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Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
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In the area of non-Hermitian physics, there has been increasing research interest in photonics. Recently, this
interest has expanded to topological systems in which symmetry and topology intertwine with non-Hermiticity,
giving rise to many intriguing physical effects. One of the major tasks in exploring topological systems is
unveiling the bulk-boundary correspondence in the presence of non-Hermiticity. Several proposals have been
put forward in this vein, including non-Bloch bulk-boundary correspondence and the non-Hermitian skin effect.
However, its practical realization has remained elusive thus far. In this paper, we demonstrate a feasible design
of a one-dimensional non-Hermitian Su-Schrieffer-Heeger model based on photonic coupled resonant optical
waveguides (CROWs). We show that non-Hermitian asymmetric coupling can be realized by the judicious
design of optical gain and loss elements into unidirectional coupling link rings. The phase transition points of a
technically achievable CROW open chain are different from those of the periodic boundary, thus revealing the
non-Bloch bulk-boundary correspondence. Moreover, the field distribution is found to be exponentially localized
at the ends of an open-boundary chain, which demonstrates the non-Hermitian skin effect. Our results underpin
the fundamental importance as well as potential applications in various optical devices such as optical couplers,
beam splitters, lasers, optical trapping, etc.
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I. INTRODUCTION

The non-Hermitian Hamiltonian associated with open sys-
tems [1–4] and gain/loss media [5–7] has inspired significant
research activities in many areas of physics and engineering
[8–13]. A unique property of non-Hermitian systems is the
existence of exceptional points (EPs) [14–19] corresponding
to the coalescence of two or more eigenstates, which make
the non-Hermitian Hamiltonian nondiagonalizable. Recently,
there has been growing interest in the topological properties of
non-Hermitian EPs, such as Weyl exceptional rings [20–22],
bulk Fermi arcs [23], and half-integer topological charges
[23]. Another remarkable phenomenon of non-Hermitian sys-
tems is the non-Hermitian skin effect, meaning that all eigen-
states are localized at the boundary. As a consequence, the
conventional bulk-boundary correspondence breaks down in
non-Hermitian systems [24–36].

Due to the equivalence between the Schrödinger equation
in quantum mechanics and the wave equation in optics, clas-
sical optical systems provide a feasible way to experimentally
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study the fundamentals of non-Hermitian topological proper-
ties [5,6,16–19,37–39]. In optics, the non-Hermitian potential
can be efficiently constructed by engineering loss and gain
modulations in a complex refractive index domain, and a large
number of interesting optical phenomena and devices can be
achieved in non-Hermitian optical systems, such as unidi-
rectional reflection [17], enhanced detection [40], a PT laser
[18,19], and an absorber [39]. It is worth noting that coupled
resonant optical waveguides (CROWs) have become an ef-
fective photonic platform for studying optical non-Hermitian
topological effects [41–44]. The unidirectional coupling of
the CROW structure can introduce an effective gauge field
into the photonic system without time-dependent modulation
or magneto-optical materials. A number of photonic non-
Hermitian phenomena have been realized in CROW systems,
such as a topologically protected laser [43,45–48], reconfig-
urable light steering [49], unidirectional transmission [41,42],
topological quantum devices [50,51], flat band dispersion
[44,52], and so on. It is worth noting that CROWs can imple-
ment asymmetric hopping with auxiliary link rings [53–55],
which results in non-Hermitian transparency and one-way
transport [56]. However, the non-Hermitian skin effect and
bulk-boundary correspondence have not been carefully stud-
ied in a non-Hermitian CROW structure.

In this paper, we report a feasible design of a one-
dimensional (1D) non-Hermitian Su-Schrieffer-Heeger (SSH)
model [57–60], which is a one-dimensional tight-binding
model whose topological features arise from alternating off-
diagonal tunneling strengths, based on the photonic CROW.
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We show that the non-Hermitian asymmetric coupling can be
obtained by inserting an optical gain and loss medium into the
link rings. In the simulation, the phase diagram of the CROW
open-chain is different from that of the periodic boundary
condition, and the non-Bloch bulk-boundary correspondence
is presented, showing consistency with a theoretical model.
In addition, the non-Hermitian skin effect is demonstrated by
the complete localization of field distributions at the end of
an open-boundary chain. The photonic non-Hermitian skin
effect may provide a mechanism to strongly localize the
light at the boundary and pave the way for achieving broad-
band lower-dimensional light trapping. Not only theoretical
models, but also CMOS-compatible feasible optical designs
were highlighted. Therefore, our design and results are more
applicable and have the potential to be used in combination
with silicon-based photonics, which may provide a feasible
way for light manipulation and the design of optical devices
such as optical couplers, beam splitters, lasers, and so on.

II. THEORETICAL MODEL AND STRUCTURE DESIGN

A tight-binding model is employed to describe the non-
Hermitian SSH model [28–32], which is described by the
following Hamiltonian:

H (k) =
(

0 t1 − γ

2 + t2eik

t1 + γ

2 + t2e−ik 0

)
= dxσx

+
(

dy + i
γ

2

)
σy,

where dx = t1 + t2 cos(k), dy = t2 sin(k), and σx,y are the Pauli
matrices. γ is a real number that represents the non-Hermitian
coupling, which can be realized by optical gain/loss media.
Here “t” represents the coupling strength between two ad-
jacent rings. The definition of t1, t2 refers to the coupling
constant of two site rings within and between the unit cell.
This is consistent with the coupling constant in the traditional
SSH model. The unit cell has periodic boundary conditions
and translational symmetry. When translating the lattice vec-
tor, wave functions only increase the Bloch phase factor
eik . Since t1 characterizes the coupling constant within the
unit cell, no Bloch phase will occur. Gain/loss modulations
are only introduced between two site rings in the unit cell,
so the non-Hermitian term is only reflected in the coupling
constant t1. In contrast, there is no non-Hermitian modulation
on the interunit cell coupling t2. To introduce the asymmetric
coupling into the photonic system, we design a 1D CROW
photonic SSH model, which is shown in Fig. 1(a), wherein
two ring waveguides with inner diameter Rs = 1.653 μm are
located. To simplify the amount of calculation, we simu-
late a 2D model in the full-wave simulation. Another set
of boundary conditions of the 3D model in the z-direction
only affects the mode parameters of the waveguide, that is,
the “artificial atom” itself, but does not affect the periodic
modulation of the optical lattice. Each site ring resonator is
connected with its nearest-neighbor site-ring resonator via two
coupling waveguides with an inner diameter Rl = 1.6 μm,
which is denoted as “link rings.” The whispering gallery
modes (WGMs) between adjacent rings have unidirectional
coupling. For example, the clockwise mode in the site ring can

FIG. 1. (a) A schematic diagram of the CROW SSH model. The
gain and loss mediums are shown as red and blue semicircles, respec-
tively. There are two site rings with an inner diameter Rs = 1.653 μm
and two link rings with an inner diameter Rl = 1.6 μm in the unit
cell. All ring waveguides have refractive index n = 3 and width w =
0.2 μm. The small gap between every two resonators is g = 0.05 μm.
(b),(c) The size parameters and the transmission/reflection spectra of
ring resonators, respectively.

only excite the counterclockwise mode in the link ring. Thus,
when the clockwise mode of the site ring is coupled from left
to right, it passes through the lower semicircle of the link ring,
and when coupled from right to left, it passes through the
upper semicircle. In our design, the upper half-circle of the
link ring 3 [shown in red in Fig. 1(a)] is inserted by optical
gain material and the lower half contains loss. Combined with
the CROW SSH model described above, we obtain a non-
Hermitian CROW SSH model with left and right asymmetric
coupling strengths. We choose to distinguish the size of two
kinds of rings to make sure that the link rings can be regarded
as a coupling term between the site ring resonators. By tuning
the small gap “g” as shown in Figs. 1(a) and 1(b), the coupling
strength between adjacent rings can be directly controlled and
thus the entire CROW structure constitutes the configuration
of the non-Hermitian SSH model.

In the SSH model, we often pay attention to the alternative
coupling strength between adjacent atoms. With the changing
of coupling strength, there is also a chance for a topology
phase transition, which results in topologically protected edge
states. In our design, optical resonant waveguides act as
artificial atoms. The alternative coupling strength between
waveguides, which can be tuned by sweeping the distance
between two adjacent waveguides, also causes topological
phase transitions.

Considering the actual CMOS process accuracy, we de-
signed the gap between the site ring and the link ring
g = 0.05 μm. Increasing the gap decreases the coupling
strength. Conversely, decreasing the gap increases the cou-
pling strength. In theoretical models, the coupling constant is
often directly selected for calculation. However, in an optical
design, the physical quantity that can be directly controlled
is the size of the gap between adjacent rings. Therefore, we
choose to directly change the value of the gap to achieve the
topological phase transition of the system. Since two site rings
will be close to each other or away from each other in the
unit cell, the distance between the site rings and the link rings
will change. We define the position drift as δ and the unit is
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FIG. 2. (a) Schematic diagram of the energy band with no
gain/loss modulation. (b) Schematic diagram of the energy band at
the border of the first Brillouin zone. There are two exceptional
points as the gap shift δ changes. nimag represents the imaginary
refractive index in the full-wave simulation.

μm. When δ is negative, it means that the site rings are far
away from each other in the unit cell. When δ is positive, it
means that the site rings are close to each other in the unit
cell. Thus, the gap between the site ring and the link ring is
g = 0.05 μm ± δ.

III. SIMULATION RESULTS

As we can see in Fig. 1(c), the resonant frequency of two
site rings is designed in the optical telecommunication regime
from 190.0 to 196.0 THz, and the transmission rate of the
ring resonator exceeds 20%. The Q factor of the resonant
ring is so high that energy cannot be completely coupled out
effectively; only a small part will be localized in the ring,
which means that the field is still distinctly distributed in the
upper semicircle of the link ring. It is worth noting that there
is no coupling between clockwise mode and counterclockwise
mode in the link ring. For the energy incident from the upper-
left incident port, there is only one coupling channel that can
couple with the right out port. Therefore, the small part of
the energy that is localized in the ring will not affect the
Hamiltonian.

Through full-wave simulation, we obtain the energy band
of the SSH model based on the photonic CROW structure
as shown in Fig. 2(a). In the simulation, we calculated the
eigenstates in a unit cell that contains four resonances. In the
resonance frequency region of the site ring, a photonic band
gap formed emerges at the border of the Brillouin zone due
to the alternate coupling coefficient. It is worth mentioning
that the optical ring waveguide supports both clockwise and
counterclockwise WGMs, and the two modes are completely
degenerate. The coupling between clockwise and counter-
clockwise modes within an isolated ring is forbidden by ro-
tation and time-reversal symmetries [41,42,44]. Without loss
of generality, here we only consider one of the two WGMs.

The energy bands of the Hamiltonian are obtained by diag-
onalizing the above matrix, and the energy gap closes at the
EPs t1 = t2 ± γ

2 (k = π ) under periodic boundary conditions.
By changing the spacing between the rings to control the
coupling strength, we can obtain the energy band evolution
of the high symmetric point in the Brillouin zone in full-

wave simulation. In our system, the phase transition point
specifically refers to the critical state when the band gap of
the system’s energy band changes from closed to open or
from open to closed and the topological phase changes. By
changing the coupling coefficient (δ is related to the coupling
coefficient), we successfully obtain the phase transition point
at the k point, as shown in Fig. 2(b). Two EPs corresponding
to the theoretical model can be obtained. For the traditional
SSH model, there is a phase transition point. However, the
imaginary part of the ring resonant we choose in Fig. 2(b)
is 0.04 (nimag), so two phase transition points appear and the
CROW system is gapless not only on the phase transition point
but also between them.

In our non-Hermitian CROW SSH model, the open bound-
ary case is noticeably different from that of the periodic
boundary. For open boundaries, there is no translation sym-
metry in space. Therefore, to describe the Hamiltonian of
the system, a large matrix with the same matrix dimension
as the number of long-chain site rings must be established
to describe the Hamiltonian of the system. If there are N
site rings in the system, the matrix is N-dimensional. Such
an open-chain system can be described by the Hamiltonian
below:

HN×N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1 − γ

2 0 · · · 0

t1 + γ

2 0 t2 · · · 0

0 t2 0 · · · 0
...

...
...

...
...

0 0 0 t1 + γ

2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The phase boundary position of the CROW open chain

is given by t1 =
√

t2
2 + ( γ

2 )2 when |t1| > |γ /2| [32], which
is drastically different from that of the periodic boundary
t1 = t2 ± γ

2 (k = π ) indicating the non-Bloch bulk-boundary
correspondence. In the Hermitian case, the boundary con-
dition has little effect on the eigenstate, so the Hermitian
topological system preserves bulk-boundary correspondence.
However, in the non-Hermitian case, the boundary condition
has a nontrivial influence on the eigenstate. The eigenstates
cannot be superimposed by Bloch wave vectors, and the field
distribution has a non-Hermitian skin effect, resulting in the
non-Bloch bulk-boundary correspondence.

We have successfully achieved similar results through full-
wave simulation. To get the phase diagrams (Fig. 3) and
the field distributions (Fig. 4), we use 20 unit cells in the
full-wave simulation, each of which contains two site rings
and two link rings. All unit cells are arranged along the x-axis
direction. It is worth noting that N represents the number of
site rings. The link ring only provides coupling coefficient
modulation to achieve asymmetric coupling. We set periodic
boundary conditions and scattering boundary conditions at
the left and right boundaries, so that we can calculate the
system eigenvalues under the periodic and open boundary,
respectively. The phase transition point under the periodic
boundary (δ = 00.11) is different from that under the open
boundary (δ = 0.02). The phase transition point under the
periodic boundary [the bottom panel of Fig. 3(a)] is different
from that under the open boundary [the top panel of Fig. 3(a)].
The edge state starts to appear at the phase transition point
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FIG. 3. (a) Phase diagram based on the spectra of the CROW
SSH model. The top and bottom panels correspond to the open
boundary condition (OBC) and the periodic boundary condition
(PBC), respectively. Edge states can be found in the entire blue
shadow area, indicating that the region is nontrivial. (b) Topological
phase diagram under different gain/loss modulations. The yellow
solid line and gray dashed line indicate the position of the phase
transition point under the open boundary and the periodic boundary,
respectively.

of the open boundary (blue shadow area), indicating that the
region is nontrivial [61].

The Hamiltonian of the CROW SSH model can be rewrit-
ten under the non-Hermitian open boundary condition by
reconstructing the basis vector. The real-space eigenequation
can be rewritten as H |ψ〉 = E |ψ〉, with |ψ〉 = S−1|ψ〉. We
can choose the trial solution S in this similarity transformation
according to the characteristics of the non-Hermitian wave
function. The S is taken to be a diagonal matrix whose di-
agonal elements are {1, r, r, r2, r2, . . . , rL−1, rL−1, rL}. Then
t1 ± γ

2 terms can be replaced by r±1(t1 ± γ

2 ) in H . The
non-Hermitian variation of the wave function is taken into
account. The diagonal element r can be solved by bound-
ary conditions. Now the trial solution r can be chosen as
r = √|(t1 − γ /2)|/|(t1 + γ /2)|. Thus the Hamiltonian of the
CROW open-chain can be represented as

H̄N×N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
(
t1 − γ

2

)/
r 0 · · · 0(

t1 + γ

2

)
r 0 t2 · · · 0

0 t2 0 · · · 0

...
...

...
...

...

0 0 0
(
t1 + γ

2

)
r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The form is consistent with the standard SSH
model: H (k) = (t1 + t2 cos k)σx + t2 sin kσy, where t1 =

FIG. 4. Field distribution of bulk states, which shows a compar-
ison of the Hermitian bulk state (a) and the obvious non-Hermitian
skin effect (b).

√
(t1 − γ /2)/(t1 + γ /2) and t2 = t2. The positions of

the phase transition points are t1 = t2, which means
t1 =

√
t2
2 + (γ /2)2 [61]. This is consistent with the theoretical

calculation results.
In the full-wave simulation, we obtain the topological

phase diagram, which presents the phase transition points
under different gain/loss modulations, as shown in Fig. 3(b).
Under open boundary conditions, the phase transition point
corresponds to the position where the edge state begins to
appear, and edge states can be found in the entire blue shadow
area, indicating that the region is nontrivial. For the entire
eigenequation, there is only a mathematical form of change in
the Hamiltonian basis vector. However, due to the introduction
of gain/loss modulation, the original basis vectors cannot
describe the behavior of the system, nor can they explain
the occurrence of bulk-boundary correspondence. However,
the bulk-boundary correspondence can be explained with the
basis transformation. This is also confirmed in our simulation
results.

In the non-Hermitian SSH model, the wave function has
amplification/attenuation and phase changes during propaga-
tion, which is manifested by the non-Hermitian skin effect
of the field distribution. In other words, all the bulk state
fields are concentrated at the boundary, analogous to the
non-Hermitian skin effect of electromagnetic waves on the
metal surface. For the general bulk state [Fig. 4(a)], its field
distribution is evenly distributed throughout the system. Due
to the differences in field excitations, the field distribution
in our design has certain differences at different frequencies.
However, all the bulk states in our design have above 60%
energy concentrated in the three rings of the open-chain bor-
der, thus confirming the existence of the non-Hermitian skin
effect in the non-Hermitian CROW SSH model [Fig. 4(b)].
It is worth noting that the non-Hermitian optical modulation
experienced by clockwise and counterclockwise WGMs is
opposite, resulting in the fact that they concentrate at different
boundaries. So, the bulk field distribution is concentrated on
both sides of the open-chain boundary.

IV. CONCLUSION

In conclusion, we have designed a non-Hermitian 1D SSH
model based on the photonic CROW structure. Different
from the previous non-Hermitian SSH model where the non-
Hermitian modulation is located at the site position and cor-
responds to the diagonal term of the Hamiltonian, our CROW
SSH model possesses the link ring modulation corresponding
to the off-diagonal terms of the Hamiltonian. To realize a syn-
thetic imaginary asymmetric coupling, the link ring provides
amplification in the upper half perimeter with single-pass
amplification and balanced loss in the lower half perimeter
with single-pass attenuation. The topological phase transition
point of the CROW open chain is different from that of the
periodic boundary and the present non-Bloch bulk-boundary
correspondence. In the non-Hermitian SSH model, the field
distribution displays a complete localization at the end of
an open-boundary chain, indicating the existence of the
non-Hermitian skin effect. The 1D non-Hermitian CROW
SSH model provides an efficient platform for designing
integrated topological photonic devices and topological
quantum optical devices. The non-Hermitian skin effect may
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be suggestive of potential application prospects and research
values in optical devices such as optical couplers, beam
splitters, lasers, and so on.
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