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Reduction of self-diffusion coefficient in a coarse-grained model of cytoplasm
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Theoretical predictions for polydisperse hard-sphere suspensions with and without hydrodynamic interaction
are applied to a coarse-grained model of bacterial cytoplasm, which consists of 15 species of spherical
particles. Short-time and long-time self-diffusion coefficients of each species are obtained to the first order in
concentration. It is shown that the hydrodynamic interaction leads to a large reduction of diffusivity for small
particles such as green fluorescent proteins. Moreover, a heuristic modification of the above theory to make it
valid at higher concentrations is presented.
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I. INTRODUCTION

There is considerable interest in macromolecular diffusion
inside cells [1–5] because it plays important roles in vari-
ous intracellular processes such as chemical reactions and
information transmission [6]. Indeed, it is found that the
intracellular diffusion of macromolecules is remarkably slow
compared with diffusion at infinite dilution. For example, the
diffusion coefficient of green fluorescent proteins (GFPs) in
cytoplasm is about 10 times less than that at infinite dilution
[7–9].

To clarify the origin of such a drastic reduction of the
diffusivity, coarse-grained models of bacterial cytoplasm have
been studied intensively [10–13]. In these coarse-grained
models, macromolecules are represented by Brownian spheres
with various sizes, and thus they are polydisperse colloidal
suspension models. For example, in Ref. [11], Ando and
Skolnick numerically studied a coarse-grained model and
reported that the reduction of diffusivity observed in exper-
iments for the GFPs is not explained only by the excluded
volume effect, but hydrodynamic interaction (HI) between the
macromolecules plays a crucial role.

Colloidal suspensions have been analytically studied for
many decades [14,15], and analytical expressions for the
diffusion coefficient D(φ) as a function of the volume frac-
tion φ of the suspended particles are available [16–18]. For
example, for monodisperse suspensions (identical Brownian
hard spheres) without the HI, the diffusion coefficient is given
by D(φ) � D(0)(1 − 2φ) [15]; similarly, for monodisperse
suspensions with the HI, it is given by D(φ) � D(0)(1 −
2.10φ) [19,20]. These theoretical predictions are valid at low
concentrations (i.e., at small values of φ). According to these
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predictions, the diffusion coefficient D(φ) does not change
greatly by incorporating the HI.

These analytical results, however, are contrasting to the
above-mentioned simulation study of a coarse-grained model
of cytoplasm, in which the diffusion coefficient shows a
large decrease by incorporating the HI [11]. This apparent
contradiction must be caused by the fact that the above the-
ories are for monodisperse suspensions and valid only at low
concentrations, whereas real cytoplasm is highly concentrated
and polydisperse.

This paper studies the effect of polydispersity on the reduc-
tion of diffusivity in a coarse-grained model of cytoplasm. A
theoretical prediction for the reduced diffusivity of monodis-
perse suspensions without the HI is given in Refs. [15,21];
here, this theoretical prediction is generalized to the polydis-
perse suspensions. In contrast, the reduced diffusivity in poly-
disperse suspensions with the HI was theoretically studied by
Batchelor [16–18]. In the Batchelor’s theory, the HI is taken
into account through the so-called mobility functions. In this
paper, far-field approximations of these mobility functions
are obtained by twin multipole expansions [14,22]. Heuristic
modifications of these theories are also presented to make
them valid at higher concentrations.

These theoretical formulas are then applied to the coarse-
grained model of cytoplasm proposed in Ref. [11], which is
a polydisperse colloidal suspension model. Colloidal particles
in this model are hard-sphere particles and classified into 15
kinds of macromolecules, that include GFP, RNA polymerase,
and ribosome. Hereafter, this colloidal suspension model is
referred to as the Ando-Skolnick model. In Ref. [11], roles of
nonspecific attractive interactions, molecular shapes, the HI,
and the excluded volume effect in reduction of diffusion coef-
ficients were intensively studied, and it was found that the HI
and the excluded volume effect are sufficient to reproduce the
drastic reduction in diffusivity observed in the experiments.
Therefore, only the HI and the hard-sphere excluded volume
effect are taken into account in the models of this paper.

By comparing the above two theoretical predictions for the
Ando-Skolnick model with and without the HI, it is shown
that the diffusivity decreases prominently for small particles
by incorporating the HI. For example, it is found that the
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TABLE I. Parameters and mobility coefficients with and without the HI for the Ando-Skolnick model. The Ando-Skolnick model (a
polydisperse colloidal suspension model) consists of 15 species of particles. The diffusion coefficient at infinite dilution D̃s and the particle
radius ãs are related by the Stokes law ãs = kBT/6πηD̃s (s = 1, . . . , 15). K I

s and KB
s are the mobility coefficients of the species s for the system

without the HI, and KhS
s , KhI

s , KhB
s , and Kh

s for the system with the HI. The results for the monodisperse suspension [15] are also given for a
comparison.

No. of Diffusion const. Radius
s Name particles ns D̃s (μm2/s) ãs (nm) K I

s KB
s KhS

s KhI
s KhB

s Kh
s

Monodisperse system 2.00 0.0 1.83 0.00 0.275 2.11
1 Ribonuclease HI 57 114.0 2.15 0.93 0.0 1.16 0.00 0.397 1.56
2 GFP 93 102.0 2.41 1.00 0.0 1.22 0.00 0.388 1.61
3 Malonyl CoA-acyl

carrier
77 95.2 2.58 1.04 0.0 1.26 0.00 0.382 1.64

4 Initial tRNA 299 88.3 2.78 1.09 0.0 1.30 0.00 0.376 1.68
5 Triosephospate

isomerase
103 77.3 3.17 1.20 0.0 1.38 0.00 0.363 1.74

6 Enolase 75 68.2 3.60 1.32 0.0 1.45 0.00 0.350 1.80
7 Fructose 1-6

bisphosphate aldolase
75 66.7 3.68 1.34 0.0 1.46 0.00 0.348 1.81

8 6-phosphogluconate
dehydrogenase

26 62.6 3.92 1.41 0.0 1.49 0.00 0.341 1.84

9 Phosphoenolpyruvate-
protein

28 57.7 4.25 1.52 0.0 1.54 0.00 0.332 1.87

Phosphotransferase
10 Glyceraldehyde-3-P

dehydrogenase
35 56.9 4.31 1.54 0.0 1.55 0.00 0.331 1.88

11 Cystathioine
gamma-synthase

5 54.0 4.54 1.61 0.0 1.58 0.00 0.325 1.90

12 Phosphoglycerate
dehydrogenase

10 49.9 4.92 1.73 0.0 1.62 0.00 0.316 1.93

13 RNA polymerase 62 36.9 6.65 2.37 0.0 1.77 0.00 0.277 2.05
14 GroEL/ES 31 28.8 8.52 3.18 0.0 1.88 0.00 0.243 2.12
15 Ribosome 24 21.3 11.52 4.74 0.0 2.00 0.00 0.199 2.20

Total 1000

diffusion coefficient for the GFP is estimated as DGFP(φ) �
DGFP(0)(1 − 1.00φ) for the system without the HI, and by
DGFP(φ) � DGFP(0)(1 − 1.61φ) for the system with the HI.
Thus, in contrast to the monodisperse suspension mentioned
above, the diffusion coefficient of the GFP shows a large
decrease by incorporating the HI. Furthermore, for the case
without the HI, the theoretical predictions are compared with
numerical simulations of the Ando-Skolnick model, and a
good agreement is found even for relatively high concen-
trations. For a numerical scheme, an event-driven Brownian
dynamics simulation method is used [23,24].

Although the main focus of this paper is reduction of
the self-diffusion coefficient, anomalous subdiffusion [25–27]
is also observed in many experiments [1–3] and coarse-
grained models of cytoplasms [28–31]. In fact, single-particle-
tracking experiments revealed that relatively large particles
with radii greater than 100 (nm) often show anomalous subd-
iffusion in cytoplasms [1–3].

In contrast, for small particles with radii less than 10 (nm)
(e.g., proteins), it has been still difficult to observe intracel-
lular subdiffusion directly by single-particle-tracking tech-
niques because of the rapid diffusion speed and difficulty in
imaging in depth [32]. Nevertheless, several theoretical and

numerical studies predict that subdiffusion (if any) may be
observed only transiently, and normal diffusion should be
recovered at long times [26,29–31]. Consistently, the particles
in the Ando-Skolnick model are relatively small with radii be-
tween 2 to 12 (nm), and exhibit normal diffusion at long times.
In this paper, we focus on this long-time normal diffusion.

This paper is organized as follows. In Sec. II, the polydis-
perse hard-sphere suspension without the HI is theoretically
analyzed by means of a steady Smoluchowski equation, and
the results are applied to the Ando-Skolnick model. Results of
numerical simulations without the HI are also presented in this
section. In Sec. III, the Ando-Skolnick model with the HI is
analyzed with the polydisperse suspension theory. Section IV
is devoted to a summary and discussion. In Appendix A, the
numerical scheme for the Brownian hard spheres is briefly ex-
plained, while, in Appendix B, numerical procedures to deter-
mine the long-time diffusion coefficient are explained. Finally,
Appendix C is devoted to theoretical derivations of short-
and long-time self-diffusion coefficient for the hard-sphere
suspension with the HI. The data summarized in Table I are
obtained with the far-field approximation up to O(1/r100),
whereas exact expressions up to O(1/r7) are presented in
Appendix C.
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II. WITHOUT HYDRODYNAMIC INTERACTION

In this section, we study a polydisperse hard-sphere sus-
pension without the HI, and derive a formula for the diffusion
coefficient as a function of the volume fraction φ by using a
steady solution of the Smoluchowski equation. The theoretical
analysis in this section is a straightforward generalization of
that for the identical hard spheres [15,21].

A. Smoluchowski equation

Suppose that a hard-sphere suspension consists of N Brow-
nian particles and each particle has a diffusion coefficient
Di (i = 1, . . . , N ) at infinite dilution. The radii of the par-
ticles are assumed to be given by the Stokes radii ai =
kBT/(6πηDi ) (i = 1, . . . , N ), where kB is the Boltzmann
constant, T is the temperature, and η is the viscosity of the
water. Moreover, these Brownian particles are assumed to be
classified into S species; the particles belonging to the same
species are identical and therefore have the same diffusion
coefficient and radius. The number of particles in the species
s is denoted as ns, and a cumulative number of particles Ns

are defined by Ns := ∑s
k=1 nk (s = 1, . . . , S). We also use a

notation ãs (s = 1, . . . , S) to indicate the radius of the species
s. Moreover, the indices i, j, and l are used to indicate the
particle indices, whereas s and k are used to indicate the
species indices.

The Smoluchowski equation for the interacting Brownian
particles is given by [15]

∂

∂t
P(R, t ) = L̂P(R, t ), (1)

where P(R, t ) = P(r1, . . . , rN , t ) is the N particle probability
density function, and R is a supervector defined by R =
(r1, . . . , rN ) with ri the position vector of the particle i. In
addition, L̂ is the Smoluchowski operator for the interacting
Brownian particles without the HI, and it is given by

L̂(. . . ) =
N∑

i=1

Di∇i · {β[∇i�(R)](. . . ) + ∇i(. . . )}, (2)

where ∇i is the gradient operator in terms of ri, (. . . ) rep-
resents a function on which L̂ operates, and β is the inverse
temperature β = 1/kBT . The function �(R) is the total poten-
tial energy of interaction between the N particles.

B. Two-particle steady Smoluchowski equation

Here, we derive a steady solution P12(r1, r2) of the two-
particle Smoluchowski equation under the condition that an
external force Fext is applied only to the particle 1. Let us
denote the difference of the two position vectors as r := r1 −
r2, and the potential energy of the two particles as V12(r) with
r = |r|. Setting N = 2, and replacing ∇1�(R) and ∇2�(R) in
Eq. (2) with ∇1V12(r) − Fext and ∇2V12(r), respectively, we
obtain the steady two-particle Smoluchowski equation

∇ ·
(∇P12

β
+ P12∇V12 − a2

2a12
P12Fext

)
= 0, (3)

where ∇ is the gradient operator in terms of r, and a12 is the
mean radius a12 := (a1 + a2)/2. In the derivation of Eq. (3),
we use ∇ = ∇1 = −∇2, and Di = kBT/(6πηai ).

If we assume that the external force Fext is weak, then the
solution of Eq. (3) to the first order in Fext is given by [15]

P12(r) = P(0)
12 (r)[1 + βa12L12(r)r̂ · Fext], (4)

where P(0)
12 (r) is the equilibrium distribution P(0)

12 (r) ∝
e−βV12(r), L12(r) is an unknown function to be specified, and
r̂ is the unit vector in the direction of r. Note that a12 is
introduced to make L12(r) nondimensional. Inserting Eq. (4)
into Eq. (3) and neglecting the terms of O(F2

ext ), we obtain an
equation for L12(r) as

e−βV12∇ · q12(r) + (∇e−βV12 ) · q12(r) = 0, (5)

where the function q12(r) is defined by

q12(r) := 2a2
12∇[L12(r)r̂ · Fext] − a2Fext. (6)

For the hard-sphere interaction potential, we have
e−βV12(r) = 1 for r > 2a12, and thus the second term in Eq. (5)
vanishes. Therefore, we have

∇2[L12(r) cos θ ] = 0 (r > 2a12), (7)

where we postulate that Fext is parallel to the z axis [i.e.,
Fext = (0, 0, Fext )], and θ is the angle between r and the
z axis. The Laplace equation (7) can be readily solved by
expressing the Laplacian with spherical coordinates, and we
obtain L12(r) = C/r2, where C is a constant.

The constant C can be determined with a boundary con-
dition. In fact, by integrating Eq. (5) over an infinitesimal
interval (2a12 − ε, 2a12 + ε), the first term in Eq. (5) vanishes
as ε → 0; integration of the second term can be carried out by
using ∇e−βV12(r) = r̂δ(r − 2a12). Thus, Eq. (5) is rewritten as

2a2
12

∂L12(r)

∂r

∣∣∣∣
r=2a12

− a2 = 0, (8)

where r̂ · ∇ = ∂/∂r is used. Inserting L12(r) = C/r2 into
Eq. (8), we obtain C = −2a12a2. Thus, we have

L12(r) = −2a2a12

r2
, (9)

and obtain a steady solution [Eq. (4)] of the two-particle
Smoluchowski equation (3).

C. Long-time self-diffusion

Using the steady solution obtained in the previous subsec-
tion, here we derive the long-time self-diffusion coefficient for
the N-particle system. Suppose that the constant external force
Fext is exerted only on the particle r1. Then, the mean resultant
force is balanced as γ1〈v1〉 = Fext − 〈∇1�〉 − kBT 〈∇1 ln P〉,
where v1 and γ1 = 1/βD1 are the velocity and friction coef-
ficient for the particle 1, respectively. The second term is the
force exerted by the other particles and the third term is the
Brownian force. Thus, the mean drift velocity is given by

〈v1〉 = βD1Fext − βD1〈∇1�〉 − D1〈∇1 ln P〉. (10)

It should be noted that the ensemble average 〈. . . 〉 is taken
in terms of the nonequilibrium steady state since the external
force Fext is applied.

Let us begin with the calculation of the second term
on the right side of Eq. (10). We assume that the in-
teraction potential is given by a sum of pair potentials
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�(R) = ∑N
i=1

∑N
j=i+1 Vi j (ri j ), where ri j = ri − r j and ri j =

|ri j | (the subscript i j is necessary for the pair potential Vi j

because Vi j depends on the particles radii ai and a j for the
hard-sphere interaction). Then, we have

−βD1〈∇1�〉 ≈ −βD1

S∑
k=1

nk
〈∇1V1Nk (r1Nk )

〉

= −βD1

S∑
k=1

nk

∫
· · ·

∫
dR P(R)∇V1Nk (r1Nk )

= −βD1

S∑
k=1

nkV
∫

dr P1Nk (r)∇V1Nk (r), (11)

where, in the first equality, we use an approximation n1 − 1 ≈
n1; in the second line, P(R) is a steady solution of the N-
particle Smoluchowski equation; and, in the third line, V is the
system volume and r := r1Nk . Here, P1Nk (r) in Eq. (11) is ap-
proximated by the steady solution for the two-particle Smolu-
chowski equation [Eq. (4)] with P(0)

1Nk
(r) = e−βV1Nk (r)/V 2 [15].

Then, by using −βe−βV1Nk (r)∇V1Nk (r) = r̂δ(r − 2a1Nk ) as well
as

∫
d� r̂ = 0 and

∫
d� r̂r̂ = 4πI/3 with I being the identity

matrix and
∫

d�(. . . ) being the integration over the solid
angle, we obtain

−βD1〈∇1�〉 ≈ −βD1FextK
I
1φ, (12)

where K I
s is called a mobility coefficient [17], and is defined

for s = 1, . . . , S as

K I
s := 2

∑S
k=1 nkã2

sk ãk∑S
k=1 nkã3

k

. (13)

Here, we define a mean radius ãsk as ãsk := aNsNk .
Similarly, the third term on the right side of Eq. (10) is

rewritten with the N-particle correlation function gN (R) :=
V N P(R) as

−D1〈∇1 ln P〉 = −D1〈∇1 ln gN 〉

≈ −D1

S∑
k=1

nk〈∇1 ln g1Nk (r1Nk )〉, (14)

where we use the Kirkwood superposition approximation
gN (R) ≈ ∏N

i=1

∏N
j=i+1 gi j (ri j ) [33], where gi j (r) is the two-

particle correlation function for the particles i and j. In the
same way as Eq. (11), the ensemble average in Eq. (14) is
rewritten as

〈∇1 ln g1Nk (r1Nk )〉 = V
∫

dr ∇P1Nk (r). (15)

This integral can be calculated with Eqs. (4) and (9), and it is
found to be vanishing. Thus, we have the third term in Eq. (10)
as

−D1〈∇1 ln P〉 ≈ 0, (16)

and the mobility coefficient for the Brownian force is vanish-
ing, KB

1 = 0, for the case without the HI.
Therefore, Eq. (10) is now given by

〈v1〉 = βD1
(
1 − K I

1φ
)
Fext. (17)

From this equation, we obtain an effective friction constant
γeff as γeff = [βD1(1 − KI

1φ)]−1. Furthermore, using the Ein-
stein relation D1(φ) = kBT/γeff , we then have the long-time
self-diffusion coefficient for the particle r1 as

D1(φ) = D1(0)
(
1 − K I

1φ
)
. (18)

Now, it is obvious that the diffusion coefficient for the
species s, which is denoted by D̃s(φ), is given by

D̃s(φ) = D̃s(0)
(
1 − K I

s φ
)

(19)

for s = 1, . . . , S. It is also possible to express the diffusion
coefficient D̃s(φ) as a function of the volume fractions of the
species φk (k = 1, . . . , S) as in Refs. [17,18]. Here, however,
the expression as Eq. (19) is preferred because this paper
focuses on dependence of the diffusivity on the total volume
fraction φ, and the composition of species is fixed. Setting
ãs = ãsk = a in Eq. (13), we obtain the results for identical
particles as D̃s(φ) = D̃s(0)(1 − 2φ), and thus we recover the
result presented in Refs. [15,21].

D. Obstructed diffusion

It would be interesting to compare the formula in Eqs. (13)
and (19) to simulation results for obstructed diffusion, which
is frequently employed to study crowding effect on intracellu-
lar diffusion [30,31]. Here, we suppose that there are only two
species, a tagged particle and obstacles, i.e., S = 2. Moreover,
let us assume that there is only one tagged particle n1 = 1, and
many obstacles n2 	 1. Then, Eq. (13) for the tagged particle
is rewritten as

KI
1 ≈ (ã1 + ã2)2

2ã2
2

. (20)

Equation (20) has an obvious physical meaning: the nu-
merator is proportional to the scattering cross section between
the tagged particle and an obstacle, and the denominator is
proportional to the square of mean interobstacle distance with
the volume fraction φ kept fixed. Therefore, the right side of
Eq. (20) is proportional to the collision rate when the tagged
particle travels the mean interobstacle distance. For small
obstacles (i.e., for small ã2), the mean interobstacle distance
becomes short, and therefore the collision rate becomes large.
For large obstacles (i.e., for large ã2), both cross section and
mean interobstacle distance become large, and therefore the
collision rate tends to a minimum, and accordingly we have
KI

1 → 1
2 .

In Fig. 1, the reduction rate of the tagged particle
D̃1(φ)/D̃1(0) is displayed for four different values of ã2/ã1.
The numerical results (symbols) and the theoretical predic-
tions (lines) given by Eqs. (19) and (20) are consistent even
at relatively large volume fractions. It is found that, for a
fixed volume fraction φ, the reduction is greater for smaller
obstacles. Note that these results are qualitatively similar
to simulation results presented in Ref. [30], in which the
obstructed diffusion is intensively studied with lattice models.

E. Application to Ando-Skolnick model

Here, let us apply the theoretical prediction obtained in
the previous subsection to the Ando-Skolnick model. The
Ando-Skolnick model consists of spheres with 15 different

013279-4



REDUCTION OF SELF-DIFFUSION COEFFICIENT IN A … PHYSICAL REVIEW RESEARCH 2, 013279 (2020)

FIG. 1. Reduction rate D̃1(φ)/D̃1(0) of long-time diffusion coef-
ficient vs total volume fraction φ for a tagged particle in obstructed
diffusion (without the HI). It is assumed that there are only two
species: the tagged particle (s = 1) and obstacles (s = 2). The ratio
ã2/ã1 between the sizes of these two species is set as ã2/ã1 = 1.0
(triangle down), 1.5 (triangle up), 2.5 (square), and 3.5 (circle). The
symbols are simulation results obtained with the numerical scheme
in Appendix A; the lines are the theoretical predictions [Eq. (19)]
with K I

1 given by Eq. (20)

sizes; these spherical particles are models of real molecules
whose names are listed in Table I. For each species s (s =
1, . . . , 15), the number of particles ns, the diffusion coefficient
at infinite dilution D̃s, and the radii ãs are also given in Table I.
The number of particles ns is determined so that the size
distribution mimics that of real cytoplasm of E.coli [10,11].
The mobility coefficient K I

s for the Ando-Skolnick model is
calculated by inserting the values of ns and ãs into Eq. (13),
and the results thus obtained are presented in Table I.

In Fig. 2(a), theoretical predictions [Eq. (19)] of diffu-
sion coefficients D̃s(φ)/D̃s(0) as functions of the volume
fraction φ are displayed with lines. Similarly, in Fig. 3(a),
D̃s(φ)/D̃s(0) is plotted as a function of the particle radius ãs.
As can be seen from these figures, the reduction of diffusivity
is more prominent for large particles than for small particles.
By recalling the implications obtained in Fig. 1, the reason for
these results can be understood as follows. If a tagged particle
is small, surrounding particles (obstacles) are relatively large;
these large obstacles result in a low collision rate of the
tagged particle with the obstacles, and thereby the diffusivity
reduces mildly as is the case for the GFP in Fig. 2(a). If the
tagged particle is large, however, the surrounding particles
(obstacles) are relatively small; these small obstacles lead to a
high collision rate, and the diffusivity reduces rapidly as is the
case for the ribosome in Fig. 2(a).

At low concentrations, the theoretical results are con-
sistent with the numerical results displayed with symbols
in Figs. 2(a) and 3(a). For large particles, however, huge
deflections are observed at high concentrations; these de-

FIG. 2. Reduction rate D̃s(φ)/D̃s(0) of long-time diffusion co-
efficient vs total volume fraction φ for the Ando-Skolnick model
without the HI. The results for four kinds of molecules are displayed:
GFP (circle), GAPDH (square), RNA polymerase (triangle up),
and ribosome (triangle down). The symbols are simulation results
obtained with numerical scheme in Appendix A. [The data shown
with the symbols in (a) and (b) are the same.] The lines are theoretical
prediction obtained (a) with Eq. (19), and (b) with Eq. (23), where the
values of K I

s are given in Table I. The solid lines are the predictions
for GFP, the dotted lines for GAPDH, the dashed lines for RNA
polymerase, and the long-dashed lines for ribosome.

flections are due to the fact that the above theory is valid
only for the first order in φ, and higher-order contributions
are neglected. The higher-order corrections for monodisperse
suspensions without the HI are studied in Refs. [34,35]. Here,
however, let us improve the above linear theory in a much
simple and heuristic way, which is similar to the method used
in Ref. [36].

When a volume V φ in the total free volume V is filled by
the particles, the diffusion coefficient is reduced with the rate
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FIG. 3. Reduction rate D̃s(φ)/D̃s(0) of long-time diffusion coef-
ficient vs radius of molecule ãs for the Ando-Skolnick model without
the HI. Numerical results for seven different values of the volume
fraction φ are displayed: φ = 0.025, 0.05, 0.1, 0.15, 0.25, 0.35,
and 0.45 (from top to bottom). The lines are the corresponding theo-
retical predictions obtained (a) with Eq. (19) and (b) with Eq. (23).

D̃s(φ)/D̃s(0) = D̃s(V φ/V )/D̃s(0). If the volume V φ is filled,
then the remaining free volume is V (1 − φ). Suppose that a
volume V dφ in this free volume V (1 − φ) is further filled.
Here, the reduction rate D̃s(φ + dφ)/D̃s(φ) is assumed to be
given by the same formula as the dilute limit:

D̃s(φ + dφ)

D̃s(φ)
≈

D̃s
( V dφ

V (1−φ)

)
D̃s(0)

=
D̃s

( dφ

1−φ

)
D̃s(0)

. (21)

Setting dφ → 0, we have an ordinary differential equation as

dD̃s(φ)

dφ
= −K I

s

D̃s(φ)

1 − φ
. (22)

This equation is readily solved, and we obtain a heuristic
theory as

D̃s(φ) = D̃s(0)(1 − φ)K I
s (23)

for s = 1, . . . , S. In contrast to the linear theory given by
Eq. (19), for which the diffusion coefficient could be negative,
in this modified theory [Eq. (23)], the diffusion coefficient is
always positive, and thus it can be applied at least formally
to systems at high concentrations. This modified theory is
depicted in Figs. 2(b) and 3(b), and it is found that, for large
particles, the modified theory is more consistent with the
numerical results than the linear theory [Eq. (19)].

III. WITH HYDRODYNAMIC INTERACTION

In addition to the excluded volume effect, the HI is also
taken into account in this section. In general, the motion of
a Brownian particle creates a velocity field in the solvent,
and this velocity field exerts forces on other Brownian par-
ticles; this type of interaction between particles is called the
HI [15,37]. In many cases, the effect of the HI cannot be
neglected to describe the dynamics of assembly of Brownian
particles [11,38,39]. Here, we incorporate the HI through a
far-field approximation of mobility functions, thereby obtain-
ing a steady solution of the Smoluchowski equation. Once
the far-field approximations of the mobility functions and
the steady solution are obtained, the reduced diffusivity for
polydisperse colloidal suspensions can be calculated by a
procedure developed by Batchelor [16–18].

In the following subsection, far-field approximations of
the mobility functions are given up to O(1/r7) for an illus-
tration. However, in obtaining the main results of this paper
summarized in Table I, far-field approximations of O(1/r100)
are utilized for the mobility functions; this approximation is
numerically obtained by a twin-multipole expansion for the
Stokes equation and resulting recursion relations [14,22]. A
steady solution of the Smoluchowski equation is then obtained
numerically up to O(1/r99).

By using these mobility functions and steady solution
(more precisely, their series expansions), the reduced diffu-
sivity is obtained with the Batchelor’s method. This analysis
is outlined in Appendix C, where a formula for the reduced
diffusivity is given explicitly by using the mobility functions
of O(1/r7). In contrast, theoretical predictions for the re-
duced diffusivity of the Ando-Skolnick model (summarized in
Table I) are numerically obtained by using the twin-multipole
expansions up to O(1/r100). The explicit expressions given in
Appendix C with the accuracy of O(1/r7) were used to check
the correctness of this numerical scheme.

A. Hydrodynamic interaction

The Smoluchowski equation for a suspension with the HI
is again given by Eq. (1), but the Smoluchowski operator L̂
should be replaced by [15]

L̂(. . . ) :=
N∑

i, j=1

∇i · Di j · {β[∇ j�(R)](. . . ) + ∇ j (. . . )}.

(24)
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The (3 × 3)-dimensional matrices Di j in Eq. (24) are the
diffusion tensors (or βDi j are usually referred to as mobility
tensors), which represent the effect of the HI between particles
i and j. In fact, the inside of the curly brackets in Eq. (24) is a
direct force −βF j (i.e., it is the sum of potential and Brownian
forces, but not the hydrodynamic force) exerted on the particle
j, and then Di j · (−βF j ) represents the hydrodynamic effect
on the particle i. [Strictly speaking, Dii · (−βF i ) includes
not only the hydrodynamic effect, but also the direct effect
DiI · (−βF i ) = −βDiF i. See Eq. (25).]

For i = j, the diffusion tensors are given by

Dii = DiI + Di

N∑
l=1
l 
=i

[
As

il (ril )r̂il r̂il + Bs
il (ril )(I − r̂il r̂il )

]
, (25)

where I is the identity tensor of rank three. The first term
on the right side gives exactly the same term encountered in
Eq. (2), and thus it represents a direct effect (i.e., not the HI).
The second term, however, is the hydrodynamic effect due to
the velocity field which is generated by the direct force on the
particle i, is reflected by the other particles l 
= i, and returns
back to i. Moreover, As

i j (r) and Bs
i j (r) are called mobility

functions [16,40], and their superscripts “s” stand for “the
self-part.” These mobility functions are given up to O(1/r7)
as [14–16,40]

As
i j (r) = −15

4

aia3
j

r4
− 2

aia5
j

r6
+ 15

2

a3
i a3

j

r6
+ O

(
1

r8

)
, (26)

Bs
i j (r) = −17

16

aia5
j

r6
+ O

(
1

r8

)
, (27)

respectively.
Similarly, for i 
= j, the diffusion tensors Di j are given by

Di j = Dj
[
Ac

i j (ri j )r̂i j r̂i j + Bc
i j (ri j )(I − r̂i j r̂i j )

]
. (28)

The diffusion tensor Di j (i 
= j) represents a hydrodynamic
effect on the particle i due to the velocity field generated by
the direct force on the particle j. The mobility functions Ac

i j (r)
and Bc

i j (r), where the superscripts “c” stand for “the cross
part,” are given up to O(1/r7) as [14–16,40]

Ac
i j (r) = 3

2

a j

r
− a j

2

a2
i + a2

j

r3
+ 75

4

a3
i a4

j

r7
+ O

(
1

r8

)
, (29)

Bc
i j (r) = 3

4

a j

r
+ a j

4

a2
i + a2

j

r3
+ O

(
1

r8

)
. (30)

We also use notations such as Ãs
sk (r) and Ãc

sk (r) to indicate
that these are the mobility functions for the species s and k.
For example, Ãs

sk (r) is defined by

Ãs
sk (r) = −15

4

ãsã3
k

r4
− 2

ãsã5
k

r6
+ 15

2

ã3
s ã3

k

r6
+ O

(
1

r8

)
. (31)

The other mobility functions for species are defined similarly.
The mobility tensor up to the third order O(1/r3) is

referred to as the Rotne-Prager-Yamakawa tensor [41,42],
which is frequently used in numerical simulations of col-
loidal suspensions [43,44]. The mobility tensor defined with
Eqs. (25)–(30) describes only far-field two-body HI, but far-
field many-body HI is also important to study concentrated

systems. In fact, in Ref. [11], so-called Stokesian dynamics
[45,46] is employed as a simulation method in order to take
into account the many-body HI. Moreover, in the Stokesian
dynamics, a near-field two-body interaction called a lubrica-
tion effect is also taken into account.

Another, more simple, method to incorporate the many-
body HI is employed in Refs. [13,47–49]. In these studies, the
Brownian dynamics simulation is carried out with a theoret-
ical prediction for the short-time diffusion coefficient given
in Refs. [50,51], where the HI is approximately taken into
account. Then, the Brownian dynamics simulation is carried
out as if it is a hard-sphere colloidal suspension without the
HI; the HI is incorporated only through the short-time diffu-
sivity. Also, it should be noted that the theoretical prediction
for the short-time diffusivity in Refs. [50,51] is valid only for
the monodisperse suspension and, therefore, in this numerical
method, polydispersity is taken into account only through
direct interaction (such as the hard-sphere interaction).

In Eqs. (25) and (28), only far-field two-body interactions
are taken into account. In other words, HIs between three
or more particles are neglected in this paper because these
contributions are of the order of O(φ2) [15]. We also assume
the no-slip boundary condition [40].

B. Reduction of diffusion coefficient

Here, an outline of the calculation of the long-time self-
diffusion coefficient for polydisperse suspensions with the
HI is presented. Details of this calculation are presented in
Appendix C. The final result is that the long-time diffusion
coefficient D̃s(φ) for the species s is given by

D̃s(φ) ≈ D̃s(0)
(
1 − Kh

s φ
)

(32)

for s = 1, . . . , S. Here, Kh
s is a total mobility coefficient for

the species s and it is defined by

Kh
s := KhS

s + KhI
s + KhB

s , (33)

where KhS
s , KhI

s , and KhB
s are mobility coefficients concerning

the short-time diffusivity, the hard-sphere interaction, and
the Brownian force, respectively. In these definitions, the
superscript “h” stands for the HI. These mobility coefficients
KhS

s , KhI
s , and KhB

s are given explicitly up to O(1/r7) in
Appendix C [Eqs. (C30), (C42), (C48), and (C50)]. Moreover,
the modified theory can also be obtained in the same way as
in the case without the HI [see the derivation of Eq. (23)] as

D̃s(φ) = D̃s(0)(1 − φ)Kh
s . (34)

To calculate Kh
s (s = 1, . . . , S), first the far-field approxi-

mations of the mobility functions As
i j (r), Ac

i j (r), Bs
i j (r), and

Bc
i j (r) are obtained by the twin-multipole expansion of the

Stokes equation and resulting recursion relations [14,22]. [In
Eqs. (26), (29), (27), and (30), expansions up to O(1/r7) are
given for reference. But, expansions of O(1/r100) are used to
obtain the data shown in Table I.]

Second, a series expansion for the steady solution of the
Smoluchowski equation is derived. More precisely, the ex-
pansion coefficients αn (n = 1, . . . , M ) of L12(r) in Eq. (C15)
are obtained by numerically solving a system of linear equa-
tions with M − 1 variables αn (n = 1, . . . , M − 1). M − 2 of
these linear equations can be obtained by inserting Eq. (C15)
into Eq. (C11) and making M − 2 equations for the orders
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1/rn (n = 1, 3, . . . , M − 1). The one remaining linear equa-
tion is obtained from a boundary condition given in Eq. (C22).
[In obtaining the data in Table I, M is set as M = 99.]

Third, by using these series expansions of the mobility
functions and the steady solution, the values of KhS

s , KhI
s , and

KhB
s are obtained. In fact, KhS

s , KhI
s , and KhB

s are calculated by
inserting the series expansions into the left side of Eq. (C28),
the right sides of Eqs. (C42) and (C48), respectively. All of
these calculations are performed numerically. Accordingly,
the sum of these coefficients gives the total mobility coeffi-
cient Kh

s , and thus we obtain the diffusion coefficient D̃s(φ) of
species s at the concentration φ [Eq. (32)].

C. Obstructed diffusion

As an example, the two-species system explained in Fig. 1
is analyzed again, but here the HI is taken into account.
Again, let us assume that there are only two species: the
tagged particle (s = 1) and the obstacles (s = 2). By using the
procedure explained in the previous subsection with n1 = 1
and n2 	 n1, the values of the mobility coefficients KhS

s , KhI
s ,

KhB
s , and Kh

s are calculated for four different values of the ratio
of radii: ã2/ã1 = 1.0, 1.5, 2.5, and 3.5. Then, the diffusion
coefficient for the tagged particle is obtained by Eqs. (32)
and (33).

For the case with the HI, the most significant contribution
to the reduction rate is from the leading term of the mobility
coefficient KhS

1 [Eq. (C30)] as

KhS
1 ≈ 15

4

1

1 + ã2/ã1
. (35)

This term arises from the leading term of the mobility function
As

i j (r) [Eq. (26)]. Thus, the diffusivity reduction is mainly
attributed to the first reflection of the velocity field at the
obstacles. Moreover, this leading term of KhS

1 is in a finite
range (0, 15/4), in contrast to K I

1 for the case without the
HI [Eq. (20)], which is unbounded. Moreover, the mobility
coefficient KhB

1 depends on the ratio ã2/ã1 almost oppositely.
Namely, KhS

1 decreases with ã2/ã1; in contrast, KhB
1 increases

with ã2/ã1, if the ratio is not too large. The contribution from
the direct interaction KhI

1 is almost vanishing.
Therefore, it might follow that the reduction of diffusivity

(characterized by Kh
1 = KhS

1 + KhI
1 + KhB

1 ) for the system with
the HI is less dependent on the obstacle size than that for the
system without the HI. In fact, this is the case as is clear from
comparison of Figs. 1 and 4. This weak dependency on the
obstacle size seems qualitatively consistent with a numerical
simulation presented in a previous study (Fig. 8 in Ref. [48]),
where the HI is incorporated by using a theoretical formula
for the short-time diffusion coefficient given in Refs. [50,51].

However, there seems to be a qualitative discrepancy: the
diffusion coefficient obtained by the present theory overesti-
mates the numerical result presented in Ref. [48]. The range
of volume fraction in Fig. 8 of Ref. [48] seems to be limited
to relatively low concentration. [In that figure, 100 g/L might
correspond to φ = 0.085.] In this low concentration range, it
is probable that our result would give a better estimate.

D. Application to Ando-Skolnick model

By using the procedure given in Sec. III B with the pa-
rameter values ns, D̃s, and ãs listed in Table I, we obtain the

FIG. 4. Reduction rate D̃1(φ)/D̃1(0) of long-time diffusion coef-
ficient vs total volume fraction φ for a tagged particle in obstructed
diffusion (with the HI). It is assumed that there are only two species:
the tagged particle (s = 1) and obstacles (s = 2). The ratio ã2/ã1

between the sizes of these two species is set as ã2/ã1 = 1.0, 1.5,
2.5, and 3.5. The lines are the theoretical predictions [Eq. (32)]
with Kh

1 given by Eq. (33). The values of Kh
1 are calculated by the

procedure explained in Sec. III B with expansions of the mobility
functions of O(1/r100); for ã2/ã1 = 1.0, 1.5, 2.5, and 3.5, we obtain
Kh

1 = 2.11, 1.95, 1.70, and 1.59, respectively.

values of the mobility coefficients KhS
s , KhI

s , KhB
s , and Kh

s for
the Ando-Skolnick model. These values, summarized also in
Table I, are accurate up to O(1/r99).

The mobility coefficient KhS
s concerning the short-term dif-

fusion is much greater than the other two coefficient KhI
s and

KhB
s . This term KhS

s is due to purely hydrodynamic effect, and
therefore absent for the case without the HI. In addition, this
effect (KhS

s ) is greater for large particles than for small ones.
This can be roughly understood with Eq. (35) as follows. For
a large particle (with a radius ã1), surrounding particles are
relatively small (with a mean radius ã2 < ã1), and accordingly
ã2/ã1 is small thereby resulting in a large value of KhS

1 .
In contrast, the effect of the direct interaction KhI

s is quite
small. It is consistent with the results of near-field analysis
which shows that this term is actually vanishing [22]. The
effect of the Brownian force KhB

s is also small, but its con-
tribution to the reduction of the diffusivity is measurable. In
addition, KhB

s is greater for small particles than large ones;
this correlation with the size is opposite to that of KhS

s . Note
also that the effect of the Brownian force is absent for the case
without the HI.

In Fig. 5(a), the reduction rate of diffusion coefficient
D̃s(φ)/D̃s(0) is shown as a function of the volume fraction φ.
Comparing Fig. 5(a) with Fig. 2(a), it is found that variations
of the reduction rates over particles with different sizes (with
φ being fixed) is weaker for the system with the HI than for
the system without the HI. In some sense, the HI plays a role
of averaging the diffusion dynamics of particles with different
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FIG. 5. Reduction rate D̃s(φ)/D̃s(0) of long-time diffusion co-
efficient vs total volume fraction φ for the system with the HI. The
lines are theoretical prediction obtained (a) with Eq. (32) and (b) with
Eq. (34). The solid lines are the predictions for GFP, the dotted
lines for GAPDH, the dashed lines for RNA polymerase, and the
long-dashed lines for ribosome.

sizes. This is more clearly seen from Fig. 6(a), in which the
reduction rate is plotted as a function of the radius ãs; in
fact, the curve at each concentration φ is flatter than that in
Fig. 3(a).

Moreover, the mobility coefficient for most of the species
shows large increases by incorporating the HI. This means
that the diffusion coefficients for these species decrease by
incorporating the HI. For example, the diffusion coefficient of
the GFP is estimated as DGFP(φ) � DGFP(0)(1 − 1.00φ) for
the system without the HI, and by DGFP(φ) � DGFP(0)(1 −
1.61φ) for the system with the HI. This tendency agrees
qualitatively with the results presented in Ref. [11].

Although there are approximated theories for the higher-
order terms in φ [50–52], these theories are formulated for

FIG. 6. Reduction rate D̃s(φ)/D̃s(0) of long-time diffusion co-
efficient vs radius of molecule ãs for the Ando-Skolnick model
with the HI. The lines are the theoretical predictions obtained
(a) with Eq. (32) and (b) with Eq. (34). The results for seven
different values of the volume fraction φ are displayed: φ =
0.025, 0.05, 0.1, 0.15, 0.25, 0.35, and 0.45 (from top to bottom).

monodisperse systems. Therefore, we again employ the mod-
ified theory given by Eq. (34) to study the Ando-Skolnick
model, which is a polydisperse suspension. This modified
theory is displayed in Figs. 5(b) and 6(b). As shown in these
figures, differences between the modified theory [Eq. (34)]
and the original theory [Eq. (32)] are smaller for the case with
the HI than those for the case without the HI.

An interesting problem concerning diffusion in cytoplasm
is how its concentration might be optimized; one of the
possibilities is that it might be optimized to make chemical
reactions as fast as possible. For example, in Refs. [53,54], a
reaction rate of a single molecule is estimated by means of a
theory of identical Brownian particles (i.e., the monodisperse
suspension) in Ref. [55]. It was found that the optimal volume
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fraction for which the reaction rate attains its maximum is
about φ∗ ≈ 0.18; this value is much lower than the con-
centration in real cytoplasm. (For the Ando-Skolnick model,
a concentration 300 mg/mL of macromolecules, which is a
typical value for E.coli, corresponds to the volume fraction of
φ ≈ 0.51 [11].)

However, the use of the theory of the identical Brownian
particles seems difficult to be justified, and thus it is tempting
to apply the present theory to the optimization problem in
cytoplasm. Assuming that the reaction is diffusion limited, it
can be shown that the reaction rate R(φ) is proportional to
D(φ)φ [56]. If D(φ) = D(0)(1 − Kφ) or D(φ) = D(0)(1 −
φ)K , where K is the reduction coefficient, then the reaction
rate R(φ) is maximized at φ∗ = 1/2K or φ∗ = 1/(K + 1),
respectively. For example, the maximum reaction rate for the
GFP is attained at φ∗ ≈ 0.31 or φ∗ ≈ 0.38, respectively; these
values are much closer to the realistic value φ = 0.51 than that
given by the monodisperse theory (i.e., φ∗ ≈ 0.18).

IV. DISCUSSION

Reduction of diffusion coefficients of macromolecules in
cytoplasm has been observed both in experiments [7,8] and
numerical simulations of coarse-grained models of cytoplasm
[10,11,13]. In particular, it was numerically found that the
diffusion coefficient decreases significantly by incorporating
the HI [11]. To fully understand what causes such a decrease
in diffusivity, however, it is important to address the problem
theoretically.

By applying a colloid theory [15–18] to the Ando-Skolnick
model with and without the HI, this work presented an analyt-
ical prediction for the reduction of diffusivity up to the first
order in concentration φ [Figs. 2(a) and 5(a)]. Moreover, to
obtain predictions that are valid for more concentrated sys-
tems, heuristic modifications of these theories were developed
[Figs. 2(b) and 5(b)]. In particular, it was found that the diffu-
sion coefficients for small particles decrease prominently by
incorporating the HI. For example, the diffusion coefficient of
the GFP is estimated as DGFP(φ) � DGFP(0)(1 − 1.00φ) for
the system without the HI, and by DGFP(φ) � DGFP(0)(1 −
1.61φ) for the system with the HI. This is contrasting to the
monodisperse systems for which the decrease of diffusivity is
very small (see the Introduction).

In contrast, the diffusion coefficients for the three large
particles such as the ribosomes increase by incorporating
the HI, which is inconsistent with the results of Ref. [11].
Moreover, although the theoretical predictions for the dif-
fusivity shown in Fig. 6(b) exhibit a trend qualitatively
similar to simulation data reported in Ref. [11], the for-
mer is slightly larger than the latter. In addition, the re-
duction rate DGFP(φ)/DGFP(0) for the GFP at φ = 0.511

is about 0.32 in the theoretical prediction presented in
Fig. 5(b); this prediction overestimates the experimental ob-

1At this value of the volume fraction, φ = 0.51, the concentration
of the molecules is about 300 mg/ml, which is close to the intracel-
lular condition. The concentration of the Ando-Skolnick model can
be calculated from the molecular weight of each molecule, which is
given in Ref. [11].

servation of the reduction rate which is about 0.07–0.09
[7,8]. These differences should be mainly ascribed to the
fact that applicability of the present theory is limited to
the first order in concentration φ. In numerical simulations
reported in Ref. [11], many-body far-field interaction is taken
into account with the Durlofsky-Brady-Bossis method [45],
whereas, in this paper, only the two-body far-field interaction
is taken into consideration. Moreover, in Ref. [11], near-field
contributions of the HI are taken into account by a lubrication
theory, whereas it is not considered here. These differences in
the ways of incorporating the HI should be another source of
the deflections observed.

Future work is therefore needed to extend the present
theory to take into account contributions of higher orders in
the concentration φ [34,35,50–52,57]. Indeed, in this work,
the two-particle correlation function gi j (r) is treated only to
the leading order, but it is evident that the higher-order con-
tributions must be included for analyzing highly concentrated
systems.

Moreover, in many single-particle-tracking experiments,
it has been reported that the diffusion coefficient shows
large scatter [1–3,5,58]. Intensive theoretical efforts have also
been devoted to explain such fluctuation of diffusivity, and
simple stochastic models such as continuous-time random
walk [28], fractional Brownian motion [59], random walk in
fractal lattices [60,61], and random diffusivity models [62–64]
were widely investigated through various time-series analysis
methods [28,39,65,66]. In addition to the studies of these sim-
ple models, however, it would be important also to elucidate
whether more realistic models, such as the Ando-Skolnick
model, can describe such large scatter.

As stated in the Introduction, the transient subdiffusion is
frequently observed in experiments and simulations, though
we focus only on the long-time normal diffusion in this
paper. The existence of such transient dynamics in the
Ando-Skolnick model should be explored in future studies.
Moreover, chemical reaction is also discussed at the end of
Sec. III D through the mean first passage time. It might be
necessary to take reaction kinetics into account directly in
the coarse-grained model, if copy numbers of reactants are
very small [12]. Finally, it is found that the diffusivity in the
bacterial cytoplasm depends on the cellular metabolism [5].
Therefore, an important question for future studies is eluci-
dation of effects of activeness such as active conformational
changes of colloidal particles.
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APPENDIX A: NUMERICAL SIMULATION OF
HARD-SPHERE SUSPENSION WITHOUT

HYDRODYNAMIC INTERACTION

In this Appendix, we briefly review the numerical scheme
proposed in Ref. [24] for Brownian hard spheres without the
HI. For such systems, the equation of motion is given by the
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Langevin equation
dri

dt
=

√
2Di ξi(t ) (i = 1, . . . , N ), (A1)

where ri(t ) is the position of the particle i, and ξi(t ) is
Gaussian white-noise vector which satisfies

〈ξi(t )〉 = 0, (A2)

〈ξi(t )ξ j (t
′)〉 = Iδi jδ(t − t ′), (A3)

where I is the identity matrix of order three. The Euler method
is used as an integration scheme of Eq. (A1) [67] with periodic
boundary conditions, and the Mersenne twister method is
employed as a pseudorandom number generator [68].

To take into account the hard-sphere interaction potential
�(r1, . . . , rN ) [Eq. (2)], a simulation scheme of event-driven
Brownian dynamics for polydisperse hard-sphere suspensions
is employed [24]. In this scheme, Eq. (A1) is discretized as

ri(t + δt ) − ri(t ) =
√

2Diδt ξi(t ), (A4)

where δt is the time to the next collision. Accordingly, it can
be interpreted that each particle undergoes a linear uniform
motion with a pseudovelocity vi(t ) = √

2Di/δt ξi(t ) until t +
δt at which two of the N particles collide. Therefore, during
this time interval δt , the particles follow classical Newtonian
dynamics without any external force. It follows that the time
to the next collision δt can be determined in the same way as
the classical hard-sphere system.

In addition, at every time step δτ , the thermal noise ξi(t )
and the pseudovelocity are updated. The value of δτ is deter-
mined so that the mean number of collisions for each particle
during δτ is less than 1. Thus, the time step δτ is shorter
for systems with higher concentration. For example, for φ =
0.025 (the most dilute system in our simulation), we set
δτ ≈ 20 nsec, whereas, for φ = 0.45 (the most concentrated
system), we set δτ ≈ 0.1 nsec.

The collision dynamics is given as follows. Suppose that
the particles i and j collide at time tc, then the collision
dynamics during a short-time interval which includes tc can
be described by the two-particle diffusion equation

∂P(ri, r j, t )

∂t
= Di∇iP(ri, r j, t ) + Dj∇ jP(ri, r j, t ), (A5)

with a suitable boundary condition (see below). Here,
P(ri, r j, t ) is the two-particle probability density function at
time t . Let us change the variables as [24](

R
r

)
= A

(
ri

r j

)
with A =

(
D

2Di

D
2Dj

1 −1

)
, (A6)

where D := (D1 + D2)/2. In each element of the matrix A, the
identity matrix I is omitted for brevity. After a straightforward
calculation, we have [69]

∂P(R, r, t )

∂t
= DR∇RP(R, r, t ) + Dr∇rP(R, r, t ), (A7)

with a boundary condition ∂P/∂r = 0 at r = ai + a j , where

DR := D
3
/(2DiDj ) and Dr := 2D. The equation (A7) can be

easily separated by assuming that P = V (R, t )W (r, t ) and the
boundary condition is imposed only on W (r, t ). Thus, R and

r defined in Eq. (A6) can be considered as mutually indepen-
dent. (In Ref. [24], the fact that R and r are correlationless is
proved.)

Therefore, vR := ∂R/∂t does not change through the col-
lision, and only vr := ∂r/∂t changes just in the same way
as the classical hard spheres (see Ref. [24] for a detailed
discussion). To be more precise, let us define parallel and
perpendicular elements as v = v‖ + v⊥, where v‖ := v · r̂i j r̂i j

and v⊥ := v · (I − r̂i j r̂i j ). Then, the collision dynamics of the
parallel components v

‖
R and v‖

r is given by(
ṽ

‖
R

ṽ‖
r

)
=

(
1 0
0 −1

)(
v

‖
R

v‖
r

)
, (A8)

where ṽ
‖
R and ṽ‖

r are the velocities after the collision. In con-
trast, the perpendicular components ṽ⊥

R and ṽ⊥
r are unchanged.

Parallel components of the post-collision pseudovelocities
ṽi and ṽ j are then given by(

ṽ
‖
i

ṽ
‖
j

)
= A−1

(
1 0
0 −1

)
A

(
v

‖
i

v
‖
j

)

= 1

2D

(
Dj − Di 2Di

2Dj Di − Dj

)(
v

‖
i

v
‖
j

)
. (A9)

From these facts, the transformation of the pseudovelocities is
given by(

ṽi

ṽ j

)
=

(
ṽ

‖
i

ṽ
‖
j

)
+

(
ṽ⊥

i
ṽ⊥

j

)

= 1

2D

(
Dj − Di 2Di

2Dj Di − Dj

)(
v

‖
i

v
‖
j

)
+

(
v⊥

i
v⊥

j

)

=
(

vi

v j

)
+ 1

D

(−Di Di

Dj −Dj

)(
v

‖
i

v
‖
j

)
r̂i j . (A10)

Thus, we obtain the post-collision pseudovelocities ṽi and ṽ j .

APPENDIX B: NUMERICAL ESTIMATE OF LONG-TIME
SELF-DIFFUSION COEFFICIENT

The long-time diffusion coefficient displayed in Figs. 2
and 3 is estimated by using time-averaged mean square
displacements (MSDs) instead of ensemble-averaged MSDs.
This is because the time-averaged MSD has been frequently
used in single-molecule-tracking experiments [1–3,5,58] as
well as molecular dynamics simulations [70,71]. The time-
averaged MSD for the particle i is defined as [72–74]

δr2
i (�; T ) := 1

T

∫ T

0
dt ′[ri(t

′ + �) − ri(t
′)]2, (B1)

where � is a lag time, and T + � is a total measurement
time. The time-averaged MSD is further averaged over the
particles belonging to the same species to obtain the MSD for
the species s as

〈δr2(�; T )〉s := 1

ns

Ns∑
i=Ns−1+1

δr2
i (�; T ). (B2)
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FIG. 7. Finite-time diffusion coefficient Dk (φ,�) [Eq. (B3)]
rescaled by Di(0) as a function of the lag time � for (a) GFP,
(b) glyceraldehyde-3-P dehydrogenase, (c) RNA polymerase, and
(d) ribosome. In each figure, results for five different values of
the volume fraction φ are displayed: φ = 0.05 (solid), φ = 0.15
(dotted), φ = 0.25 (dashed), φ = 0.35 (long-dashed), and φ = 0.45
(dashed-dotted).

In numerical simulations, this MSD [Eq. (B2)] is further
averaged over Nsim sets of different initial conditions (Nsim

is set as 10 to 300 depending on the concentration φ; for
example, Nsim = 300 for φ = 0.025, whereas Nsim = 10 for
φ = 0.45).

By using the MSD, a finite-time diffusion coefficient for
the species s can be defined by

Ds(φ,�) := 〈δr2(�; T )〉s

6�
. (B3)

Then, the long-time diffusion coefficient Ds(φ) for the species
s is given by

Ds(φ) := lim
�→∞

Ds(φ,�). (B4)

In numerical simulations, the long-time diffusion coeffi-
cient Ds(φ) is estimated for a large value of the lag time
�. In Fig. 7, the finite-time diffusion coefficient Ds(φ,�) is
displayed for five different values of the concentration φ. In
each case, Ds(φ,�) is almost saturated to a constant at large
�, and thus the estimated value of the long-time diffusion
coefficient Ds(φ) should be quite accurate.

APPENDIX C: REDUCTION OF DIFFUSION
COEFFICIENT FOR POLYDISPERSE

SUSPENSIONS WITH HI

In this Appendix, a derivation of the long-time diffusion
coefficient for the system with the HI is presented. The

derivation procedure is essentially the same as that presented
in Refs. [16–18]. But, here explicit formulas of the mobility
coefficients KhS

s , KhI
s , and KhB

s are given up to O(1/r7).
These formulas are useful in checking numerical schemes for
obtaining estimates with more accuracy. For example, a nu-
merical scheme used to obtain the data in Table I was checked
by these formulas.

1. Two-particle steady Smoluchowski equation

In the same way as the case without the HI, we derive
a steady solution P12(r1, r2) of a two-particle Smoluchowski
equation with the HI under the condition that an external
constant force Fext is applied only to the particle 1. From
Eqs. (1) and (24) with N = 2, it is found that the steady
solution P12(r1, r2) satisfies the two-particle Smoluchowski
equation

0 = ∇1 · [D11 · (βP12∇1V12 − βP12Fext + ∇1P12)

+ D12 · (βP12∇2V12 + ∇2P12)]

+ ∇2 · [D21 · (βP12∇1V12 − βP12Fext + ∇1P12)

+ D22 · (βP12∇2V12 + ∇2P12)], (C1)

where ∇1�(R) and ∇2�(R) in Eq. (24) are replaced with
∇1V12(r12) − Fext and ∇2V12(r12), respectively.

By using a difference vector r := r1 − r2 with a gradient
operator ∇ in terms of r, Eq. (C1) is rewritten as

0 = ∇ · [(D11 − D21) · (βP12∇V12 − βP12Fext + ∇P12)

+ (D22 − D12) · (βP12∇V12 + ∇P12)], (C2)

where we use ∇ = ∇1 = −∇2. Here again, we assume that a
solution P12(r) of Eq. (C2) takes the form of Eq. (4). Inserting
Eq. (4) into Eq. (C2) and neglecting terms of O(F2

ext ), we
obtain

∇ · (e−βV12{(D11 − D21) · [a12∇(L12r̂ · Fext ) − Fext]

+ (D22 − D12) · a12∇(L12r̂ · Fext )}) = 0. (C3)

Using Eqs. (25) and (28), the differences between the diffu-
sion tensors are rewritten as

D11 − D21 = D1[B12I + (A12 − B12)r̂r̂], (C4)

D22 − D12 = D2[B21I + (A21 − B21)r̂r̂], (C5)

where nondimensional functions Ai j (r) and Bi j (r) with
(i, j) = (1, 2) or (2, 1) are defined by

Ai j (r) := 1 + As
i j (r) − Ac

ji(r), (C6)

Bi j (r) := 1 + Bs
i j (r) − Bc

ji(r), (C7)

respectively.
Assuming that the constant external force is in the z direc-

tion Fext = (0, 0, Fext ), and using r̂ · ∇ = ∂/∂r, we obtain the
following equation from Eqs. (C3)–(C7):

∇ · [e−βV12 q12(r) ] = 0, (C8)
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where q12(r) is a three-dimensional vector given by

q12(r) := D1B12[a12∇(L12 cos θ ) − ẑ]

+ D1(A12 − B12)

(
a12

∂L12

∂r
− 1

)
r̂ cos θ

+ D2B21a12∇(L12 cos θ )

+ D2(A21 − B21)a12
∂L12

∂r
r̂ cos θ, (C9)

with ẑ being the unit vector in the direction of the z axis, and
θ being the angle between r̂ and ẑ.

Rewriting the differential operators in Eqs. (C8) and (C9)
with three-dimensional polar coordinates, we obtain (after a
somewhat lengthy but straightforward calculation)

e−βV12∇ · q12(r) + (∇e−βV12 ) · q12(r)

a12 cos θ

= e−βV12
J12(r)

r2
+ de−βV12

dr

K12(r)

a12
= 0. (C10)

Here, the function J12(r), which is defined by J12(r)/r2 :=
∇ · q12(r)/(a12 cos θ ), is expressed as

J12(r) = (D1A12 + D2A21)r2 d2L12

dr2

+ 2(D1B12 + D2B21)

(
r

dL12

dr
− L12

)

+ (D1w12 + D2w21)r
dL12

dr
− D1w12

r

a12
, (C11)

where a nondimensional function wi j (r) with (i, j) = (1, 2)
or (2, 1) is defined by

wi j (r) := r
∂Ai j

∂r
+ 2(Ai j − Bi j ). (C12)

Similarly, in Eq. (C10), the function K12(r) is defined by
K12(r)/a12 := r̂ · q12(r)/(a12 cos θ ), and it is expressed as

K12(r) = (D1A12 + D2A21)a12
dL12

dr
− D1A12. (C13)

By inserting Eqs. (26), (27), (29), and (30) into Eqs. (C6),
(C7), and (C12), the functions A12(r), B12(r), and w12(r) up
to O(1/r7) are obtained as

A12(r) = 1 − 3a1

2r
+ a1

2r

[(a1

r

)2
+

(a2

r

)2
]

− 15a1

4r

(a2

r

)3

− 2a1

r

(a2

r

)5
+15

2

(a1

r

)3(a2

r

)3
−75

4

(a1

r

)4(a2

r

)3
,

B12(r) = 1 − 3a1

4r
− a1

4r

[(a1

r

)2
+

(a2

r

)2
]

− 17a1

16r

(a2

r

)5
,

w12(r) = 15a1

2r

(a2

r

)3
+ 81a1

8r

(a2

r

)5

− 30
(a1

r

)3(a2

r

)3
+ 375

4

(a1

r

)4(a2

r

)3
. (C14)

Moreover, A21(r), B21(r), and w21(r) are obtained by ex-
changing the subscripts 1 and 2.

2. Calculation of L12(r)

To derive a far-field approximation for the steady solution,
we expand the function L12(r) in Eq. (4) in terms of the inverse
distance as [15]

L12(r) =
M−1∑
n=1

(a12

r

)n
αn + O

((a12

r

)M
)

, (C15)

where M is the order of the far-field approximation, and for
explicit formulas given below it is set as M = 7. Moreover,
the nondimensional parameters αn should be written as α12,n

because it depends on the particle indices (here, 1 and 2); but,
for the sake of brevity, we use the simple notation αn.

For the hard-sphere interaction, V12(r) = 0, if r > a1 + a2.
Thus, from Eq. (C10), we have J12(r) ≡ 0 for r > a1 + a2.
Therefore, when substituting Eq. (C15) into Eq. (C11), each
coefficient of 1/rn (n = 1, . . . , 6) must be vanishing. Thus,
we have the following set of formulas:

α1 =0, (C16)

α3 =3

8

(
3b11α2 + 5b14

2

)
, (C17)

α4 = 9

20

(
3b22α2 + 5b25

2

)
, (C18)

α5 =1

4

(
27b33

4
− b13 − b31

)
α2 + 45b36

32
− 5b34

6
+ 9b16

32
,

(C19)

α6 = 3

28

[
81

4
b44 − 6(b24 + b42) + 25

4
(b14 + b41)

]
α2

+ 15

56

(
27b47

4
− 5b45 + 7b27

20
+ 25b44

4

)
, (C20)

where, to express these formulas with ai instead of Di,
the Stokes-Einstein relation Di = kBT/(6πηai ) (i = 1, 2) is
used. Moreover, bαβ is defined as

bαβ := aα
1 aβ

2

aα+β

12

. (C21)

Note that, if the value of α2 is obtained, α3, . . . , α6 can be
calculated by using Eqs. (C16)–(C20).

The value of α2 can be determined by a boundary condition
as follows. Since de−βV12(r)/dr = δ(r − 2a12) for the hard-
sphere interaction, integrating Eq. (C10) over an infinitesimal
interval (2a12 − ε, 2a12 + ε), we obtain

K12(2a12) = 0. (C22)

Evaluating Eq. (C22) with Eqs. (C16)–(C20), we have the
following formula for α2:

α2 = − 1

Q12

[
R12 + 28

1 + a1A21(2a21 )
a2A12(2a12 )

]
, (C23)
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where Q12 and R12 are functions of the particles’ radii a1 and
a2, and defined, respectively, by

Q12 := 64 + 54b11 + 216

5
b22 + 135

4
b33 + 729

28
b44

− (b13 + b31)

(
5 + 54

7
b11

)
+ 225

28
(b14 + b41),

R12 := 9

[
b14

(
5 + 4b11 + 25

8
b22 + 135

56
b33

)

+ b16

(
5

8
+ 1

8
b11

)
− b34

(
50

27
+ 25

14
b11

)
+ 125

56
b44

]
.

(C24)

For given values of a1 and a2, the coefficients α j ( j =
1, . . . , 6) can be calculated by means of Eqs. (C16)–(C24).
Then, a far-field approximation of the steady solution is given
by Eq. (4) with Eq. (C15).

By using these values of α j ( j = 1, . . . , 6) in Eq. (C15),
we obtain the function L12(r) up to O(1/r6). Here, the sub-
scripts 1 and 2 of L12(r) indicate the particle indices, whereas
we also use a notation L̃sk (r) to refer to the same function but
for the species s and k. To obtain explicit form of L̃sk (r), just
replace a1, a2, and a12 in the expansion of L12(r) with ãs, ãk ,
and ãsk , respectively.

3. Short-time self-diffusion

In this section, the short-time diffusion coefficient is in-
vestigated. The short-time diffusion coefficient for the system
without the HI is equivalent to that at infinite dilution Di(0)
because particles do not interact with each other for timescales
shorter than a mean collision time. In contrast, for the system
with the HI, the short-time diffusion coefficient is different
from Di(0) because the particles interact with each other
through the HI even for the short-time scale.

Let us denote a short-time diffusion coefficient of the
particle i as DhS

i (φ). The short-time diffusion coefficient for
isotropic systems is simply given by

DhS
i (φ)I = 〈Dii〉eq, (C25)

where 〈. . . 〉eq is the equilibrium average (see Chap. 6 in
Ref. [15] for a derivation). To make the notation simple, we
set i = 1 hereafter; note that the particle 1 belongs to the first
species s = 1. From Eq. (25), we have

〈D11〉eq = D1I+D1

N∑
l=2

〈
As

1l (r1l )r̂1l r̂1l+Bs
1l (r1l )(I − r̂1l r̂1l )

〉
eq

≈ D1I + D1

S∑
k=1

nk
〈
Ãs

1k (r1Nk )r̂1Nk r̂1Nk

+ Bs
1k (r1Nk )(I − r̂1Nk r̂1Nk )

〉
eq, (C26)

where we use the fact that the ensemble averages for the nk

particles belonging to the species k are equivalent. Moreover,
the approximation n1 − 1 ≈ n1 is used in the second equality.

In the ensemble average in Eq. (C26), integrals should be
taken over the supervector R = (r1, . . . , rN ) in terms of the
equilibrium N-particle distribution Peq(R). But, the integrals
over r j with j 
= 1, Nk can be readily carried out, whereas the

integrals over r1 and rNk are expressed in terms of spherical
coordinates. Accordingly, the ensemble average in Eq. (C26)
is rewritten as

I
4π

3V

∫ ∞

0
dr geq

1Nk
(r)r2

[
Ãs

1k (r) + 2B̃s
1k (r)

]
, (C27)

where geq
i j (r) is the equilibrium pair correlation function of the

particles i and j, and r is defined as r := r1Nk . To the leading
order in the volume fraction, geq

i j (r) can be approximated
as geq

i j (r) ≈ exp[−βVi j (r)] (see Chap. 1 in Ref. [15]). For
the hard-sphere systems, geq

i j (r) = 1 for r > 2ai j , otherwise
geq

i j (r) = 0. Thus, by changing the variables as r = ã1kx and
using Eqs. (26) and (27), Eq. (C27) can be rewritten as

I
4π ã3

1k

3V

∫ ∞

2
dx x2

[
Ãs

1k (ã1kx) + 2B̃s
1k (ã1kx)

]

= I
4π ã3

k

3V

ã1

ã1k

[
−15

8
− 11

64

ã2
k

ã2
1k

+ 5

16

ã2
1

ã2
1k

]
, (C28)

where ãs is the radius of species s, and ãks = (ãk + ãs)/2 as
in Sec. II C. Comparing Eq. (C25) with Eqs. (C26)–(C28), we
have

DhS
1 (φ) = D1

(
1 − KhS

1 φ
)
, (C29)

where KhS
s (s = 1, . . . , S) is a mobility coefficient for the

species s and is given by

KhS
s =

∑S
k=1 nkã3

k
ãs
ãsk

(
15
8 + 11

64
ã2

k

ã2
sk

− 5
16

ã2
s

ã2
sk

)
∑S

k=1 nkã3
k

. (C30)

Note that KhS
s is independent of the volume fraction φ. If we

denote the short-time diffusion coefficients for the species s as
D̃hS

s (φ), Eq. (C29) is rewritten as

D̃hS
s (φ) = D̃s(0)

(
1 − KhS

s φ
)

(s = 1, . . . , S). (C31)

4. Long-time self-diffusion

Here, we derive the long-time self-diffusion coefficient
up to O(φ). Suppose that the constant external force Fext is
exerted on the particle 1. Then, the drift velocity 〈v1〉 of that
particle is given by

〈v1〉 = β

N∑
j=1

〈D1 j · [Fextδ1 j − ∇ j�(R) − kBT ∇ j ln P]〉,

(C32)
where the inside of the square brackets is the force exerted on
the particle j, and the ensemble average 〈. . .〉 should be taken
with respect to the steady state, which is nonequilibrium due
to the external force Fext. By using Eqs. (C25) and (C29), the
above equation can be rewritten as

〈v1〉 ≈ βD1
(
1 − KhS

1 φ
)
Fext + 〈

vI
1

〉 + 〈
vB

1

〉
, (C33)

where, in deriving the first term, we neglected higher-order
terms with respect to Fext by using the approximation 〈. . .〉 ·
Fext � 〈. . .〉eq · Fext. In addition, 〈vI

1〉 and 〈vB
1 〉 are the drift
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velocities due to the direct interaction and the Brownian force,
and they are given by

〈
vI

1

〉 = −β

N∑
j=1

〈D1 j · ∇ j�(R)〉,

≈ −β〈D11 · ∇1�〉 − β

S∑
k=1

nk〈D1Nk · ∇Nk �〉, (C34)

〈
vB

1

〉 = −
N∑

j=1

〈D1 j · ∇ j ln P(R)〉

≈ −〈D11 · ∇1 ln P〉 −
S∑

k=1

nk〈D1Nk · ∇Nk ln P〉, (C35)

where the approximation n1 − 1 ≈ n1 is used.

a. Direct interaction

First, let us calculate the velocity 〈vI
1〉 by assuming that

the potential energy is given by a sum of pair potentials
as �(R) = ∑N

i, j=1,i< j Vi j (ri j ). By using Vi j (r) = Vji(r) and

ri j = r ji, we have ∇l�(R) = ∑N
j=1, j 
=l ∇lVjl (r jl ), and thus

Eq. (C34) becomes

〈
vI

1

〉 ≈ −β

S∑
k=1

nk

⎡
⎢⎢⎢⎣〈

D11 · ∇1V1Nk (r1Nk )
〉

+
N∑

j=1
j 
=Nk

〈
D1Nk · ∇NkVjNk (r jNk )

〉
⎤
⎥⎥⎥⎦. (C36)

By substituting Eq. (25) into the first term in the right
side of Eq. (C36), a summation

∑N
l=2 appears. But, the terms

with l 
= Nk are of O(φ2) and can be neglected. This is be-
cause a three-particle correlation function g(3)(r1, rl , rNk )/V 3

encountered in the ensemble average can be approximated as
g(3)(r1, rl , rNk )/V 3 ≈ g1l (r1l )g1Nk (r1Nk )glNk (rlNk )/V 3 for the
leading order in φ. Integration over one of the three variables
is readily carried out, and results in V ; the remaining double
integral is independent of V . Hence, the terms with l 
= Nk are
proportional to 1/V 2, and thus they are of O(φ2). Similarly,
Eq. (28) is substituted into the second term in Eq. (C36). Then,
again, the terms with j 
= 1 are of higher order in φ, and thus
we also neglect these terms.

Consequently, we have

〈
vI

1

〉 ≈ −βD1

S∑
k=1

nk
〈[

G1k (r1Nk )r̂1Nk r̂1Nk

+ H1k (r1Nk )
(
I − r̂1Nk r̂1Nk

)] · ∇1V1Nk (r1Nk )
〉

(C37)

= −βD1

S∑
k=1

nkV
∫

dr P1Nk (r)[G1k (r)r̂r̂

+ H1k (r)(I − r̂r̂)] · r̂
∂V1Nk (r)

∂r
, (C38)

where ∇Nk f (r1Nk ) = −∇1 f (r1Nk ) is used. The functions
Gsk (r) and Hsk (r) are defined, respectively, as [19]

Gsk (r) := 1 + Ãs
sk (r) − ãs

ãk
Ãc

sk (r), (C39)

Hsk (r) := 1 + B̃s
sk (r) − ãs

ãk
B̃c

sk (r). (C40)

Moreover, for obtaining Eq. (C38), we set r1Nk := r and
integrated over the remaining N − 1 variables. Note also that
the term with H1k (r) in Eq. (C38) vanishes because (I − r̂r̂) ·
r̂ = 0.

Now, let us substitute Eq. (4) into P1Nk (r) in Eq. (C38).
Namely, we set P1Nk (r) = e−βV1Nk (r)/V 2[1 + βã1kL̃1k (r)r̂ ·
Fext], where the function L̃1k (r) is derived in Appendix C 2,
but, here, indices 1 and k should be considered as the
species indices, and thus a1, a2, and a12 appeared in
Eqs. (C15)–(C20) should be replaced by ã1, ãk , and ã1k .
Then, the integral in Eq. (C38) can be carried out, by using
−βe−βV1Nk (r)∂V1Nk (r)/∂r = δ(r − 2ã1k ) as well as

∫
d� r̂ = 0

and
∫

d� r̂r̂ = 4πI/3. Thus, we obtain the drift velocity due
to the hard-sphere interaction as〈

vI
1

〉 ≈ −βD1KhI
1 φFext, (C41)

where KhI
s is a mobility coefficient for the species s, and it is

given by

KhI
s = −4

∑S
k=1 nkã3

skL̃sk (2ãsk )Gsk (2ãsk )∑S
k=1 nkã3

k

(C42)

for s = 1, . . . , S. The value of KhI
s calculated by Eq. (C42) is

quite small. This is consistent with the analysis of a resistance
matrix [22], where it is shown that Gsk (2ãsk ) = 0 in general.
Thus, there is no contribution from the direct interaction, i.e.,
KhI

s = 0 for the hard-sphere interaction.

b. Brownian force

Next, the drift velocity due to the Brownian force 〈vhB
1 〉

is calculated. First, the N-point probability density func-
tion P(R) is approximated as P(R) ∝ gN (R) � ∏N

i< j gi j (ri j ),
where gN (R) is the N-point correlation function. Thus, we
have ∇l ln P(R) � ∑N

j=1, j 
=l ∇l ln gl j (rl j ), and thus Eq. (C35)
becomes

〈
vB

1

〉 ≈ −
S∑

k=1

nk

⎡
⎢⎢⎢⎣〈

D11 · ∇1g1Nk (r1Nk )
〉

+
N∑

j=1
j 
= Nk

〈
D1Nk · ∇Nk g jNk (r jNk )

〉
⎤
⎥⎥⎥⎦. (C43)

Let us substitute Eq. (25) into the first term on the right
side of Eq. (C43). Then, in the same way as the case of 〈vhI

1 〉,
we can neglect the terms with l 
= Nk because they are higher
order in concentration. Similarly, in the second term on the
right side of Eq. (C43), the terms with j 
= 1 can be neglected.

013279-15



TOMOSHIGE MIYAGUCHI PHYSICAL REVIEW RESEARCH 2, 013279 (2020)

Consequently, we obtain

〈
vB

1

〉 ≈ −D1

S∑
k=1

nk
〈[

G1k (r1Nk )r̂1Nk r̂1Nk

+ H1k (r1Nk )
(
I − r̂1Nk r̂1Nk

)] · ∇1 ln g1Nk (r1Nk )
〉

(C44)

= −D1

S∑
k=1

nk

V

∫
dr[G1k (r)r̂r̂

+ H1k (r)(I − r̂r̂)] · ∇g1Nk (r). (C45)

By using Eq. (4) with P1Nk (r) = g1Nk (r)/V 2, ∇g1Nk (r) can
be expressed as

∇g1Nk (r) = r̂
∂e−βV1Nk (r)

∂r
+ βã1k

[
∂e−βV1Nk (r)L̃1k (r)

∂r
r̂r̂

+ e−βV1Nk (r)L̃1k (r)

r
(I − r̂r̂)

]
· Fext. (C46)

Here, the first term in Eq. (C46) does not contribute to the
integration in Eq. (C45) because

∫
d� r̂ = 0. Substituting

Eq. (C46) into Eq. (C45), we obtain

〈
vhB

1

〉 ≈ −βD1KhB
1 φFext, (C47)

where KhB
s is a mobility coefficient for the species s. KhB

s is
given by

KhB
s = −

∑S
k=1 nkã3

sk

∫ ∞
2 dx xL̃sk (ãskx)Wsk (ãskx)∑S

k=1 nkã3
k

(C48)

for s = 1, . . . , S. Here, the function Wsk (r) is defined as

Wsk (r) := r
∂Gsk (r)

∂r
+ 2[Gsk (r) − Hsk (r)]

= 15ãsã3
k

2r4
+ 81ãsã5

k

8r6
− 30

ã3
s ã3

k

r6
+ 375ã4

s ã3
k

4r7
.

(C49)

Substituting Eqs. (C15) and (C49) into Eq. (C48) and then
carrying out the integration, we obtain an explicit form of
the mobility coefficient KhB

s ; an explicit expression for the
integral of Eq. (C48) is expressed as

6∑
n=2

3αn

2n+7

[
80

n + 2

ãsã3
k

ã4
sk

+ 27

n + 4

ãsã5
k

ã6
sk

− 80

n + 4

ã3
s ã3

k

ã6
sk

+ 125

n + 5

ã4
s ã3

k

ã7
sk

]
. (C50)

c. Reduction of diffusion coefficient

Finally, here let us derive the diffusion coefficient as a
function of the concentration φ. From Eqs. (C33), (C41), and
(C47), we obtain

〈v1〉 ≈ βD1
[
1 − (

KhS
1 + KhI

1 + KhB
1

)
φ
]
Fext

= βD1
(
1 − Kh

1 φ
)
Fext, (C51)

where Kh
s is the total mobility coefficient for the species s

defined in Eq. (33). Using the Einstein relation and Eq. (C51)
just as in the case without the HI [see the derivation of
Eq. (18)], the diffusion coefficient is given by D1(φ) =
D1(0)(1 − Kh

1 φ); or, more generally Eq. (32) holds for the
species s (s = 1, . . . , S).
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