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Quantum-dot heat engines with irreversible heat transfer
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We study an endoreversible quantum heat engine in which the heat transfer between the baths is mediated by
two qubits. Each qubit acts as an energy filter which allows for the conversion of heat into work. The relation
between the efficiency and the power output is derived. It is found that the efficiency of the quantum heat
engine at the maximum power output is closely dependent on the properties of quantum dots and does not
equal the Curzon-Alhborn efficiency, which is only a function of the bath temperatures. The efficiency and the
power output may be adjusted through qubit energy levels. It is further shown that in the limiting cases of small
energy levels (or high temperatures) and small temperature differences, the quantum heat engine converges to
the classical endoreversible Carnot heat engine.
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I. INTRODUCTION

Quantization of energy and its influence on energy con-
version are a part of the fundamental framework for under-
standing thermodynamics [1,2]. Quantum heat engines, which
convert heat into useful work, are important devices to explore
the thermodynamic properties of quantum systems [3]. For ex-
ample, Quan et al. analyzed the thermodynamics of quantum
Carnot and Otto engines utilizing harmonic oscillators, two-
level systems, and particles in an infinite square potential well
as the working substance, and compared them with their clas-
sical counterparts [4,5]. Scully et al. revealed that the power
of a quantum machine can be enhanced by noise-induced
coherence [6–8]. Furthermore, quantum engines powered by
nonthermal energy sources have been shown to exhibit uncon-
ventional performances [9–11].

Carnot’ s theorem states that all irreversible heat engines
operating between two heat baths cannot attain the Carnot
efficiency ηC [12,13]. Considering the case where the heat
transfer is irreversible, Curzon and Ahlborn discovered an
equation describing the efficiency of an endoreversible heat
engine operating at the maximum power output, i.e., ηCA =
1 − √

1 − ηC [14], which is referred to as the Curzon-Alhborn
(CA) efficiency [15–20]. This formula is applicable to many
other thermodynamic machines, including Brownian heat en-
gines [21–23], quantum-dot heat engines [24–27], low heat
dissipation machines [28,29], and Feynman’s ratchets [30,31],
etc. Using the finite-time thermodynamics theory, Chen et al.
demonstrated that ηCA does not determine the upper bound
of the efficiency but gives the lower bound of the optimized

*sushanhe@xmu.edu.cn
†jcchen@xmu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

efficiency [32]. Esposito et al. recovered the CA efficiency
under the symmetric dissipation for finite-time Carnot cycles
[33]. Cavina et al. also recovered the CA efficiency based on
a quantum Carnot cycle [34].

Several investigations regarding the small quantum ther-
mal machines with few quantum levels or qubits have been
reported [35–37]. Linden et al. researched the fundamental
limitation on the size of the thermal machines [38]. Brunner
et al. showed that the quantum effects are capable of en-
hancing energy conversion efficiency in microscopic quantum
refrigerators [39]. Correa et al. proved that the coefficient of
performance at the maximum cooling power for any three-
level refrigerators depends on the spatial dimensionality of the
cold bath [40,41]. Levy et al. put forward a global dissipative
equation for the heat transport between two qubits [42].

Despite the intensive onging developments, a quantum
analog of the classical endoreversible heat engine has not
yet been fully studied. The “quantumness” of the engine
considered here is due to the fact that the heat transfer is
described by the interaction between the quantum qubits and
the heat baths rather than the classical heat-transfer laws
such as the Fourier law of conduction. Taking these into
account, we put forward a new model of the endoreversible
quantum heat engine by considering qubits as the external
heat-transfer mediums. Based on the quantum master equation
approach [43–45], the influences of quantum effects on the
heat currents, power output, and thermal efficiency will be
analyzed. The rest of the paper is organized as follows. In
Sec. II, we establish the model of a quantum heat engine with
external irreversible heat transfer. In Sec. III, we illustrate the
thermodynamic characteristics of the quantum heat engine. In
Sec. IV, we will reveal the performances of the engine in the
extreme situations. Finally, the main conclusions are drawn.

II. MODEL AND THEORY

A model made up of two qubits and an endoreversible
Carnot heat engine is considered here, as shown in Fig. 1.
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FIG. 1. The schematic diagram of a quantum endoreversible heat
engine. It is made up of two qubits, 1 and 2, which interact with the
harmonic thermal baths, respectively. Qubit 1 connects the hot bath
and the working fluid of the engine in the isothermal process at T1,
while qubit 2 is inserted between the cold bath and the working fluid
of the engine in the isothermal process at T2. The two qubits couple
with their respective reservoirs with strengths �h, �1, �2, and �c. E1

and E2 are the energy levels of qubits 1 and 2.

Qubits 1 and 2 induce, respectively, the irreversible heat fluxes
Q1 from the thermal bath h to the engine and Q2 from the
engine to the thermal bath c. Th and Tc are the temperatures
of the high- and low-temperature thermal baths. T1 and T2

are the temperatures of the working fluid in two isothermal
processes, which are different from the temperatures Th and
Tc of the thermal baths and temperatures follow the inequality,
Th � T1 � T2 � Tc [14].

The free Hamiltonian of qubit 1 is given by

H1 = E1

2
σ z

1 , (1)

where σ z
1 is the third Pauli operator of qubit 1. The master

equation governing the dynamics of qubit 1 reads

ρ̇1 = −i[H1, ρ1] + Dh[ρ1] + D1[ρ1], (2)

where ρ1 is the density matrix of qubit 1. Applying the
Born-Markov and the rotating-wave approximations, one can
obtain the dissipator, Di[ρ](i = h, 1) associated with each
bath [46–49]

Di[ρ1] = �i
[
ni

(
σ+

1 ρ1σ
−
1 − 1

2 {σ−
1 σ+

1 , ρ1}
)

+ n̄i
(
σ−

1 ρ1σ
+
1 − 1

2 {σ+
1 σ−

1 , ρ1}
)]

, (3)

where �i denotes the dissipation rate and is related to the
spectral density of the bath; σ+

1 = |1〉〈0| and σ−
1 = |0〉〈1| are

the creation and annihilation operators of qubit 1, respec-
tively; ni = 1/[exp(βiE1) − 1] is the Bose-Einstein occupa-
tion function, the inverse temperature of bath i, βi = 1/Ti,
and n̄i = 1 + ni. In Refs. [37,43], each qubit is assumed to
be described by the Boltzmann distribution. In this work, we
study the irreversibile heat transfer between the bosonic baths.
The stationary occupations of the qubits are written in terms
of the spectral distribution of the baths. In the wide-band
approximation, it can be assumed that the dissipation rate �i is
a constant. Planck’s constant h̄ and Boltzmann’s constant kB

are set to be unity throughout the paper, i.e., h̄ = kB = 1. In
the following discussion, the energy level Ei, temperature Ti,
dissipation rate �i, heat current Qi, and power output P will
be written in the nondimensionalized form by utilizing Planck
units [50].

The steady-state populations of qubit 1 can be obtained by
setting the left-hand side of Eq. (2) equaling zero, i.e., ρ̇1 = 0,
yielding

ρs
1 = 1

2

(
1 + az

1σ
z
1

)
, (4)

where az
1 = − �h+�1

�hSh+�1S1
, and Si = ni + n̄i.

The heat current Qh = Tr{H1Dh[ρs
1]} represents the energy

flowed out of bath h per unit time. The heat current entered
bath 1 is expressed as Q1 = −Tr{H1D1[ρs

1]} and Qh = Q1.
Thus, the heat absorbed by the heat engine is

Q1 = γ1E1(nh − n1), (5)

where γ1 = �1�h
�hSh+�1S1

. The same computational process can
be applied to qubit 2. The free Hamiltonian of qubit 2 is
given by H2 = E2

2 σ z
2 , where σ z

2 is the third Pauli operator of
qubit 2. The heat current Q2 removed from the heat engine is
written as

Q2 = γ2E2(n2 − nc), (6)

where γ2 = �2�c
�2S2+�cSc

and the thermal occupation number
n j = 1/[exp(β jE2) − 1] ( j = 2 or c). We should note that the
forms of Q1 and Q2 are the same as the steady-state heat flux
obtained in Ref. [51], while for other types of thermal baths
[52] the expression of the heat current may be different.

By using Eqs. (5) and (6), the power output P and the
thermal efficiency η of the heat engine can be obtained, i.e.,

P = Q1 − Q2

= γ1E1

[
1

exp(βhE1) − 1
− 1

exp(β1E1) − 1

]

− γ2E2

[
1

exp(β2E2) − 1
− 1

exp(βcE2) − 1

]
(7)

and

η = P

Q1
= 1 − γ2E2(n2 − nc)

γ1E1(nh − n1)
. (8)

In the next section, the characteristics of the quantum heat
engine with irreversible heat transfer will be discussed.

III. EFFICIENCY AT THE MAXIMUM POWER OUTPUT

On the basis of the analysis above, there exists irreversible
heat transfer in the quantum heat engine due to the interac-
tions between the qubits and the baths. We are interested in
estimating the performance of a heat engine with external ir-
reversibilities. Therefore, we consider an endoreversible heat
engine for this quantum system. For an endoreversible heat
engine, the entropy productions of the working fluid in the
two isothermal processes follows the relationship

Q1

T1
= Q2

T2
. (9)

For an endoreversible Carnot heat engine, the thermal effi-
ciency η is directly determined by T1 and T2, i.e.,

η = 1 − T2

T1
. (10)

By using Eqs. (8), (9), and (10), the relations between the
working fluid temperatures Tl (l = 1, 2) and the efficiency η

are, respectively, given by (see the Appendix)

T1/2 = E1/2

ln
[

1
nh/c−γ2/1E2/1(n2/1−nc/h )/(γ1/2E1/2α1/2 ) + 1

] , (11)

where α1 = 1 − η and α2 = 1/α1.
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FIG. 2. The working fluid temperatures T1 (blue dot-dashed line)
and T2 (orange dashed line) as functions of the efficiency η, where
the parameters E1 = 10, E2 = 6, Th = 10, Tc = 1, �h = �1 = 0.01,
and �2 = �c = 0.001.

For a given value of η, one can obtain T1 and T2 with the nu-
merical solution of the nonlinear equations based on Eq. (11).
It is seen from Fig. 2 that T1 is a monotonically increasing
function of η, while T2 is a monotonically decreasing function
of η. When η = 0, T1 = T2, whose value is directly calculated
from Eq. (11). When η = ηmax = ηC , T1 = Th, and T2 = Tc,
which is in accord with the result of a classical reversible
Carnot heat engine [16].

By using Eqs. (7)–(10), the relation between the power
output and the efficiency can be obtained (see the Appendix)

P = γ2E2η

(1 − η)

⎧⎨
⎩

1[
1

nh−P/(γ1E1η) + 1
] E2

E1 (1−η) − 1
− nc

⎫⎬
⎭. (12)

Using Eqs. (5), (6), and (12), we generate the curves of the
heat currents Q1 and Q2 and the power output P varying with
the efficiency η, as shown in Fig. 3, where ηP is the efficiency
at the maximum power output of the heat engine. It is seen
from Fig. 3 that Q2 is a decreasing function of η, while Q1 and
P first increase and then decrease with the increase of η. When
η = 0, Q1 = Q2 and P = 0. When η = ηC , Q1 = Q2 = 0 and
P = 0. When η = ηP, P attains its maximum Pmax. The shape

FIG. 3. The heat currents Q1 (blue dashed line) and Q2 (green
dot-dashed line) and the power output P (red solid line) as functions
of the efficiency η. The values of other parameters are the same as
those used in Fig. 2.

FIG. 4. The optimal curves of the power output Popt varying with
the efficiency η, where T1 has been optimized for different values of
(a) E1 and (b) E2. In panel (c), E1 or E2 has been optimized. The
values of other parameters are the same as those used in Fig. 2.

of the efficiency-power characteristic curve for a quantum
Carnot heat engine mentioned here is similar to that of a
classical endoreversible Carnot heat engine [32]. However,
the efficiency ηP at the maximum power output is not equal
to the CA efficiency. Obviously, both ηP and Pmax are closely
dependent on the properties of qubits, as shown in Fig. 4. After
the optimization with respect to T1, Figs. 4(a) and 4(b) show
the curves of the power output Popt varying with the efficiency
η for given values of E1 and E2. From Eqs. (5)–(7), it is found
that the heat engine cannot generate positive power output as
E1 or E2 moves toward zero. On the other hand, because the
thermal occupation numbers in Eqs. (5) and (6) decline with
the continued growth of the energy levels of qubits, the power
output must be negligibly small for a very large E1 or E2.
The Popt can be further optimized with respect to E1 or E2,
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FIG. 5. In the optimal region, the temperatures T1 and T2 (blue
lines) and the energy levels E1 and E2 (red lines) as functions of the
efficiency η. The values of other parameters are the same as those
used in Fig. 2.

as shown in Fig. 4(c). Therefore, according to Fig. 4(c), the
optimal region of the efficiency should be

ηP � η < ηc, (13)

which provides the advantages in achieving high efficiency
while still maintaining a large power output at the same
time. Obviously, when η < ηP, the power output will decrease
with the decrease of η. The quantum heat engine should be
controlled so to avoid the region of η < ηP. In order for
the quantum heat engine to operate in the optimal region as
described by Eq. (13), the temperatures of the working fluid
in the two isothermal processes must satisfy the following
relations:

T1,P � T1 < Th (14)

and

T2,P � T2 > Tc, (15)

where T1,P and T2,P are, respectively, the values of tem-
peratures T1 and T2 at the maximum power output. Using
Eqs. (13)–(15), the relations between the two temperatures
T1 and T2, the energy levels E1 and E2, and the efficiency η

in the optimal region are evaluated in Fig. 5. Both T1 and
E1 increase with the increase of η, but T2 and E2 decrease
with η. As T1 increases with η, the temperature difference
Th − T1 reduces, leading to the decrease of the heat current
Q1 from bath 1. T1 continuously increases until it approaches
Th with an increasing η. According to Eq. (5), Q1 approaches
zero for an infinitely small temperature difference Th − T1,
which dramatically cuts down the power output P to P = 0.
On the other hand, T2 decreases until Tc is reached with the
increase of η. The heat Q2 released to bath 2 can be reduced
by decreasing T2, because the temperature difference T2 − Tc

decreases. Further analysis shows that the power output ap-
proaches the maximum power output P = Pmax at η = ηP. The
thermal efficiency approaches the maximum efficiency η = ηc

at T1 → Th and T2 → Tc. As a result, η is a monotonically

increasing function of E1 and a decreasing function of E2 in
the optimal region, as shown in Fig. 5.

The optimal performance of the endoreversible heat engine
is analysed. According to Figs. 3, 4, and 5, the efficiency at the
maximum power output is affected by the microproperties of
the qubits, and, consequently, is related to the irreversible heat
transfer. The energy levels El (l = 1, 2), as the microproper-
ties of qubits, can alter the working fluid temperatures Tl and
have significant effects on the power output P and the thermal
efficiency η. By adjusting the energy levels, we can regulate
P and η. The efficiency and the power output of the quantum
heat engine can hence be adjusted through the qubit energy
levels.

IV. DISCUSSION

To better understand the performance of the quantum heat
engine, we move our attention to several special situations.
If El is small (or the heat engine is operated at high temper-
atures) and βkEl << 1 (k = h, 1, 2, c), the heat currents Q1

and Q2 can be rewritten as

Q1 = 1

2

�1�h

�1T1 + �hTh
E1(Th − T1) (16)

and

Q2 = 1

2

�2�c

�2T2 + �cTc
E2(T2 − Tc). (17)

When �1 = �h, �2 = �c, Th − Tc � Tc, Th + T1 ≈ 2Th, and
Tc + T2 ≈ 2Tc, Eqs. (16) and (17) are simplified as

Q1 = k1(Th − T1) (18)

and

Q2 = k2(T2 − Tc), (19)

where k1 = 1
4

�1E1
Th

and k2 = 1
4

�2E2
Tc

. Equations (18) and (19)
indicate clearly that the heat currents are proportional to the
temperature differences of the working fluid and its surround-
ings, which obey Newton’s heat transfer law [14,16]. This
shows that when βkEl << 1 and the temperature difference
of thermal baths is very small, the heat transfer between the
engine and the thermal bath follows the classical heat transfer
law. The above results indicate that the heat transfer in this
irreversible system is directly affected by the value of the
energy gap of qubits.

Applying Eqs. (9) and (10) and eliminating the tem-
peratures T1 and T2 in Eqs. (18) and (19), one can de-
rive the expressions of the heat current Q1 and the power
output P as

Q1 = k1k2

k1 + k2

[
Th − Tc

(1 − η)

]
(20)

and

P = k1k2η

k1 + k2

[
Th − Tc

(1 − η)

]
. (21)

If the effective heat transfer coefficients k1 and k2 are regarded
as the classical thermal conductances, Eqs. (20) and (21)
exhibit the same results as obtained in Refs. [16,19]. In such a
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FIG. 6. The schematic diagrams of different quantum heat trans-
fer models. (a) The two-qubit model dominated by the dissipation
rates �i. (b) The one-qubit model. (c) The two-qubit model with
weak interaction g.

case, the efficiency at the maximum power output is equal to
the CA efficiency and Eq. (13) is bounded by

ηCA � η < ηc. (22)

These results suggest that the classical correspondence of the
quantum heat engine can be obtained in the limiting cases of
the small energy levels of the qubits (or high-temperature heat
reservoirs) and the small temperature differences of the heat
reservoirs.

Finally, we discuss the equivalent conditions among the
quantum heat transfer modes. When T1 = T2 = T , Eqs. (5)
and (6) become

Q1 = γ1E1(nh − n1) = γ2E2(n2 − nc) = Q2, (23)

as shown in Fig. 6(a). When E1 = E2 = E , Eq. (23) may be
further simplified as

Q1 = γ1γ2

γ1 + γ2
E (nh − nc) = Q2, (24)

as shown in Fig. 6(b). Equations (23) and (24) show clearly
that when E1 = E2, Figs. 6(a) and 6(b) are equivalent to each
other. This implies that the heat transferred through two qubits
between the two heat reservoirs at temperatures Th and Tc may
be equivalent to that through one qubit operating at the same
temperature difference.

It is important to note that the authors in Refs. [37,42]
investigated the heat transfer in the model of quantum refrig-
erators and the consistency of thermodynamic laws, as shown
in Fig. 6(c), where the heat current Q1 is determined by

Q1 = 2g2(�c + �h)E (nh − nc)

(�c + �h)2 + 4g2 + 2g2
(

�c
�h

+ �h
�c

) . (25)

Comparing Eq. (25) with Eq. (24), we find that if
the coupling strength g satisfies the following relation,
g2 = 1

2γ1γ2(�2
c + �2

h )
((γ1 + γ2)(�2

c �h + �2
h�c) − 2γ1γ2�c�h +

{�c�h[−2γ 2
1 γ 2

2 (�c + �h)2(�2
c + �2

h )] + �c�h[γ2(�c + �h)
+ γ1(�c + �h − 2γ2)]2} 1

2 ), Fig. 6(c) is equivalent to Fig. 6(b).

This shows clearly that when E1 = E2 = E and the coupling
strength g is suitably adjusted, the three heat transfer
modes in Figs. 6(a), 6(b), and 6(c) are equivalent to each
other. These results not only allow us to simplify complex
thermodynamical systems but also provide a new perspective
from which to understand the quantum heat engines.

V. CONCLUSIONS

A novel heat engine model including two qubits has been
established and the performance characteristics of the quan-
tum heat engine as affected by irreversible heat transfers are
evaluated. It is found that the heat transfer mode between the
heat engine and the heat reservoir not only depends on the
properties of the qubits but also is affected by the temperatures
of the heat reservoirs and their temperature differences. The
power output and the efficiency can be regulated by adjust-
ing the energy levels of the qubits. This is very different
from the cases of classical heat engines. For general cases
[53,54], the efficiency at the maximum power output is not
equal to the CA efficiency, which is usually derived under dif-
ferent approximations. For the limiting cases of small energy
levels of qubits and small temperature differences, the quan-
tum Carnot heat engine is equivalent to the endoreversible
Carnot heat engine that obeys Newton’ s heat transfer law.
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APPENDIX: DETAILED DERIVATION
OF EQS. (11) AND (12)

In this Appendix, we first prove the expression of T1 and T2

in Eq. (11) by using Eqs. (8)–(10), and then derive the relation
between the power output P and the efficiency η [Eq. (12)].

Starting from Eq. (8) and the definition of nk (k =
h, 1, 2, c), one finds

γ2E2(n2 − nc)

γ1E1(1 − η)
= nh − 1

exp[β1E1] − 1
. (A1)

As a result,

β1E1 = ln

{
1

nh − γ2E2(n2 − nc)/[γ1E1(1 − η)]
+ 1

}
. (A2)

Since β1 is the inverse temperature of bath T1,

T1 = E1/ ln

[
1

nh − γ2E2(n2 − nc)/(γ1E1α1)
+ 1

]
. (A3)

Similarly, T2 can also be obtained:

T2 = E2/ ln

[
1

nc − γ1E1(n1 − nh)/(γ2E2α2)
+ 1

]
. (A4)

Combining Eqs. (A3) and (A4), we have Eq. (11).
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According to the expressions of the heat currents [Eqs. (5)
and (6)],

T1 = E1/ ln

[
1

nh − Q1/(γ1E1)
+ 1

]
(A5)

and

T2 = E2/ ln

[
1

nc + Q2/(γ2E2)
+ 1

]
. (A6)

Combing Eq. (A5) with Eq. (A6), we immediately have

1 − η =
E2/ ln

[
1

nc+Q1(1−η)/(γ2E2 ) + 1
]

E1/ ln
[

1
nh−Q1/(γ1E1 ) + 1

] . (A7)

Using Eq. (A7) and the expression of the power output P =
Q1η, we arrive at Eq. (12).
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