78)
m odd

N

In Fig. 2, we plot, for different values of Q2L and given
values of ), 1, &, and ¢, the left-hand side of Eq. (73)
(solid black curves in the upper half plane) minus the left-hand
side of Eq. (74) (solid black curves in the lower half plane),
substituting, in both a,, by the variable a and the functions
—tana and cota (blue dashed lines and red dotted lines,
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respectively). Crossing of the blue dashed lines (respectively,
red dotted lines) with a fixed solid black curve determines val-
ues a = a,, for even (respectively, odd) solutions ggzu, for the
corresponding value of QL. The figure clearly corroborates
our preliminary analysis, showing that unstable TE modes
appear with arbitrarily large values of a,, (and, therefore, of
k1) and that unstable TM modes only appear if L is larger

J

AGTE) _ ./\/,fiTE)(kﬂi") X n;) cos (2a,z/L + mm /2) e

X 4™ /sin, €0 (an +mm/2)

(TM) ik x
AWM _ N MDetkxe
Q

(m) — N
k) 45/ Q3 sink,,

(th—uc,,,/Z +e—§2l+uc,,,/2)

than some minimum width Ly, given by

207!
Lo = tan™" ( / i) (79)
|7y ] [l

The unstable TE and TM modes inside the slab can then be
put in the form

X (eﬂlfil(m/Z + e*ﬂl#»il(m/Z)’ m > m(TE) (80)

cos (a,, +mm/2)

k" n, cos Qanz/L+mn/2) . K" 2a, sin (2a,z/L +mm/2)
5 _ Zm
] 8J_k5_m) L

L
(TE) ._
m = 1+(——1
’7 Ly

2 an! ( L J (83)

(2
Ly

with

, 0<m<m™ 81
cos (a,, + mm /2) :| Smsm @1

ztam_l < 8—l>—‘, (82)
T [l

[

([x] represents the smallest integer larger than, or equal to, x, while |x] represents the largest integer smaller than, or equal to,

x). The corresponding electric and magnetic field modes are

NI m, x k") Q cos 2az/L 4+ mn /2) iK™
e

E(uTE) _
Q

K 4 k™ /sin
(WTE) N(TE)eikL.XL
BWE) _ “Tm —
k" 47 /Q sin K,

. cos 2auz/L + mm /2

[ st

cos (a,, + mm /2)

th—sz/Z 4 e—Qt-HKm/Z)

cos (a,, + mm /2)

E“T™) -N ,ElTM)eik(iHX)'xi

(m) — 0
QK" 4 /Q sink,,

th—iK,,,/Z _ e—Qt+iK,,,/2)

k" 2a,, sin (2a,,z/L + m /2)

KM L

X (th—iKm/Z _ e—Qt-‘y—il{m/Z)’ m > m(TE) (84)

, o m>=m™ 85
cos (a,, +mm /2) j| me=m (85)

y K™ n, cos Qanz/L+mm/2) K 2a, sin Qauz/L + mm/2)
Elkim) L Cos (am + mJT/z)

g cos (a,, +mm /2)

INT™ L /Qn, x k(l’"))el.k(im,XL cos (2a,z/L + mm /2) (% —iknl2

}, 0<m<m™ (86)

+ 679t+i:<m/2)’ 0<m<m™, (87)

B(MTM) —
Q

k(" 4 k™ /sink,,

Let us recall that these modes give information about
fluctuations and correlations of the electromagnetic field; as
long as decoherence does not come into play, the expectation
values of the field are null, (A) = (E) = (B) = 0. We shall
use these modes later, when discussing possible consequences
of these analogue instabilities. But first, let us explore more
interesting analogies.

IV. SPHERICALLY SYMMETRIC, STATIONARY
ANISOTROPIC MEDIUM

In the previous section, we presented with great amount of
detail the canonical quantization scheme for the electromag-

cos (a,, + mm /2)

(

netic field in flat space-time in the presence of arbitrary plane-
symmetric anisotropic polarizable and magnetizable media at
linear order. The vacuum of such system was then identified
with the vacuum of some nonminimally coupled spin-1 field
in a true curved space-time described by the effective metric
8up = Jn diag(—n_z, 1, 1, 1). The analysis had the advan-
tage of generalizing in a unified language the quantization
of various interesting models coming from quantum optics in
terms of simple equations (e.g., the Carniglia-Mandel modes
[38]). However, the analogue space-time for these configura-
tions is of mathematical interest only and does not capture
the symmetry of physical space-times. In order to study more
appealing analogues, in this section we turn to spherically
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symmetric configurations, presenting them in a more concise
way, for the nuances of the quantization were already ex-
plained previously. In this context, we may obtain interesting
analogues by also assuming that the medium is able to flow. If
the refractive index in a flowing material is high enough, such
that the velocity of light becomes smaller than the medium’s
velocity, then it is clear that a sort of event horizon will form
(restricted only to some frequency band which may contain
unstable modes). This kind of phenomenon enables us to
study analogues of unstable black holes, for instance.

We start working in standard spherical coordinates
(t, 1,0, @), such that n,, = diag(—1, 1, 7, r? sin* §). Let the
medium’s four-velocity field be v* = y (1, v, 0, 0), where v =
v(r) and y = (1 — v?)~'/2. The effective-metric components
then take the form

22 =) =1 =2y 0 0
—(1=n2y% Y20 —n"2? 0 0
0 0 r? 0 ’
0 0

8ap = \/ﬁ
0 rsin’6
(88)

where the isotropic parts of the constitutive tensors (in the
local, instantaneous rest frame of the medium) are functions
of r [e = e(r), u = u(r)] and, as usual, n? = pe. As for the
traceless anisotropic tensors X(a) and Xiﬁf ), their components

read as
X0 = (A©/3)(2y20?828] + 4y v8“ 8P + 29762 5F

— 8580 r 2 — 828Er 2 sin"?0) (89)

and
5= (AW)3)(2y*v8, 8, — 4yPus(, ) + 27788

— 84 84r* — 84847 sin® 6). (90)

Similarly to the plane-symmetric case, these anisotropic ten-
sors simply mean that in the instantaneous local rest frame
of the medium, its electric permittivity and magnetic per-
meability in the radial direction (¢ and p;) and in the
angular directions (e, and g, ) satisfy the same relations
given below Eqs. (37)~(39): g — e, = A®), 2¢, +¢))/3 =
eyt =t =AW and Quit + p /3 = p!

Not surprisingly, the laboratory coordinates (¢, r, 6, ¢) are
not the most convenient ones to express Eqs. (18) and (19) in
the case of a moving medium. One might initially think that
coordinates (7, r, 8, ¢) which diagonalize the components of
the effective metric, obtained by defining 7 := ¢ — p(r), with
p(r) satisfying

dp _ n* — 1

dr 1 —n??’
would lead to the simplest form of the field equations. In these
coordinates, the effective line element a’sgff becomes

dsky = /n[—n"Fdt® + F~'dr* + r*(d6* + sin® 0 dp?)],
92)

oD

where F = y2(1 —n?v?). It is noteworthy that for n =
constant > 0 (such that the factors of n in dsZ; can be ab-
sorbed via T — n¥/*t and r — n~/*r), then the line element

above can be made to represent Schwarzschild space-time by
tuning v so that F = (1 — ry/r), where ry is some positive
constant. This is achieved by a velocity field satisfying v> =
[1+ 0 = Dr/r] ™ (1 # 1),

Despite this apparent simplification, the coordinate T =
t — p(r) with p satisfying Eq. (91) is not convenient to express
Maxwell’s equations in anisotropic media. This is due to the
kinematic polarization (respectively, magnetization) caused
by the magnetic (respectively, electric) field. In the case of
small velocities and isotropic materials, this effect is modeled
by Minkowski’s equations [45]. The coordinates (z, r, 0, ¢)
defined using Eq. (91) “diagonalizes™ only the isotropic part
of the theory and do not take into account the anisotropies.
It turns out that a much better choice is obtained by setting
T :=t — p(r) and replacing condition given in Eq. (91) by

2
dp _ _M7 93)
dr 1 —njv?
where, again, nﬁ := €. This choice fully decouples the
electromagnetic field modes in the anisotropic, moving ma-
terial medium, as we shall see below.
Introducing again the four-potential A,, via F,, = 9,A, —
d,A,, in these new coordinates (t,r, 6, ¢), the convenient
(generalized Coulomb) gauge conditions read as A; = 0 and

(e r?Ar) + 9L - AL =0, (94)

where @ is merely an auxiliary variable such that dr/do =
y2(1 — nﬁvz)/sl, A = (Ag,Ay), 31 is the derivative oper-
ator on the unit sphere compatible with its metric, and it is
understood that r is a function of the auxiliary variable p. In
this gauge, Maxwell’s equations lead to

2 2.2
y<(1 — njv°)
[—“—laf +82+ —ZA?}@”#A,) —0, (95)
&1 EL&r
2 2.2
&1 2 2 Y (l_n”U) 1)

——0: 40+ A —1) (A
[/u’ P payr? (857 =1) |As

dr [N
=0,|0,| —A, _ 3 A 96
l[ p<dp ) ruper dp pleir” )] ©0)

where p appearing in Eq. (96) is another auxiliary variable de-
fined through dr/dp = y*(1 — nﬁvz)/;u and Ago) and Agl)
are the Laplacian operators defined on the unit sphere, acting
on scalar and covector fields, respectively.

In order to solve these equations, we proceed in close
analogy to the plane-symmetric case. First, let us find solu-
tions with A, = 0, the transverse electric modes A™. The
gauge conditions imply that these solutions can be written as
AT = (0,9, /sinf, —sinOdyyr), where ¥ is an auxiliary
function to be determined. Making use of the stationarity and
spherical symmetry of the present scenario, we can look for
field modes of the form v = e~7Y,,,(0, ¢)f '} (r), where
Y., are the scalar spherical harmonics. Substituting this into
Eq. 96), f,, U5 must satisfy

d? Y2 —mphl+1)  ei0
|:__2 + ( 2” L )i|f(TE)
dp PR j7an

o7
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where it is understood that r is a function of the auxiliary
variable p. Notice the similarity between this equation and
Eq. (42). In fact, the boundary condition given by Eq. (22)
assumes the same form here as it does in the plane-symmetric
case:

=0. (98)

T

d d
(TE) (TE) (TE) (TE)
[f R A e }

This boundary condition ensures that these modes can be
orthonormalized according to the sesquilinear form given
in Eq. (21), which in this spherically symmetric scenario
assumes the form

(A,A/) = l/ dE{sA,BTA/, =+
P

N yz(nﬁ — 1w
mi
— (A< A), (99)

SLAL . 8,A’l
y2(1 — nﬁvz)

[AL-0,A — (AL - 3L)A/r]}

with X, being a spacelike surface ¢ = constant. After some
tedious but straightforward manipulations (presented in the
Appendix), we obtain the final form of normalized, positive-
frequency TE modes:

A(TE) (0, lm/ sin 9, —sin 989

wtm = =TS LY, 0. o)),

(100)

with fugE) satisfying Eqs. (97) and (98), and normalized
according to

f f(TE)f(TE) =35, (101)
IA’

Note that the integration variable is o [instead of p appearing
in Eq. (97)] and Z, stands for the domain of integration in this
variable corresponding to Z in coordinate r.

Now, let us look for solutions with A, = 0, the trans-
verse magnetic modes A™). Let ¢ be such that AT¢p =
—r?gyA,. Thus, the gauge conditions lead to A™ =
(—r% _IA(O) 090y, 0,0,)¢. Using again stationarity and
spherlcal symmetry ¢ = e~ *7Y,,.(6, ¢) f(TM)(r), we obtain

that f (TM)(r) satisfies
e ol
(102)

dQ2 }’ZELSH

Notice, again, the similarity between this equation and
Eq. (49). And, again, the boundary condition imposed by
Eq. (22) to these modes takes the same form as in the plane-
symmetric case:

[ f(TM) d f(TM) o f(TM) d f(TM):|
i

Properly orthonormallzmg these modes using Eq. (Al) (see
Appendix) leads to the positive-frequency TM normal modes

A _ (r—28[16(g + 1), 990, imd,)

wlm /2(1)3£(€ + )

X e 7Y, (0, ) LV (r),

=0. (103)

(104)

with £T™ satisfying Egs. (102) and (103), and normalized
according to

/ dp f(TM)f(TM)_S (105)
Z,

Similarly to the TE case, note that the integration variable is
not the same which appears in the differential equation (102).
(Z, stands for the domain of integration in the variable p
corresponding to Z in coordinate r.)

The electromagnetic field operator can be represented in
terms of the TE and TM modes (and their complex conjugates)
as

[a),AY), +H.ec.]

a)Zm wlm

- > [l

€{TE,TM}

(106)

where &7 @ =¢, D R%, with 521) being the set of w values
for Wthh Eqs (97) and (98), for ] = TE, and Egs. (102) and
(103), for J = TM, have nontrivial solutions. The orthonor-
mality of TE and TM modes,

(A% D) = ~(A00 AD0)
= 8138 waw See S » (107)
(A AT) = 0, (108)
requires that the canonical commutation relations
[0, 4500 ] = 8" 8usr SeeSpume (109)
[6,.300,] = 0 (10

hold.

A. Instability analysis

The close similarity between Egs. (42) and (97) and be-
tween Eqgs. (49) and (102) makes the instability analysis in this
spherically symmetric scenario essentially identical to the one
performed in the plane-symmetric case, with £(£ + 1) playing
the role k% did in Eq. (58). So, putting the effective potentials
of Egs. (97) and (102), with w?> = —Q?, in the form

Vg = CLL(L 4+ 1) + 22, (111)
we again have two types of instabilities: (i) large-¢ instability,
when C; < 0 somewhere, and (ii) minimum-thickness insta-
bility, when C; > 0 but C; < 0 in a sufficiently thick spherical
shell [see discussion below Eq. (58)]. The only additional
feature is that, by allowing the medium to flow, type-(i) (large-
£) instability for both TE and TM modes can arise when the
medium’s velocity v(r) exceeds the radial light velocity n[l.

Let gg)z represent the solutions of Eqgs. (97) (for J = TE)
and (102) (for J = TM), subject to the boundary conditions
given by Egs. (98) and (103), respectively, with ? = —Q?
(2 > 0, without loss of generality). The normalized, unstable
modes are presented below (see Appendix for details).
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1. Unstable TE modes

Unstable TE modes orthonormalized according to the anal-
ogou of Egs. (107) and (108) read as (up to global phase and
time translation)

( Qr—ist/2 +e—Qr+isé‘K/2)

A(uTE) — (TE)
Qtm St Deme o ()
X (0, im/sin@, —sin09y)Y;,, (0, @), (112)

J

VQ(—imeg/sin6 + e, d)

with k being a constant (0 < « < 7), ggf‘) normalized ac-
cording to

(113)

G (TE) (TE) _
/;d’”ﬁgm (r) ggy (r)| = dae,

and s being the sign of the integral above. Calculating the
electric Egg:‘l) and magnetic ngn]f) vector fields associated to

these modes in the laboratory frame, we have

E(MTE) — (TE) r Ym 9 eQr is K/2 —QT+1’S$‘K/2 , 114

Qlm 2SI T Dsne (r)Yem(0, )( ) (114)
[£(¢+1)e, + (ime,/sin6 + ey 0p)ro,]

B(MTE) ¢ (TE) r Ym 9 eQr isti/2 + e—Qr+lv K/2 115

Qem 3V T Dsin e (1Ym0, )( ). (115)

2. Unstable TM modes

Finally, the unstable TM modes orthonormalized according
to the analogues of Egs. (107) and (108) read as (up to global
phase and time translation)

(r=? g €(€+1) 090y, imdy) (TM)

(

with, again, x being a constant (0 < k < ), ggéw) normalized
according to

(117)

Ky (TM) (TM) _
/Idrﬁgm (r)gqy (r)| = daq,

AgngM ) = 8qr (1) and sl being the sign of the integral above. Calculating the
‘/936(8 + 1)sink . (TM) . 1TM) .
N n electrlc E,, and magnetic B, = vector fields associated
X Yo (0, @) (T2 4 o= r—isik/2y  (116) to these modes in the laboratory frame, we have
|
» [L(€+1)e /g + (ime,/sin6 + ey 3p)ri,] riste —Or—istk
Egi =~ ” ’ O G e O (118)
2r2/QUL + 1) sink
(UTM) ML\/_(_”” €/sin6 + e, dp) (TM) Qrtisti/2 —Qr—isti/2
= Yo (6, @)(e whls 4 e uh=, 119
an = 5,21 — nfd) ST T Dsme e en@ e ) (119)
[
As argued in the previous case, when instability is triggered ~ which lead to the material properties
and modes Aggn appear, they must be included in the field _ ( o7 ) 123)
expansion given by Eq. (106), along with their complex EL="n nl/2y3 (
conjugates. Eventually (r > Q!), these modes dominate the Qa7
field fluctuations. g = n( Y ;) (124)
r-
(1- T ) 1 (125)
=n
B. Example e n!/2p3
Now, let us consider a concrete scenario where electromag- | 20017 126
netism in a gravitationally interesting system, nonminimally myp=n{ 1+ nl/2y3 (126)

coupled to the background geometry via x“‘¢ given by

Eq. (23) (but with arbitrary o, o», @3), can be mimicked by
an anisotropic, stationary moving medium. We have already
seen that setting n = constant and v> = [1 4+ (n> — 1)r/r,]”"!
leads to an effective line element which describes the vacuum
Schwarzschild space-time. In this case, Eq. (29) is trivially
satisfied and Egs. (26)—(28) give

n=n, (120)
A® = 30{1n1/2%, (121)
A — 39T 122

=nn (122)

We promptly see that n) := /16, = n, which shows
that the analogue horizon for these nonminimally coupled
modes, located where v = n[z, coincides with the analogue
Schwarzschild radius r,. [Note, however, that this system
is analogous to a physical black hole with Schwarzschild
radius R; = n'/*ry, due to absorption of /n in Eq. (92).] As

for the other refractive indices nS_TE) = /€1 and nS_TM) =

JIELE (= n? /n(fE)), Fig. 3 shows their squared values (in
black and red, respectively) for positive (solid lines) and
negative (dashed lines) values of «;. Note that, depending
on the values of «;/(n'/?r?), some kind of metamaterial
(possibly with some negative squared refractive indices) may
be needed in order to mimic this nonminimal coupling of the
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FIG. 3. Squared values of the refractive indices nfE) (in black)
and nﬂ_TM) (in red) for positive (solid lines) and negative (dashed lines)
values of «;. The black and red dotted lines mark where n(fE) (for

negative o) and n(fM) (for positive «;) are singular, respectively.
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0.0 0.5 1.0 1.5 2.0 25 3.0
T/rs
(a)
3
21 -5
2t r2\/n
1
N:\‘r. c
—— (TE)
= —— (TM)
0.0 0.5 1.0 1.5 2.0 2.5 3.0
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- 1.0

electromagnetic field with the Riemann curvature tensor in
the exterior region of a Schwarzschild black hole. Conversely,
regardless how difficult it may be to set up such an experimen-
tal configuration in the laboratory, it is interesting in its own
that QED-inspired nonminimally coupled electromagnetism
in the background of a black hole behaves as in such an exotic
metamaterial in flat space-time.

Turning to the question of possible instabilities, in Fig. 4
we show the behavior of the terms C; and C, appearing
in Eq. (111) for the TE (in blue) and TM (in red) modes
extracted, respectively, from Egs. (97) and (102):

n2r 0 — rs)(r3 — %)(r3 + M),

C = o o
(P—airy /) (P +2a11://n)’
(1= 5%)"

C = T (128)
(1 - r3\/:ﬁ) ’

where the first and second lines in the expressions above
refer to the TE and TM modes, respectively. Figure 4(a) is
3.0
2.5 =0.125
2.0

1.5

|

0.5

oo}

0.0

0.5

3.0

2.5
2.0
1.5

2

1.0
0.5
0.0

1.0 1.5 3.0

T/TS

(d)

2.0 2.5

FIG. 4. Plot of the coefficients C, [(a) and (b)] and C, [(c) and (d)] appearing in Eq. (111) for electromagnetic modes TE (blue curves)
and TM (red curves), nonminimally coupled to the background geometry of a Schwarzschild black hole via Eq. (23). (a), (c) Illustrate the
general behavior of C; and C, for —rfﬁ /2 <o < r2/n, while (b), (d) are representative of the behavior of C; and C, for o) < —rfﬁ /2

s

or o) > r2y/n. According to the instability discussion, only large-¢ instability can appear in this case since C; > 0 everywhere. Moreover, for
o) < —rry/nj2 or a; > r2/n, the unstable modes can be mostly supported outside the analogous event horizon r > r.
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representative of the behavior of C; for —r?\/n/2 < a; <
r2/n, while Fig. 4(b) gives the correct qualitative behavior
of Cy fora; < —r2y/n/2 or ay > r2/n. Figures 4(c) and 4(d)
show the behavior of C, for the same values of «; used in
Figs. 4(a) and 4(b).

It is clear, from the expressions above, that C, is every-
where non-negative, while C; assumes negative values in the
region with radial coordinate r between (or;/ ﬁ)l/ 3 and r,
(if a; > 0) or between [|a;|rs/(2+/n)]/3 and r, (if o) < 0).
Therefore, according to the discussion of Sec. IV A, this non-
minimally coupled electromagnetic theory in Schwarzschild
space-time exhibits large-¢ instability. In particular, if o) >

r2y/nora; < —2r2/n, then the unstable modes influence the
exterlor region of the back hole.

V. STABILIZATION: SPONTANEOUS VECTORIZATION,
PHOTO PRODUCTION, AND LONG-RANGE
INDUCED CORRELATIONS

We now turn our attention to discussing what can possibly
happen to the analogous system when the vacuum instability
is triggered. In the gravitational scenario, it has been shown
that in some cases (for instance, depending on the field-
background coupling), stabilization occurs due to the appear-
ance of a nonzero value for the field (spontaneous scalariza-
tion or vectorization) [14—18], seeded by decoherence of the
growing initial-vacuum fluctuations [13]. In this process, field
particles and waves are produced [14,28] and carry away the
energy excess of the initial vacuum state in comparison to the
stabilized configuration.

If we transpose these conclusions, mutatis mutandis, to
our analogous systems, then an electromagnetic field should
spontaneously appear in the material, bringing the whole
system to a new equilibrium configuration through nonlinear
effects brought in by field-dependent constitutive tensors £
and p,p [see Egs. (7) and (8)], with photons being emitted,
carrying away the energy excess. Although the detailed dy-
namics of the stabilization processes in the gravitational and
in the analogous systems are quite different (ruled by Einstein
equations in the gravitational case and by the macroscopic
Maxwell’s equations with field-dependent £®° and p;, in

J

(™)

, 27 2
(A (A (x)) ~ Z/o dy

> KA O AR

the analogous systems), the qualitative features of the whole
process, described above, seem quite reasonable to occur in
generic field stabilization processes.

It is important to mention that the timescale set by the
instability Q7! is typically of the order of the time light
takes to travel the typical size of the system, L. Therefore, in
the analogous laboratory scenarios, the stabilization process
would occur almost instantaneously [~L/(1 cm) x 10710 ]
once the instability conditions are met, which, for a given sys-
tem, may depend on external parameters such as temperature,
external fields, etc., through their influence on the constitutive
functions &, g, 1, 1. The whole process would most likely
be interpreted as a kind of phase transition, where the “long-
range” emergent correlations in the material would come
from interaction of its constituents with a common (initially
unstable vacuum) fluctuating mode and/or the stabilized field
configuration.

For concreteness sake, let us consider the explicit form of
the unstable modes found in the example of Sec. III, where
instability occurs due to a negative value of u,, for some
(isolated) w?> = —Q? < 0, in a homogeneous slab of width L.
Although this system is not analogous to vacuum nonmini-
mally coupled electromagnetism in any realistic space-time,
it serves to illustrate general features of the mechanism itself,
in addition to being much simpler to set up in the laboratory.
This is no different than looking for fingerprints of analogue
Hawking radiation in systems whose only similarity with
realistic black holes is the presence of an effective event
horizon, which is the common approach in condensed-matter
and optical experimental analogues.

As argued before, once instability sets in, the unstable
modes must be added to the expansion of the field operator
A, along with their complex conj J%ates with corresponding
annihilation agzlj() and creation an operators. It is easy to
see that the field’s vacuum fluctuations and correlations are
eventually (¢, > Q~ 1y dominated by these unstable modes,
at least as long as decoherence does not come into play.
The dominant contribution to the vacuum correlations in the
example of Sec. IIIB reads as (the reader should refer to
Sec. III B for the definition of all quantities appearing in these
expressions)

o]

@)+ Y KUASR @] AN 6],

m=0 m=mTE)

5 o+ | M kim) DI (41 1e™ (o) (TM)( ' i kim) PTB (411e™ () (TE)( : (129)
ALLQ | 1= sinkm P (@128 B — . SiNKn Diiom@1)8 ok S8 g ) (s
where ¢ is the angle between k; and (x; —x/,),d, := |[x; — X/ ||, and the operators Dﬁzm)(d | ) acting on ggi(m)(z)ggi((m (7) are
defined by
JHm) YL Qe |7 e K\"Md, I dzd7! Q2ef ot QzeueL d J ldz’ ’
(130)
(m)

TE (k d ) m

Do (dy) = Ws S+ Tk )sYsY (131)
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FIG. 5. Equal-time (r = ¢’ > Q~!), two-point correlation function (A,(x)A,(x)) of the component of the quantum field A along the vector
separation x; — X/, for points in the z = 0 plane, for different values of 2L, with same values of constitutive functions given in Fig. 2. The
dotted (blue) lines represent the contribution coming from the TE modes, while the dashed (red) lines depict the contribution coming from the
TM modes. The solid (black) lines give the sum of both contributions. Notice that long-range (||x, — X/, || 2 L) correlations are mainly due to

the TM modes, which undergo minimum-width instability.

with indices ¢ and ¢ standing for vector components
along (x; —x/) and n; x (x; —X/), respectively; J, and
J), stand for the Bessel functions of first kind and their
first derivatives, respectively. Field correlations (E;(x)E;(x"))
and (B;(x)B;(x")) can be similarly obtained, in particular,
(Ej(x)E;(x")) ~ Q? (Aj(x)A;(x")). As an illustration, in Fig. 5
we plot the equal-time (t = t' > Q7"), longitudinal correla-
tion function (A,(x)A,(x")) for points x, X" in the plane z = 0,
for the same values of constitutive functions used in Fig. 2 and
four different values of 2L. The vertical-axis scale is arbitrary,
but the same in all plots, since the correlations grow exponen-
tially in time, from their typical (stable-vacuum) values of or-
der /i/(cLd,) ~ [1 cm?/(Ld,)] x 107% eV /(cm? GHz?), un-
til decoherence and vectorization take over. Notice that once
minimum-width (TM) instability sets in, macroscopic (~L)
field correlations are enhanced. It is an interesting question
whether any such “long-range” correlation would survive or
leave an imprint in the final stable configuration. Although
not directly relevant for the analogy with gravity-induced
instability itself, such correlations might lead to interesting
material behavior.

VI. FINAL REMARKS

We have shown that gravity-induced instabilities, related
to the vacuum-awakening effect in the quantum context
[9-11,28] and spontaneous scalarization or vectorization in
the classical one [14-18], can be mimicked by electromag-
netism in anisotropic metamaterials with appropriate constitu-
tive functions. This follows from the formal analogy between
electromagnetism in anisotropic media and nonminimally
coupled electromagnetism in curved space-times, presented
in Sec. II. We explored two concrete scenarios: (i) a plane-
symmetric, static slab, whose main interest is its simplicity re-
garding experimental setup (see Sec. III), and (ii) a spherically
symmetric, moving media, whose main feature is its analogy
with QED-inspired nonminimally coupled electromagnetism
in Schwarzschild space-time [33,34] for given velocity and
constitutive-functions profiles (see Secs. Il A and IV).

Once instability is triggered in the analogous systems,
some stabilization process must take place, leading the system
to a new stable configuration. The details of this stabilization
process and of the final configuration will most likely depend
on specific nonlinear properties of the metamaterial, but it
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seems reasonable that they might involve the appearance of
nonzero electromagnetic fields in the material (analogous to
spontaneous vectorization in curved space-times) and photo
production which carries away the energy excess with re-
spect to the stable configuration. As discussed earlier, the
timescale involved in the stabilization process can be very
short (~10~1° s), which would make it very difficult to
even identify the unstable phase. This is similar to what
might occur with negative conductivity, which has never been
directly measured but which is predicted to lead to zero-
dc-resistance states [46] which were observed in laboratory
[47,48], although an alternative explanation has been pro-
posed [49].

Clearly, the feasibility of such analogues is bound to the
existence of material configurations with the required consti-
tutive functions. As briefly pointed out in the Introduction, this
can be achieved at least for anisotropic neutral plasmas, and
the recent advances in metamaterial science offer a plethora of
possible candidates, especially the hyperbolic metamaterials
[42,43], that possess precisely the form given in Egs. (9) and
(10) with the required “negativeness.” In particular, we call
attention to the increase in the spontaneous light emission in
such configurations, which may be related to the process of
stabilization in active scenarios.

It is also important to mention that the QED-inspired
analogues (Sec. Il A) are not restricted to the study of vacuum

J

instability. For instance, they can be used to study light
ray propagation in the corresponding space-times and one
possible application is the QED-induced birefringence in the
Schwarzschild space-time [33]. For this particular experiment,
one can work far from the effective horizon, where the consti-
tutive coefficients (123)—(126) are positive.

Our main purpose here was to lay down an unexplored
class of analogue models of curved-space-time phenomena,
with main interest on the gravitational side of the analogy.
Notwithstanding, the consequences of the analogue gravity-
induced instability to the metamaterial side may be inter-
esting on its own. The electromagnetic field instability may
mark, lead, or mediate some kind of phase transition in the
metamaterial, where the spontaneously created field and/or
its amplified “long-range” correlations may play some im-
portant role (see discussion in Sec. V). Investigations along
these lines are currently in course and will be presented
elsewhere.
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APPENDIX: NORMALIZATION OF STABLE AND UNSTABLE MODES IN THE SPHERICALLY SYMMETRIC CASE

Here, we present in detail the calculations involved in normalizing the electromagnetic modes in the spherically symmetric
case. Since we are dealing with analogues to which there is a natural physical notion of time, the laboratory-frame time ¢, it is
convenient to use ¢ = constant surfaces (%,) to normalize the modes. Obviously, this choice bears no physical consequence on

our results.

The sesquilinear form given in Eq. (21), applied to the scenario described in Sec. IV, takes the form (notice that the integrand
is a scalar and, as such, can be evaluated in any coordinate system)

_ Al -9 A 2(nf — v - -

A,A) = i/ d¥{e A0, A, + Eé = d 2L roun [AL 9,A| — (AL - aL)A;] — (A< A). (A1)

o 14 (1 - nHv ) [N

Below, we evaluate this expression for each type of mode.
1. TE modes
a. Stable
Substituting AT = (0,9 oW/ sinf, —sinfdg ) into Eq. (A1), with y = e —ioty, (0, <p)f(TE)(r), one gets
(AR, AT = / ds [(amm)(amm ) s VenYom ] / dp e " [(w +o ) f‘TE)f(TE)
T
iy2(n? — v d d
L ( f(TE> f(,T;:) fa()TZE)d ﬂTE))} (A2)
mL

where S? is the unit sphere, recall that dr/dp = )/2(1 —n 212) /11, and it is understood that this last integral must be evaluated at
T + p(r) =t = constant [recall definition of 7 right above Eq. (93)]. It is straightforward to show that the first integral evaluates
to £(€ + 1)8¢¢'8,uny provided we normalize Yy, according to fsz dSYunYom = 800 8mm - As for the second integral, let us first
consider the quantity

W — — w)(f(TE) d 4 pe _ f(fTeE)dd f<TE>>' (A3)
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Making use of Eq. (97), W( clearly satisfies

WY = o+ DTS, (A4)
0

Therefore,
. N d
(AT, AT = £(€ + D8ee Sy / dp @ >f[d Wiy — il — o) W(“]
z P

= £(€ + Dee Sy / dp 10 L (i 0)
z dp

= £(L + D)8y Sy @ N [P O]

g (AS5)
A

where we made use that t = t 4 p(r) is kept constant along integration in r (or p) and [...]|; indicates that we must calculate
the flux of the quantity in square brackets at the boundaries of Z. We see that in order to guarantee orthogonality between modes
with different o, without worrying about the specific form of p(r), we must impose boundary conditions at Z such that, in
Eq. (A3), W(e) |+ = 0 for @ # «'. Then, referring back to Eq. (A4) and writing

W) = @+ ) / ap P (A6)
we finally obtain
(AT, ATE) = 200(€ + 1)80e:8 / 0 ISP 1P, (A7)

which justifies the normalization of the TE modes in Sec. IV. [Notice that the integration variable is o, defined through dr/do =
2 2.2
yo(1— nyv )/eL]

b. Unstable TE modes
Generic unstable TE modes are given by A“T®) = (0, 9,9/ / sin 6, — sin 09y ) with

¥ = (e + Bare” )0, 9)gar (), (A8)

where aqy and Bge are complex constants and ggf)(r) is a solution of Eq. (97) with w? = —Q* (Q > 0, without loss of
generality) and proper boundary conditions (see below). Sesquilinearity of Eq. (A1) makes it easy to calculate (A“TE), A’TE))
from Eq. (A5) with the appropriate substitution w — FiQ2 and o’ — +iQ':

— Yo Wl | B a (@@ ey (L — — Qe (ut
(AYTE) ATE)) = 00 + 180 S [@arrcree W) + BacBare™ CTTWYG) o, + TaiBaee WS,

+ Bacorgre™ WG ], (A9)
where
w) i a6 4 T8 _ gT®) d "~ TE
Wigio = (+£Q + Q)( 8ae dp — 8ar %gm : (A10)
As with the stable case, we must impose boundary conditions on ggf)(r) such that
—5 d d —)
(TE) (TE) (TE) (TE)
8ar 78w — 8o 78 =0,
(QZ d,O Qe Qe d,O QL i
which implies WS%?II =W ol; = 0and, for @ # €/, AN y = =W, |; = 0. Therefore, using the analogue of Eq. (A6),
(u€) — (OO r d » €L "(TE) (TE)
Wigig/(p) = —i( FQ) P —8qr 8¢ >
p— M1
into Eq. (A9), we finally obtain
(AVTE, AT = 4QU(L + 18008 Im(@acBar) f do g5r'85% . (A1)
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where Im(z) stands for the coefficient of the imaginary part of the complex number z. Thus, imposing orthonormality of these
modes, for orthonomalized gm) [in the L*(Z, do) inner product], the general expression for ag, and Bqe (up to rephasing,
ogr > €Pagy, Bae — e"sﬂm, and time resetting, ogy > eagy, Bae > e Q’”,BQ,;) read as

e—iK/2
ooy = ,
T ) QU+ Dsink

eik/Z
Bar =

2/QUC F T)sink’

(A12)

(A13)

with 0 < k < 7 being an arbitrary constant.

2. TM modes
a. Stable

Now, substituting A™ = (r=2, ' A, 950,. 9,0,)¢ into Eq. (A1), with ¢ = e=7¥,,, (0, @)L, (r), and evaluating the
angular integrals (similarly to the previous TE case), we obtain

ol w'l

o d 21 — o)l + 1) ——
(A(TM)’A/(TM)) =00+ 1)5ez'3mm'/IdQ el(w—w )z{(w+w/)|: f(TM) f(TM) 14 I (TM)f(TM)

8||8lr2

&1

+ l')/2(nﬁ - 1)U <a)2f(TM) f(TM) /2f(TM) f(TM)) } (A14)

ghﬁre recall that dr/do = y*(1 — nﬁvz) /€. The strategy to simplify the expression above is the same applied in the TE case.
efine

1 ( fa()TM) d f(TM) /2f(TM) d f(TM)> (AIS)

0 ._
Www’ T ((1) _

One can easily check, using Eq. (102), that

d d
%Wgﬁg,:(ww’)[ fiTM) f(TM> (A16)

2 2
y2(1 = nfv)el + D) —m T
8H8J_rz ’

Therefore, we can put Eq. (A14) in the same form as Eq. (A5), with W — W and p — 0. Now, orthogonality of the modes
demand that f,, (T™) satisfy either Dirichlet or Neumann boundary conditions at Z, which leads to

(A(TM), A/(TM)) = E(E + I)BM/(Smm’ [W(i)éa))’] ’I (A17)
In order to simplify even further the expression above, note that using again Eq. (102) in Eq. (A16), we can write

A : £ . _( 2y /z)} (f(TM)f(TM)) (A18)

dQ
whose integration on Z gives us [Wﬁ/] |+» which substituted into Eq. (A17) finally leads to

(AT, AT = 263006 + 1)80e S / P IV L. (A19)
(Notice that the integration variable is p.)

b. Unstable
Generic unstable TM modes are given by A“™) = (+—2¢,' A, 959, 8,0,)¢ with
¢ = (aue™ + Bare™ ™ Wi (0, 9)gg," (1), (A20)

where age and Bq, are complex constants and g(TM)(r) is a solution of Eq. (102) with w? = —Q?* (2 > 0, without loss of
generality) satisfying Dirichlet or Neumann boundary conditions. Once more, sesquilinearity of Eq. (A1) makes it easy to
calculate (A“™) A’GT™M) from Eq. (A17) with the substitution @ — FiQ and o' — +iQ':

AV AT = 0+ 1)Se0 S (@i Bre WG 2oy + Bacore W0 ]| (A21)
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where

W 1=
+Q+Q (:I:Q + Q’)

2 dg

—i 2 4y
e g, ——8au

5 |~ g 8are

/MJ_
)+(Qz Q/z)/ do gﬁ’”ggl}“)}.

d —_
2 (TM) (TM)
—Q%gqy d_gm )

(A22)

In the last passage of the expression above we used the analogue of Eq. (A18):

(ACTM, AT — —4Q30(L + 1)8 40 I @t Ber) / dp £ 8 -

(A23)

Imposing orthonormality of these modes, for orthonormalized g(T ) [in the LA(Z, d p) inner product], the general expression for
aqe and Bqe (again, up to rephasing and time resetting) can be expressed as

eiK/Z
aqQe = s (A24)
2,/S3¢(£ + 1) sink
e—iK/2
Bae = (A25)

with0 <k < 7.

2/ Q3¢ + 1)sink
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