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We report on the dynamical formation of self-bound quantum droplets in attractive mixtures of **K atoms.
Considering the experimental observations of Semeghini ez al. [Phys. Rev. Lett. 120, 235301 (2018)], we perform
numerical simulations to understand the relevant processes involved in the formation of a metastable droplet from
an out-of-equilibrium mixture. We first analyze the so-called self-evaporation mechanism, where the droplet
dissipates energy by releasing atoms, and then we consider the effects of losses due to three-body recombinations
and to the balancing of populations in the mixture. We discuss the importance of these three mechanisms in the

observed droplet dynamics and their implications for future experiments.

DOI: 10.1103/PhysRevResearch.2.013269

I. INTRODUCTION

Self-bound droplets of ultracold atoms were recently dis-
covered as a new exotic quantum phase [1-4]. Although they
form in dilute atomic gases, they display properties which are
unique in that context but common to different systems such
as classical liquids, helium nanodroplets, or atomic nuclei.
After their existence in attractive bosonic mixtures was the-
oretically predicted in [1], they were experimentally observed
in dipolar condensates [5-8], homonuclear mixtures of ¥K
[9,10], and recently in a heteronuclear mixture of *'K and
8Rb [11].

The first pioneering experiments performed with homonu-
clear mixtures at ICFO (Institut de Ciencies Fotoniques)
[9,12] and LENS (the European Laboratory for Non-Linear
Spectroscopy) [10,13] were able to demonstrate the existence
of self-bound droplets in these systems and to provide a first
characterization of their peculiar features. While these works
were mainly devoted to study the droplets’ equilibrium prop-
erties, the experiment reported in Ref. [10] also showed that
during the formation of the droplet an interesting and complex
dynamics takes place. The nonadiabatic preparation of the
mixture leads to an initial compression of the atomic cloud
and to following oscillations of its size, while the presence
of strong three-body losses (3BL) continuously drives the
system out of equilibrium. During this evolution, the droplet
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eventually reaches a metastable state, which was the main
focus of the investigation performed in [10]. In this work
we concentrate instead on the dynamical evolution observed
during the droplet formation, trying to understand the different
mechanisms involved and their relative importance. While
three-body recombinations are a well-known phenomenon in
the field of ultracold atoms, the other two mechanisms playing
a role in this evolution are specific to quantum droplets and
thus require further attention. The first is related to the need
to adjust the populations in the components of the mixture
to balance its interaction energy. The second, the so-called
self-evaporation, is a more peculiar dissipation mechanism
predicted in Ref. [1]. Calculating the excitation spectrum of
the droplet, Petrov noticed that, in some specific conditions,
the droplet cannot host any discrete excitation, since all the
excited states are higher in energy than the particle emission
threshold. This suggested the idea that the droplet could be
able to dissipate any excess of energy by expelling atoms,
from which the term self-evaporation originated.

In this paper, we consider the specific experimental case
of Ref. [10] and use numerical simulations to understand how
these different mechanisms come into play in the evolution
of the droplet. In Sec. II we summarize the conditions for
the existence of self-bound states in a 3K atomic cloud at
zero temperature. In Sec. III we analyze the phenomenon
of self-evaporation, considering the ideal case of a mixture
without 3BL. We first study the linear regime, where the
droplet is prepared with a small initial excitation, compatible
with the assumptions of Ref. [1], and then we investigate how
the concept of self-evaporation extends to the more realistic
case where the mixture is prepared far from equilibrium. In
Sec. IV we introduce 3BL, thus fully recovering the experi-
mental conditions of Ref. [10], and we analyze the dynamical
evolution of the droplet, identifying which mechanisms play
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a key role in the droplet dynamics. Finally, conclusions are
drawn in Sec. V.

II. SELF-BOUND DROPLETS IN ¥K

The key ingredient for the formation of self-bound atomic
clouds is the competition between attractive and repulsive
forces which, scaling differently with the atomic density,
generate a binding potential [1]. In a mixture of *°K atoms
in the hyperfine states |1,0) = |1) and |1, —1) = |2), this
situation occurs in a specific range of magnetic fields B, where
the intraspecies scattering lengths a;; and ay, are positive,
while the interspecies aj, is negative. For B < 56.85 G, the
quantity §a = —|ai2| + /ai1a2; becomes negative, so that the
global mean-field (MF) interaction is attractive. In this regime,
a repulsive effect is provided by quantum fluctuations, cor-
responding to the so-called Lee-Huang-Yang (LHY) energy
term [14], that stabilizes the system against collapse and gives
rise to a self-bound atomic droplet. As derived in Ref. [1], the
competition between the LHY energy and the attractive MF
term locks the ratio between the equilibrium densities in the
two species to

n(lo)/néo) = axn/a, (D

with
o 257 1 sa’
no = .
! 1024 /a;; aynan(Ja + «/022)5

The experiments reported in Refs. [9,10] have verified the
existence of these self-bound atomic clouds in the predicted
interaction regime at the nominal population ratio of Eq. (1).

@

III. SELF-EVAPORATION

As discussed in Ref. [1], for small atom numbers (read fur-
ther for a more precise definition) the droplet has no collective
modes with energy lower than the particle emission threshold.
Therefore, no bound collective excitation can be sustained
in that regime, so that any perturbation of the equilibrium
state would result in a release of particles or in a breakup
of the droplet into smaller pieces. In this sense, a quantum
droplet represents a self-evaporating object. In this section we
use numerical simulations to characterize this phenomenon,
looking at the dynamical evolution of an excited droplet. We
first consider the linear regime, where the system is prepared
with a small initial excitation, and then we extend our analysis
to a regime closer to the experimental conditions, where the
droplet is prepared in a highly excited state.

A. Linear regime

For small-amplitude excitations, we can describe the sys-
tem with a single wave function ¢(r, t), neglecting any pos-
sible relative motion of the mixture components. We use the
same formalism as [1], which we briefly summarize here. We
introduce the rescaled spatial coordinate p = r/&, with

L anan(Jar + Jan) 1"’
~ | 2572 R ’

3

and the rescaled time t = hir/mé&?%. The droplet wave func-
tion ¢(p, ) evolves according to the time-dependent Gross-
Pitaevskii equation

1 5
i = [‘5V5 —3lp|* + 5|¢>P}¢, )

where [ |¢|2d?p = N defines the chemical potential i and N
is related to the number of atoms in the two atomic species N;
by

N, =nV&N, i=1,2. 5)

It was predicted in Ref. [1] and confirmed by the experiments
in Refs. [9,10] that stable droplets exist only for N > N, =
18.65. The regime of self-evaporation corresponds to 20.1 <
N <94.2[1].

In the following, we will restrict our analysis to the case
of a spherically symmetric system, which reduces Eq. (4)
to an effectively one-dimensional equation which depends
on the radial coordinate p only. This assumption will be
maintained throughout this work, for ease of calculations and
conceptual clarity. Note that in this approximation the only
possible excitation is that with angular momentum ¢ = 0,
i.e., the monopole mode. Higher angular momentum modes
are not_accounted for, so that the system is self-evaporating
up to N >~ 934, where the monopole mode reenters into the
spectrum (see Ref. [1]).

To study the dynamics of an excited droplet, we prepare the
system slightly out of equilibrium, by solving the stationary
version of Eq. (4) with a finite tolerance,' so that the initial
wave function d)g)(,o) corresponds to an excited state with a
slightly larger energy than the actual ground state ¢o(p).> We
then calculate the evolution of the system by solving Eq. (4)
with the above initial condition. To distinguish the droplet
from unbound expanding components that may form during
the evolution, we define a droplet volume as that contained
within a certain bulk radius R;(t), defined as the position
of the minimum of 7(p, T) = p?n(p, T) (see Appendix A for
details).?

The evolution of the droplet size o (7), defined as the rms
size of the density distribution within the droplet volume, is
shown in Fig. 1. We find two different behaviors depending on
the value of N. For low values of N [in panel (a)], we observe
a damped oscillation with decreasing frequency wy (7). In this
regime, where all the droplet excitations lie in the continuum,
the droplet cannot host a bound monopole mode. This means

I'The stationary solutions of Egs. (4) and (9) are obtained by means
of imaginary time evolution, using a split-step algorithm which
includes a Crank-Nicholson propagator for the radial coordinate. A
similar approach is employed for computing the real time evolution.
See, e.g., [15].

2The ground state of the system is computed by propagating a trial
wave function in imaginary time, until the variation of the chemical
potential in the unit step is below a given folerance. An excited state
can be then obtained simply by increasing the value of that tolerance,
therefore stopping beforehand the imaginary time evolution.

3We remark that the numerical simulations of the Gross-Pitaevskii
equation are performed on a computational box that is at least one
order of magnitude larger than R,.
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FIG. 1. Evolution of the droplet size o (t), plotted in terms of its
relative variation with respect to the equilibrium value oy, for small
initial excitations, for (N — N,)'/4 ~ 3.5 (a) and (N — N,)'/* ~7
(b) [1]. Purple dots correspond to the values extracted from the
numerical simulation, while the green solid lines are the result of

damped sinusoidal fits on separate time intervals (a) and of a pure
sinusoidal fit (b).

that when the cloud starts oscillating, part of the atoms move
away from it, thus reducing the droplet energy by AE =
—uAN + Eyin, where AN is the number of atoms leaving the
droplet and Ej;, is their average kinetic energy. For large N
instead, when the monopole has reentered into the spectrum
[panel (b)], the size o performs a sinusoidal oscillation with a
well defined frequency wy. _

To characterize the latter regime, we fit o (t) for N > 940
with A cos(wt) to extract the monopole frequency. For lower
N, instead, we fit the oscillation with separate damped cosine
functions of the form A cos(wgt)exp(—7/7) on different
intervals of length At = 25, and we extract the corresponding
frequency wp and damping rate T. In Fig. 2(a) we report
the fitted values of wy for different values of N and we
compare them with the theoretical predictions of Ref. [1] for
wo(N) and for the emission threshold —jf. For N > 940 we
find a very good agreement between our numerical results
and the prediction for wy. In the self-evaporation regime we
see that the oscillation frequency decreases in time until it
reaches its lower value, set by —fi. In Fig. 2(b) we plot the
extracted values of wy(7) and 7(7) from the fits of Fig. 1(a).
In Figs. 2(c) and 2(d) we report the variation of the parameter
N and of the droplet energy E in the corresponding time inter-
vals, namely AN(t;) = N(t; — At/2) — N(t; + At/2) and
AE(t)) = E(t; — At/2) — E(t; + At/2). We observe that
the cloud initially oscillates with large frequencies and fast
damping rates, associated with a significant release of atoms
from the droplet into an unbound cloud. As the droplet energy
decreases due to atom losses, the oscillation slows down and
wp eventually saturates at —ft. Close to this threshold the
atoms that leave the droplet carry away >~ — i and thus have
negligible kinetic energy. The damping of these small final
oscillations is then extremely slow and the droplet reaches
the stationary ground state only asymptotically. However,
these residual excitations are extremely small and one can
effectively consider that the droplet has reached its equi-
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FIG. 2. (a) Plot of the monopole frequency w, (obtained from
the numerical simulation) as a function of (ﬁ — IVC)I/4 [1]. In the
self-evaporation region (shaded area) the range of variation of wy is
shown by (purple) arrows (see Fig. 1). Out of the self-evaporation
regime, where the droplet size performs a sinusoidal oscillation
as in Fig. 1(b), the value of wy is represented by solid circles.
The lines correspond to the theoretical predictions of Ref. [1] for
— ,a(ﬁ ) (green dashed line) and &)O(ﬁ ) (red dotted line). (b) Values
of wy (purple circles) and 1/% (green squares) fitted on consecutive
time intervals of length A7 = 25 (indicated as error bars), extracted
from the damped oscillation of Fig. 1(a). The black dashed line
corresponds to —fi. (c),(d) Variation of the parameter N and of the
droplet energy E in each time interval (see text), respectively.

librium configuration well before the asymptotic regime is
reached.

B. Nonlinear regime

In the experiment of Ref. [10], the mixture is prepared
far from the equilibrium profile ¢y of a droplet. Then, to
understand the dynamics which takes place during the droplet
formation, we extend the previous analysis beyond the linear
case. Since we cannot exclude a priori a different behavior of
the two components of the mixture, here we replace Eq. (4)
with a system of two coupled generalized Gross-Pitaevskii
(GP) equations [16] including LHY corrections [10,11] (we
keep the assumption of spherical symmetry to simplify the
discussion):

h2 2

iho vy = |:— Zmr +M1(”1,n2)}1/f1,
22

ihopyr, = |:— 2mr +M2(n1,n2):|1/f2,
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where 1;(r) are the wave functions of the two species and the
corresponding chemical potentials are given by

SErmy
8n,~

with g;; = 4nh2aij/m. The LHY energy is [1]

Wi = gini + gian; + s LF] (6)

32
572
Erny = 15 2h3/(g11n1+822n2) (7
so that
SErny 32 "
= —gi . 8
o, 3ﬁg (ann + axnm) (8)

Note that a similar model, obtained by means of a local
density approximation, has been used also for the description
of dipolar quantum droplets [17-19].

In our numerical simulations we consider a preparation
of the mixture similar to the one implemented in the exper-
iment of Ref. [10]. A single species Bose-Einstein condensate
(BEC) of N atoms of 3°K in the hyperfine level |2) is prepared
in the ground state of a harmonic trap with trapping frequency
w. At t =0, N| atoms are instantaneously transferred to |1),
with N, = N — N; atoms remaining in the initial state. The
harmonic potential is then turned off to study the evolution of
the mixture in free space. Here, we consider a typical set of
experimental parameters, with N = Ny + N, =4 x 10° and
scattering lengths a;; ~ 69.99ay, a1, >~ —53.37ay, and ay; =~
34.11ay, which correspond to a Feshbach magnetic field B =
56.45 G. For this set of parameters, we have N = 200, which
lies in the self-evaporation regime identified above.

The ground state wave function v of the initial condensate
is obtained from the following stationary GP equation [16]

|: i L }
==V, + smo’r” + gnNyol” |Yo = uvo  (9)
2m 2

with [ [¢o|?d*r = 1. Considering the preparation sequence
described above, we simulate the instantaneous transfer of
atoms in |1) by assuming that the (normalized) wave functions
of the two components at + = 0 are equal to ¥, with the
corresponding densities being n; = N;||?. Here we keep the
ratio N, /N, fixed to the nominal ratio in Eq. (1). The following
evolution is then obtained by solving Eq. (6).

One can easily guess that the droplet is minimally excited
when the trapping frequency w is such that the initial atomic
distribution is as close as possible to that of the droplet ground
state for that value of N, namely |o(r)|> ~ &3 |¢o(r/E)|%.
To quantify the difference between the initial profile of the
condensate and that of the droplet, one can consider, e.g.,
the relative deviation between the corresponding energies,
A[N, w] = |E(Yo) — E(¢o)|/E(¢o). For the present case, we
find that A[N = 200, @] is minimized for a trapping fre-
quency w/2m >~ 600 Hz.

We then study the dynamics of the system as a function
of the distance of the initial state with respect to ¢y, by
varying the trap frequency w. Similarly to the case discussed
in the previous section we observe that, after the mixture
is formed and released into free space, the atomic clouds
undergo damped oscillations. For w/2m = 600 Hz the density
of the binary mixture smoothly adapts to a droplet profile with
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FIG. 3. Evolution of the droplet width o (¢) (a), its energy Ey (1)
(b), the ratio N" (t)/Nd(t) (c), and the running value of NR(I) [(@),
see text], for w/2w = 200 Hz (purple) and w/2w = 600 Hz (green).
The insets in the top row show the total density of the binary
mixture, n(r,t) = Zil Ni|yi(r, £)|?, at different evolution times,
corresponding to the red circles in (a). As a reference, the profiles
of a droplet with N' = 200 (dot-dashed line, 1 = 0, 4 ms), N = 193
and N = 159 (dotted and dashed line respectively, for t = 12 ms),
are also shown in the insets. In (a), (b) the dashed (dotted) horizontal
lines represent the equilibrium values of the rms size [in (a)] and the
energy for a droplet with N =193 (159) [in (b)]. The horizontal line
in (c) represent the equilibrium value N, /N, = /axn/a;; =~ 0.698,
and the dashed area the corresponding tolerance (see text).

N = 193 in a few milliseconds after the release from the trap
(see top insets in Fig. 3). In this case, the initial excitation en-
ergy is very small and indeed we observe a limited dynamics.
Remarkably, a droplet is quickly formed even if the trapping
frequency differs significantly from the optimal value, as in
the case of w/2m =200 Hz (here with N = 159), which
highlights the efficiency of the self-evaporation mechanism to
dissipate the initial excitation energy.

To characterize the relaxation process towards a stationary
droplet, here we indicate with Nl.d () (i =1, 2) the number of
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atoms remaining within the droplet volume and we define a
running value of N from Eq. (5) as

572 |8al>/?

o) =
=376 (Van + Jany

[N{@) + NY ()]

2
~0.5x%x 1073 ZN;’(r), (10)

i=1

where the second (approximate) equality holds for the current
values of the scattering lengths. We indicate with o (¢) the
droplet size (evaluated as the average rms of the density
distributions of the two atomic components defined as in the
previous section; see Appendix A), and with E;(¢) the corre-
sponding energy. The evolution of o (t), Eq4(t), N{(t)/N§(t)
and of the running value of ﬁR(t) are plotted in Fig. 3, for
w/2mw =200 Hz and 600 Hz. We find that the relaxation
process occurs via a sudden expulsion of atoms (at about t =
2—-4 ms, depending on w), which allows dissipation of most of
the initial excitation energy. From Fig. 3(b) we can estimate
an average dissipation rate, by evaluating the decrease in
energy occurring in the first part of the evolution, until the
deviation from the equilibrium droplet energy becomes very
small. We find that it varies from 0.3 to 2.5 MHz/ms, as w/2x
goes from 600 to 200 Hz. Figure 3(c) shows that the ratio
between the atom numbers in the two components always
remains very close to the nominal equilibrium value. We recall
that a droplet can sustain an excess of particles in one of
the two components SN;/N; up to a critical value ~|dal/a;;,
beyond which the particles in excess are expelled [1]. Here
the deviations of N¢(¢)/Ng (t) are always within this tolerance
[shaded area in Fig. 3(c)].

We can conclude that—in the absence of 3BL—the relax-
ation dynamics of a binary mixture produced by means of the
nonadiabatic experimental protocol of [10] is dominated by
the self-evaporation mechanism, consisting in the dissipation
of the initial excitation via the release of particles wave pack-
ets emitted from the droplet (see also Fig. 5 in Appendix A).

IV. DYNAMICS OF THE DROPLET FORMATION
IN THE PRESENCE OF 3BL

Having now a clear idea of how self-evaporation works,
we can discuss the dynamical formation of the droplet in
the realistic experimental conditions of Ref. [10], where a
significant role is played by 3BL. To do this, we use the
same model as in Sec. III B, adding to each equation in (6)

a nonunitary term
|:_ Diii 2:|1//l’ (11)

where K;; are the intraspecies 3BL rates.* Their values
are K{,,/3!'=9x 107% m®/s, K;,,/3! =1 x 107*! m®/s,
where the primed values correspond to the loss rates of ther-
mal atoms and the factor 1/3! accounts for the Bose statistics
of condensed atoms [20]. Following Ref. [10], we assume that

“We neglect here the effect of interspecies 3BL, following the
experimental observations discussed in Refs. [9,10].

the two hyperfine levels are equally populated initially, N; =
N> =2 x 10°, and we fix the trapping frequency in Eq. (9)
to a value of the same order as the geometric average of the
experimental frequencies, namely w = 2w x 200 Hz.

In the present case, owing to the complex dynamics that
originates from the presence of 3BL, especially in the first
part of the evolution, we use a different strategy to distinguish
the droplet from unbound expanding atoms, similar to the
protocol implemented in [10] to analyze the experimental
images. First we transform the spherically symmetric radial
data into a full three-dimensional (3D) data distribution, that is
then integrated along one direction (the “imaging direction”)
in order to obtain a 2D column density distribution (see
Appendix B). The latter is fitted with a double Gaussian func-
tion f(R) = Aexp[— —R?/ 26 + Bexp[— R2/(2oexp) ], where
the first Gaussian corresponds to the central droplet and the
second one to the unbound expanding cloud. Here R repre-
sents the radius in the 2D plane.

In Fig. 4 we show the evolution of the droplet size o (¢), of
the atom number in the droplet and in the expanding cloud
surrounding it, of the droplet population ratio N;/N,, and
finally of the droplet energy. In Fig. 4(e) we compare the
measured droplet energy with the energy of the ground state
for the same atom number E, (N (¢)). In the first stages of the
evolution, the dynamics is dominated by losses of atoms from
state |1), which bring the ratio N; /N, closer to the nominal
value of Eq. (1) and thus significantly reduce the droplet
energy. These losses come both from 3B recombinations and
from the release of atoms from the droplet into the unbound
component, due to the imbalance in the interaction energies.
In this stage, the system dissipates the excess energy pretty
quickly: We measure an energy loss rate of about 20 MHz/m:s.
Notice that this is almost 10 times larger than the self-
evaporation cooling rate measured in the previous section for
the same initial . When the ratio N; /N, reaches its nominal
value, the droplet keeps losing atoms in |1) due to 3BL. To
compensate for that, the droplet starts releasing atoms in |2).
This population dynamics, together with the compression of
the atomic cloud, causes the two apparent bumps in Fig. 4(e).
At this point we find the system close to its equilibrium
configuration, with the central cloud forming a metastable
droplet with an atom number significantly smaller than the
initial one. Since the system keeps losing atoms, due to 3BL in
|1) and to population reequilibration in |2), we see that around
t =12 ms the droplet population drops below the critical
value N [1,9,10], so that the binding mechanism breaks and
the cloud starts expanding.

From this analysis we can conclude that the energy vari-
ations driven by 3BL and the corresponding population bal-
ancing occur on timescales much shorter than those typical of
the self-evaporation mechanism described above, so that it is
hard to determine if the latter occurs at all. Even if that were
the case, its effect would be negligible with respect to the two
leading loss mechanisms.

We have also investigated whether a different choice of
the initial parameters, such as the trapping frequency or the
population ratio Nj/N,, would lead to a faster equilibration
time and/or to longer droplet lifetimes. We find that the values
of w and N;/N, discussed above, which correspond to the
values chosen in the experiment [10] by optimizing the droplet
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FIG. 4. Numerical results for the dynamical formation of the
droplet in presence of strong 3BL. (a) Evolution of the droplet size
o(t), (b) of the number of atoms in the droplet (solid) and in the
unbound cloud (dashed), (c) of the number of atoms lost due to
3BL, (d) of the population ratio in the droplet N;/N,, and (e) of the
droplet energy. In (b),(c) we plot the atom numbers separately for the
two atomic species |1) (black) and |2) (brown). In (d) we compare
the population ratio with the nominal range where the interactions
energies in the droplet are properly compensated, Ny /N, >~ /ay, /ay;
(shaded area) [1]. In (e) the droplet energy is shown along with the
ground state energy for the corresponding atom number E,,(N(t))
(black dashed line).

lifetime, represent indeed a convenient choice. In fact, we
observe that a larger value of the initial trapping frequency w
leads to stronger 3BL in the first stages of the evolution, thus
reducing even further the droplet lifetime. On the other hand, a
ratio Ni /N, closer to its equilibrium value \/a;;/a;; does not
help either, because the stronger losses in |1) quickly drive
the system away from this equilibrium condition, triggering
an earlier release of atoms from state |2).

To study experimentally the effect of self-evaporation, one
would need to find a suitable attractive mixture with signifi-
cantly lower 3BL. This might be the case of the *'K - ®’Rb
mixture of the recent experiment in Ref. [11], where thanks to
the different values of the scattering lengths the droplet forms
at lower densities, so that 3BL are less effective. Indeed, there
the lifetime is expected to be one order of magnitude larger
than that of the 3K mixture considered here, at least. In this
case, as discussed in Sec. IIIB, it is preferable to prepare

the initial state at the nominal equilibrium ratio N; /N, and as
close as possible to the droplet density profile, to have short
equilibration times and limited overall dynamics (see Fig. 2).
Remarkably, if the droplet is prepared in the self-evaporation
regime, any unwanted excitation would be then efficiently
dissipated via that mechanism.

V. CONCLUSIONS

We have characterized, by means of numerical simula-
tions, the dynamics of self-evaporation of an atomic quantum
droplet, considering the cases of both small and large initial
excitations. We have verified that the regime of its occurrence
corresponds to that predicted in Ref. [1], and we have dis-
cussed how and on which timescales this mechanism allows
the dissipation of energy in the droplet. We have simulated
the same preparation of the droplet realized in Ref. [10],
including the effect of 3BL. This has allowed us to identify
the relevant mechanisms involved in the dynamical formation
of a self-bound droplet of 39K. In this case, the evolution of
the system is dominated by the presence of 3BL and by a
continuous release of atoms to restore the proper population
ratio, whereas the self-evaporation mechanism plays only a
negligible role, if any. Finally, we have discussed the optimal
strategies for the preparation of droplets close to their ground
state, both for the experimental case considered here and for
possible future experiments with reduced 3BL. The results
reported here, which provide an accurate characterization of
the dynamical evolution of excited droplets, are both useful
for a deeper understanding of the recent experimental observa-
tions of quantum droplets and relevant for future experimental
studies, especially regarding the effect of self-evaporation.
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APPENDIX A: DEFINING THE DROPLET RADIUS

The dynamical formation of stationary (or metastable)
droplets occurs via a relaxation process during which some
of the atoms are expelled from the central volume. Therefore,
a criterion is needed for distinguishing between the droplet
and the outgoing density waves. Here we exploit the radial
symmetry of the present problem and we consider—along
with the proper density distribution n(r, ¢) in radial coordi-
nates [Figs. 5(a) and 5(b)]—the quantity 7i(r, t) = r’n(r, t),
which includes the factor r? corresponding to the Jacobian
determinant in spherical coordinates [Figs. 5(c) and 5(d)].
Therefore, a linear integration of 7i(r,¢) corresponds to a
volume integration of the density n(r, ). This representation
also provides a convenient way to visualize the point at which
the outgoing density waves “detach” from the inner volume,
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FIG. 5. Plot of the total density n(r,t) = Z,.z:l Ni|¥i(r, t))?
(a),(c) and of the quantity i(r, t) = r’n(r, t), at different evolution
times (r =4, 12 ms; here for the case w/2m =200 Hz of the
simulations discussed in Sec. III B). The abscissa of the red dot (see
text) represents the value of the droplet radius R;(¢).

which we identify with the first minimum of 7(r, ¢) at the
right-hand side of the bulk, marked by a red dot in Figs. 5(c)
and 5(d). The abscissa of this point is the value that we iden-
tify with the droplet radius R, (¢). In the numerical simulations
of Sec. III B, for example, the droplet radius is initialized
at R;(0) = 10 pum and it then evolves—both continuously
or via sudden jumps—following the position of the leftmost
minima (outside of the origin). The latter is typically found
between 5 and 10 um during the whole evolution considered
here (up to 20 ms), corresponding to the fact that the bulk
hosts a breathing mode and it does not expand. Contrarily,
the density waves which are expelled from the droplet move
outward while expanding, as shown in Figs. 5(c) and 5(d).

APPENDIX B: EXTRACTING THE 2D COLUMN DENSITY

In the presence of 3BL the dynamics of the system is
complicated by the fact that the amount of unbound expanding

atoms is of the same order as those remaining in the central
droplet. This behavior makes it difficult to identify the droplet
radius directly from the density distribution in radial coordi-
nates n(r). Therefore, we integrate n(r) along one direction
(z) in order to obtain a 2D density distribution,

+o0
na(R) = / (/A2 12+ D)z,

o0

B

where R = /x? +y? is the radial coordinate in the (x,y)
plane. In order to solve the integral, it is advantageous to make
the change of variables z> = r> — R?, that allows one to write
Eq. (B1) as

+oo rdr
n(r)—,

— (B2)

np(R) = 2/
R

where r/+/r? — R? corresponds to the Jacobian determinant of
the transformation and the factor 2 takes into account the fact
that the integral over z can be written as two times the integral
from zero to infinity. The integral (B2) exhibits a singularity
with a logarithmic divergence at » = R. In order to remove
this singularity we divide Eq. (B2) in two parts:

RAT p(ryrdr T n(@r)rdr
nop(R) = 2[ / 4 —} B3
n( R Vr2 — R? R+Ar /P2 — R? ®3)

with Ar being the unit step of the (numerical) radial grid.
For sufficiently small Ar, we can assume n(r) constant in the
first term in Eq. (B3) and it can be moved out of the inte-
gration sign. Therefore, the remaining integral can be solved
analytically and, finally, it is possible to obtain the 2D column
density distribution n,p(R) starting from the 3D spherically
symmetric radial data n(r), exploiting the expression

+o00
oot = 2w/ aRar w8+ [ L]
R

+AF r2 —R?
(B4)
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