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Diagnosing quantum chaos in many-body systems using entanglement as a resource

Étienne Lantagne-Hurtubise ,1,2,* Stephan Plugge,1,† Oguzhan Can,1 and Marcel Franz1,2

1Department of Physics and Astronomy and Quantum Matter Institute, University of British Columbia,
Vancouver, British Columbia V6T 1Z4, Canada

2Kavli Institute for Theoretical Physics, University of California Santa Barbara, California 93106, USA

(Received 5 July 2019; accepted 24 January 2020; published 4 March 2020)

Classical chaotic systems exhibit exponentially diverging trajectories due to small differences in their initial
states. The analogous diagnostic in quantum many-body systems is an exponential growth of out-of-time-ordered
correlation functions (OTOCs). These quantities can be computed for various models, but their experimental
study requires the ability to evolve quantum states backward in time, similar to the canonical Loschmidt echo
measurement. In some simple systems, backward time evolution can be achieved by reversing the sign of the
Hamiltonian; however, in most interacting many-body systems, this is not a viable option. Here we propose
a family of protocols for OTOC measurement that do not require backward time evolution. Instead, they rely
on ordinary time-ordered measurements performed in the thermofield double (TFD) state, an entangled state
formed between two identical copies of the system. We show that, remarkably, in this situation the Lyapunov
chaos exponent λL can be extracted from the measurement of an ordinary two-point correlation function. As an
unexpected bonus, we find that our proposed method yields the so-called “regularized” OTOC—a quantity that
is believed to most directly indicate quantum chaos. According to recent theoretical work, the TFD state can be
prepared as the ground state of two weakly coupled identical systems and is therefore amenable to experimental
study. We illustrate the utility of these protocols on the example of the maximally chaotic Sachdev-Ye-Kitaev
model and support our findings by extensive numerical simulations.
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I. INTRODUCTION

A key characteristic of chaotic quantum many-body sys-
tems is rapid dispersal of quantum information deposited
among a small number of elementary degrees of freedom.
After a short time, the information is distributed among ex-
ponentially many degrees of freedom, whereby it becomes
effectively lost to all local observables. This apparent loss of
quantum information through unitary evolution, known also
as “scrambling,” lies at the heart of thermalization in closed
systems and plays a key role in understanding quantum as-
pects of black holes as epitomized by Hawking’s information
loss paradox [1]. Black holes are believed to scramble at the
fastest possible rate consistent with causality and unitarity
[2]. Some strongly coupled quantum systems, such as the
Sachdev-Ye-Kitaev (SYK) model [3–6] and its variants, are
also known to be fast scramblers; this motivates their descrip-
tion as duals of gravitational theories containing a black hole.
Scrambling in quantum theories can be quantified through
the out-of-time order correlators defined below, which—for
chaotic systems—show exponential growth at intermediate
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times with a characteristic Lyapunov exponent λL. A universal
upper bound on chaos, conjectured by Maldacena, Shenker,
and Stanford [7], posits that λL � 2πT and is saturated in
the class of maximally chaotic systems which includes black
holes and SYK models.

Diagnosing quantum chaos and scrambling in realistic
physical systems is a problem of fundamental importance that
has been only partially addressed so far. As we review below,
the great hurdle in conventional approaches to diagnosing
chaos is the necessity to evolve the quantum system backward
in time during the measurement [8–10]. So far, this has been
achieved in a very limited range of systems, mainly quantum
simulators [11] and ion traps [12,13]. However, there is no
hope of applying this method to a broader class of naturally
occurring quantum many-body systems, because in those one
simply does not possess the level of control required to reverse
the time evolution. In this paper, we address this pressing
challenge by introducing an approach to diagnosing chaos in
quantum many-body systems which does not require back-
ward time evolution during the measurement. The approach
is based on a procedure which creates an entangled resource
state that permits chaos diagnosis through an ordinary mea-
surement. Specifically, we show that in this resource state
the chaos exponent λL governs the exponential growth of an
ordinary two-point correlator at intermediate times and can
thus be experimentally accessed using routine spectroscopic
techniques.

Rather than a Loschmidt echo, our scheme more closely
resembles the approach of Refs. [14–16] to the measurement
of Renyi entropy by readout of entangling operators between
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identical copies of a quantum state. Alternative approaches
for the detection of scrambling in quantum systems include
interferometry [17] or out-of-equilibrium measurement proto-
cols [18,19]. In our case, the entanglement between identical
copies of the chaotic quantum system is generated as resource
from a specifically engineered Hamiltonian. The ability to
detect OTOCs hence emerges from measurements of simple
operators in an a priori complicated ground state of two
coupled chaotic systems.

A quantitative measure of scrambling in quantum systems
is given by the expectation value of a commutator squared
[20],

Cη(t ) = −〈
[W (t ),V (0)]2

η

〉
, (1)

of two initially commuting Hermitian operators [W,V ]η = 0.
In the following, we allow for both bosonic (η = 1) and
fermionic (η = −1) statistics, with [ · , · ]η denoting the com-
mutator (anticommutator) for η = 1 (η = −1). The operators
evolve in time according to the system Hamiltonian H through
W (t ) = eiHtWe−iHt and 〈· · · 〉 denotes the thermal average
at inverse temperature β = 1/T . The intuition behind the
definition (1) is the following: As the operator W (t ) evolves
in time, it becomes more complex until it eventually fails to
commute with operator V . One thus expects Cη(t ) to grow as
a function of time and eventually saturate at a value close to
2〈V 2〉〈W 2〉 for large t , regardless of the specific forms of V
and W . In chaotic many-body systems, at intermediate times,
the growth of Cη(t ) follows an exponential dependence, as
long as V and W are “simple” operators composed of products
of a small number of elementary degrees of freedom.

Expanding the commutator in Eq. (1), we obtain two types
of thermal averages:

Cη(t ) = η〈W (t )VVW (t )〉 + η〈VW (t )W (t )V 〉
− 〈VW (t )VW (t )〉 − 〈W (t )VW (t )V 〉. (2)

The averages on the first line represent naturally time-ordered
correlators (NTOC) that correspond to “sensible” experiments
performed in an ordinary quantum system. For instance, the
second term 〈VW (t )W (t )V 〉 describes a process in which we
perturb the system at time t = 0 by applying operator V ,
evolve the perturbed system forward in time, and then perform
a measurement of a quantity represented by operator W 2.

The averages on the second line of Eq. (2) represent out-
of-time-ordered correlators. These correspond to less sensible
experiments. The second term, for instance, which is often
denoted as

F (t ) = 〈W (t )VW (t )V 〉, (3)

describes the process in which we compare two states of the
system: one obtained by first perturbing with V , then applying
W (t ) at a later time t ; and the other obtained by perturbing first
with W (t ), evolving backward in time, then applying V . We
note that in the special case where operators V and W are also
unitary, the quantity Cη(t ) can be expressed simply as

Cη(t ) = 2η − 2ReF (t ). (4)

The fundamental difference between NTOC and OTOC is
best visualized by placing the operators on the Schwinger-
Keldysh contour illustrated in Fig. 1. The imaginary time
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FIG. 1. Naturally time-ordered vs out-of-time-ordered correla-
tion functions on the Schwinger-Keldysh contour. Evolution in real
time t follows horizontal lines, whereas imaginary time evolution
(generated by powers of the thermal density matrix e−βH ) occurs
along the vertical direction. Positions of the operators W and V
are marked by crosses. Panels (a) and (b) show NTOC and OTOC,
respectively, with conventional placement of the density matrix.
Panels (c) and (d) show two different “regularized” OTOCs discussed
in Sec. II.

evolution is generated by the density matrix, which becomes
explicit if we rewrite Eq. (3) as F (t ) = tr[W (t )VW (t )Ve−βH ].
Notice that while NTOC can be represented by placing the
operators on a conventional Schwinger-Keldysh contour with
one forward and one backward evolving branch [Fig. 1(a)],
OTOC require a doubled contour as indicated in Fig. 1(b).

As a rule, the physical implementation of an OTOC mea-
surement requires (actual or effective) backward time evo-
lution and is therefore difficult to achieve in most systems.
Similar to Loschmidt echo [21–24], a measurement of F (t ) is
possible in situations where one controls the Hamiltonian at
the microscopic level and can, in particular, reverse its sign
to generate backward time evolution. As a practical matter,
this restriction greatly limits the types of systems in which the
phenomenon of scrambling can be experimentally probed.

In the rest of the paper, we introduce, discuss, and put to the
test a family of protocols that probe OTOCs but do not require
backward time evolution. They instead require two copies
of the system prepared in a special entangled state called
“thermofield double” (TFD). As we explain in detail below,
TFD is a pure quantum state whose reduced density matrix
coincides with the thermal density matrix of one copy of the
system. The TFD state has been widely studied in quantum
gravity theories as a description of traversable wormholes
[25–28]. It has the remarkable property, which we review
below, that time effectively flows in the opposite directions
in two entangled systems. It is this property which underlies
its usefulness in the proposed OTOC measurement protocols.
Importantly, recent theoretical work has established a simple
method that can be used to prepare the TFD state [29]. The
method consists of weakly coupling two identical subsystems
in a specific way and then cooling the combined system to its
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ground state. As an example, the ground-state wave function
of two identical SYK Hamiltonians coupled by simple bilinear
tunneling terms has >96% overlap with a TFD wave function
[27] [see also Fig. 2(a)]. We also note interesting recent works
on how to prepare a TFD state using quantum circuits [30–32];
however, these approaches are limited to the moderate system
sizes accessible on present-day quantum simulators, similar to
the experiments of Refs. [11–13].

In the following, we first review the concept of the TFD
state and then demonstrate how it can be used to diagnose
quantum chaotic behavior via an OTOC measurement that
does not require explicit backward time evolution of quantum
states (Sec. II). We discuss in detail how the TFD state can be
prepared and used to extract the chaos exponent λL from an
equilibrium measurement of a two-point correlation function.
We then apply these general ideas to a pair of coupled SYK
Hamiltonians, recently argued to be holographically dual to
a traversable wormhole, and known to admit a TFD ground
state (Sec. III). This simple model serves as a testbed for
demonstrating the usefulness of our OTOC measurement
protocols. Finally, in Sec. IV we discuss possible physical
realizations of the coupled SYK models in the laboratory
and expand on the challenges of performing the necessary
measurements. We conclude with an outlook on interesting
future work and outstanding challenges in Sec. V.

II. OTOC MEASUREMENT USING THE THERMOFIELD
DOUBLE STATE

In this section, we review the concept of the thermofield
double state, discuss its properties, and then show how it can
be used to measure OTOCs in a way that does not require
explicit backward time evolution.

A. TFD state: Definition and properties

Consider two copies of the same system, left and right,
described by many-body Hamiltonians HL and HR, respec-
tively. We assume that Hα (α = L, R) are invariant under time
reversal generated by an antiunitary operator �. The TFD
state at inverse temperature β is then defined as

|TFDβ〉 = 1√
Zβ

∑
n

e−βEn/2|n̄〉L ⊗ |n〉R, (5)

where |n〉α is an eigenstate of Hα with energy eigenvalue
En, and Zβ = ∑

n e−βEn is the partition function. |n̄〉 = �|n〉
denotes the time-reversed partner of the eigenstate |n〉 which
shares the same energy eigenvalue En. We note that time
reversal is necessary here to define a unique TFD state, as
each eigenstate |n〉 is defined up to an overall phase eiφn . A
direct product |n̄〉L ⊗ |n〉R is, however, well defined because
|n̄〉 transforms with the opposite phase to |n〉 under the cor-
responding U (1) transformation. In the limit of zero temper-
ature, |TFDβ〉 simply becomes a direct product of L and R
ground states, whereas at infinite temperature it becomes a
maximally entangled state between the two subsystems.

The TFD state has several important properties. The expec-
tation value of any one-sided operator with respect to |TFDβ〉

is given by a thermal average,

〈OL〉TFD = Z−1
β

∑
n

e−βEn
L〈n|OL|n〉L. (6)

It is also important to note that |TFDβ〉 is not an eigenstate of
the full system Hamiltonian H = HL + HR. It is, however, an
eigenstate with eigenvalue zero of H− = HL − HR; it can be
easily checked that

(HL − HR)|TFDβ〉 = 0. (7)

This has implications for the concept of time-translation in-
variance in the TFD state. Equation (7) implies that |TFDβ〉
evolves trivially under H−,

e−it (HL−HR )|TFDβ〉 = |TFDβ〉. (8)

Hence, the expectation value of a product of two operators
acting in the L and R systems has the property

F (t1, t2) = 〈OL(t1)OR(t2)〉TFD

= 〈OL(t1 + t )OR(t2 − t )〉TFD, (9)

valid for arbitrary t . The second line follows upon replac-
ing |TFDβ〉 in the expectation value on the first line by
e−it (HL−HR )|TFDβ〉 using Eq. (8) and recalling that OR com-
mutes with HL (and same for L ↔ R). Choosing t = t2, we
see that F (t1, t2) is a function of t1 + t2 only. This should
be compared to the statement of time-translation invari-
ance in a conventional (unentangled) state, 〈O(t1)O(t2)〉 =
〈O(t1 − t )O(t2 − t )〉, where the expectation value only de-
pends on t1 − t2 as long as the Hamiltonian is independent
of time.

In the context of wormhole physics, Eq. (9) can be inter-
preted as time flowing in the opposite direction on the two
sides of the wormhole, represented in the quantum theory
by two entangled subsystems. It is this peculiar property that
ultimately allows one to use a TFD as a resource for OTOC
measurement without explicit backward time evolution.

B. Probing OTOC using TFD state

For the purposes of this subsection, we will assume that we
have the ability to engineer two identical copies of an interest-
ing quantum many-body system described by Hamiltonians
HL and HR and prepare them in the TFD state, Eq. (5). In the
subsequent sections, we will discuss how this can be achieved
in practice and study some concrete examples. Here we focus
on elucidating how a two-sided measurement performed on
the TFD state can be used to probe correlation functions that
map onto thermal OTOCs with respect to one subsystem.

Consider a naturally time-ordered correlator

F̃ (t, t ′) = 〈T [VL(t )WR(t )VR(t ′)WL(t ′)]〉TFD (10)

evaluated with respect to the TFD state in Eq. (5). Here
T denotes the time-ordering operator. Normal time-ordered
expectation values of this type correspond to physical quan-
tities that are measurable, at least in principle. The specific
average defined in Eq. (10) can be thought of as a component
of the current-current correlator (where the current operator
involves both sides of the composite system) that would
arise in the calculation of the appropriate linear response
conductance.
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We now assume t > t ′ and write the average in Eq. (10)
explicitly using the TFD state (5). We obtain

F̃ (t, t ′) = 1

Zβ

∑
n,m

e−β(En+Em )/2
L〈n̄|VL(t )WL(t ′)|m̄〉L

× R〈n|WR(t )VR(t ′)|m〉R, (11)

where we used the fact that L and R operators (anti)commute
at all times and that they act only on L and R eigenstates,
respectively. The right-hand side has been written as a product
of expectation values taken in L and R systems separately.
Because each such expectation value is a complex number
and the two subsystems are identical, we can now drop the L
and R subscripts, recognizing that it does not matter in which
subsystem they are evaluated [33]. We thus have

F̃ (t, t ′) = 1

Zβ

∑
n,m

e−β(En+Em )/2〈m|W (−t ′)V (−t )|n〉

× 〈n|W (t )V (t ′)|m〉, (12)

where we used general properties of time-reversed states [34],
namely 〈ā|b̄〉 = 〈�a|�b〉 = 〈b|a〉, and

〈n̄|O(t )|m̄〉 = 〈m|O(−t )†|n〉. (13)

As the final step we insert the Boltzmann factors into
the expectation values and replace them by powers
of the density matrix, e.g., e−β(En+Em )/2〈n|W (t )V (t ′)|m〉 =
Zβ〈n|y2W (t )V (t ′)y2|m〉, with

y4 = e−βH/Zβ . (14)

This allows us to perform the sum over n using the complete-
ness relation

∑
n |n〉〈n| = 1 and arrive at the result

F̃ (t, t ′) = tr[W (−t ′)V (−t )y2W (t )V (t ′)y2]. (15)

Note that the trace is now evaluated with respect to the
eigenstates of a single-sided Hamiltonian.

For any t > 0 and t ′ < 0 Eq. (15) has the structure of an
OTOC. In the special case t ′ = −t it becomes

F̃ (t,−t ) = tr[W (2t )V (0)y2W (2t )V (0)y2], (16)

where we used the time-translation invariance to shift all
temporal arguments by +t for clarity.

We observe that F̃ (t,−t ) coincides with the canonical
OTOC function F (2t ) defined in Eq. (3), except for the
placement of the density matrix powers y [see also Fig. 1(c)].
Expressions of this type are called “regularized” OTOCs and
have been extensively studied in the literature [5,7]. Regular-
ized OTOCs exhibit less singular behavior than unregularized
OTOCs when evaluated analytically, and they have been ar-
gued to more reliably measure quantum chaos in many-body
systems [35–37]. The universal upper bound on the Lyapunov
exponent λL has also been proven only for regularized OTOCs
[7]. We see that, remarkably, naturally time-ordered correla-
tors evaluated in the TFD state map onto regularized OTOCs
with respect to the single system.

Following the sequence of steps between Eqs. (10) and
(15), it is possible to derive other useful identities that relate
expectation values of operators in the TFD state to single-

sided OTOCs. For instance, we find

〈WL(−t )VL(0)VR(0)WL(−t )〉TFD

= tr[W (t )V (0)W (t )y2V (0)y2]. (17)

The first line can be interpreted as creating an excitation in the
TFD state at time −t , evolving forward in time and perform-
ing a two-sided measurement of a quantity represented by the
operator VLVR at time zero. This correlator also maps onto
the canonical OTOC albeit with a different regularization,
illustrated in Fig. 1(d). Below we refer to this as “asymmetric”
regularized OTOC. We note that similar relations have been
anticipated in the high-energy community [7,20,38].

C. Initial state preparation

Our considerations above establish formal identities re-
lating naturally time-ordered correlators evaluated in an en-
tangled state of two identical systems to out-of-time-ordered
correlators in the single system, such as Eqs. (16) and (17). A
sensible measurement performed in the TFD state can thus
provide information on the OTOC and diagnose quantum
chaotic behavior in a many-body system. We now discuss a
method that allows one to prepare the TFD state. In addition,
we see from the discussion in the previous subsection that in
order to probe the OTOC one in fact needs |TFDβ〉 at a nega-
tive time, for only then is the correlator on the left-hand side
of Eq. (17) naturally time ordered. The same remark applies
to F̃ (t, t ′) defined in Eq. (10). In the following, we therefore
discuss how a state closely approximating |TFDβ (−t )〉 can be
prepared in a realistic setup.

The easiest way to prepare a TFD state in the laboratory
would be to engineer a Hamiltonian HS which admits |TFDβ〉
as a ground state. A collection of such Hamiltonians were re-
cently constructed in Ref. [29], with a unique |TFDβ〉 ground
state separated from the rest of the spectrum by a gap of order
1/β. Thus, a TFD state can be prepared by engineering the
system to obey Hamiltonian HS and then cooling it down to
a physical temperature Tphys small compared to the gap. The
form of HS required to obtain the TFD ground state exactly is
complicated and therefore not practical from the standpoint of
generating the state in a laboratory. However, the ground state
|	0〉 of a simple Hamiltonian

HS = HL + HR + HI , (18)

with

HI =
∑

j

c jd
†
j d j, d j = O j

L − �
(
O j

R

)†
�−1 (19)

and � representing the time-reversal operator, has been shown
[29] to approximate |TFDβ〉 to good accuracy for appropri-
ately chosen coefficients c j . Here OL/R

j are arbitrary (but iden-
tical) operators acting on the L and R systems, respectively.
This method is expected to apply to generic many-body
Hamiltonians HL respecting the eigenstate thermalization
hypothesis [29] and is thus of broad relevance in the study
of quantum chaotic systems.

In another recent work, Maldacena and Qi [27] used an
even simpler construction with a coupling of the form

HI = iμ
∑

j

O j
LO

j
R (20)
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to describe an eternal traversable wormhole formed by two
copies of the SYK model. We will review this construction in
the next section, verify numerically that it admits a ground
state that closely approximates the TFD state, and discuss
some of its intriguing properties.

The above procedure allows one to prepare a state
that closely approximates |TFDβ〉 by coupling two systems
through HI defined in Eqs. (19) or (20) and then cooling the
combined system to reach its ground state. When the coupling
HI is switched off, the system begins to evolve forward in time
according to the decoupled Hamiltonian

H0 = HL + HR. (21)

This evolution is nontrivial because |TFDβ〉 is not an eigen-
state of H0. In order to probe OTOC, however, we require a
TFD state prepared at negative time −t , as discussed above.
It would thus appear that our protocol requires backward
time evolution after all. We show in Appendix A that the
required resource state |	0(−t )〉 � |TFDβ (−t )〉 for short time
durations t can be prepared by manipulating the strength of the
coupling HI , without the need to reverse the sign of H0. Since
the ability to introduce and control HI is necessary to prepare
the TFD state in the first place, this method does not introduce
any substantial additional complications.

D. OTOC from two-point functions

Here we discuss an approach that allows one to extract
the OTOC from the measurement of a time-ordered two-point
function GLR(t, t ′), in a generic chaotic system with coupling
μ between the two sides given by Eq. (20). This method relies
only on the fact that the ground state of the coupled system
closely approximates the TFD state and, importantly, does not
require varying μ before or during the measurement. In con-
trast to related previous work [39,40], our method comprises
the measurement of a single (averaged) Green’s function,
rather than statistics on an ensemble of measurements. We
outline the argument below and provide technical details in
Appendix B.

We consider the two-point time-ordered LR correlation
function in real time,

iGLR(t, t ′) = 〈T VL(t )VR(t ′)〉. (22)

The average is taken with respect to the (TFD) ground state of
the coupled system and is therefore time-translation invariant,
GLR(t, t ′) = GLR(t − t ′). The operators inside the average
evolve according to the full coupled Hamiltonian HS = HL +
HR + HI .

At weak coupling μ (compared to the energy scale J of
the chaotic Hamiltonian H0) and for short time durations
μ|t − t ′| � 1, it is possible to rewrite the two-point correlator
in Eq. (22) as a single-sided thermal average of operators
evolving according to HL (or, equivalently, HR). Formally, this
is done by passing from the Heisenberg picture to the interac-
tion picture and expanding the corresponding time-evolution
operator U (t, t ′) to leading order in the small parameter μ|t −
t ′|. Details of this calculation are given in Appendix B, and the

result is

iGLR(t,−t ) � tr[V y2V y2]

− 2ημ
∑

j

∫ t

0
dstr[O j (t + s)V y2VO j (t − s)y2]

+ 2μ
∑

j

∫ t

0
dstr[O j (t + s)V y2O j (t − s)V y2].

(23)

where V = V (0), y represents the fourth root of the thermal
density matrix, Eq. (14), and the trace is performed with
respect to the many-body eigenstates |n〉 of HL. Operators O j

enter through the coupling HI which is assumed to have the
Maldacena-Qi form Eq. (20).

The trace on the first line is a time-independent constant
and the trace on the second line is a naturally time-ordered
four-point correlator. Crucially, the trace on the third line
has the structure of a regularized OTOC for all s inside the
integration bounds. Near the lower bound s → 0, it coincides
with the regularized OTOC. For s 
= 0, the trace represents a
more general form of the OTOC dependent on two time vari-
ables, F (t1, t2) = tr[W (t1)V y2W (t2)V y2]. In chaotic systems,
the latter is commonly assumed to behave according to

F (t1, t2) � b(t1 − t2)eλL (t1+t2 )/2 (24)

with b(t ) an even function of t and b(0) real positive
[36,41,42]. The trace on the last line of Eq. (23) is then related
to F (t + s, t − s) and, upon integration, becomes proportional
to B(t )eλLt with B(t ) = μ

∫ t
0 ds b(2s).

If we adopt another common assumption [5] that due
to their exponential growth at intermediate times OTOCs
tend to dominate over NTOCs, we may conclude that the
intermediate-time behavior (J−1 � t � μ−1) of the LR two-
point correlator of the coupled theory should be well approxi-
mated by

iGLR(t,−t ) � A + BeλLt , (25)

where A and B are slowly varying functions of t and may be
taken as constants.

Equation (25) indicates that, remarkably, the Lyapunov
exponent characteristic of a single chaotic system at inverse
temperature β can be extracted by measuring the LR causal
two-point correlator in the ground state of two identical such
systems, coupled through static bilinear terms as in Eq. (20).
We remark that an expression similar to Eq. (23) can be
derived for the retarded two-point correlator Gret

LR(t,−t ) which
also contains a dominant OTOC contribution at intermediate
times. Retarded correlators are often more directly related to
measurable quantities, and we will employ them in Sec. III,
where we provide an explicit numerical calculation for the
example of coupled SYK models. This shows approximate
exponential growth of the retarded two-point correlator in
the appropriate time interval, which lends support to the
conclusions reached in this subsection.

E. Discussion and caveats

Our main results obtained in this section can be sum-
marized as follows. We showed that naturally time-ordered
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correlators, such as the one defined in Eq. (10), evaluated
in the TFD state map to out-of-time-ordered correlators with
respect to a single system. This result is generic and requires
only that the correlator in question involves operators from
both L and R side of the coupled system. (Details of the
correlators, however, change the regularization structure, that
is, the placement of y2 factors in the corresponding OTOCs.)
The transmutation from a two-sided NTOC to a single-sided
OTOC can be intuitively understood as a consequence of the
fact that, effectively, time flows in the opposite direction in
the two subsystems forming the TFD. Mathematically, this
unusual property follows from Eq. (9), which shows that a
generic two-sided correlator with respect to the TFD state de-
pends on the sum of the temporal arguments for each subsys-
tem and not on their difference, as would normally be the case.

Further, we argued that ordinary Green’s functions should
also capture the behavior of OTOCs for small values of the
coupling μ between the subsystems and short times |t − t ′| �
μ−1. Crucially, such two-point correlation functions are in
principle much easier to probe in the laboratory, because the
measurement can be performed under equilibrium conditions
and the protocol does not require varying any system parame-
ters. We shall discuss a specific example of this in Sec. IV B.

III. APPLICATION: TWO COUPLED SYK MODELS

In this section, we apply the ideas presented above to a
concrete model recently introduced by Maldacena and Qi
[27] that realizes a quantum-mechanical dual to an eternal
traversable wormhole in (1+1)-dimensional anti–de Sitter
spacetime (AdS2) by coupling two identical SYK models.
This model is convenient for us for several reasons. First,
the SYK model is known to be maximally chaotic: Its OTOC
exhibits exponential growth with an exponent that saturates
the universal chaos bound [5,7]. Second, the ground state
of two such coupled SYK models is well approximated by
the TFD state [27], which allows us to apply the machinery
developed in the previous section in a relatively simple set-
ting. Third, there are several proposals in the literature for
experimental realizations of the SYK model and its variants
[43–47], making it a potentially fruitful platform for labora-
tory explorations.

A. The model

The model introduced by Maldacena and Qi in Ref. [27]
has the form

H = HSYK
L + HSYK

R + iμ
∑

j

χ
j

Lχ
j

R, (26)

where μ is a constant, and HSYK
α with α = (L, R) describe two

identical SYK models

HSYK
α =

∑
i< j<k<l

Ji jklχ
i
αχ j

αχ k
αχ l

α , (27)

each involving N Majorana zero-mode operators. These obey
the usual algebra {χ i

α, χ
j
β} = δi jδαβ , (χ j

α )† = χ
j
α . The cou-

pling constants Ji jkl are random, independent Gaussian vari-
ables respecting

Ji jkl = 0, J2
i jkl = 3!

N3
J2 (28)

and are independent of α—that is, the disorder in both SYK
models is perfectly correlated. Referring to a potential experi-
mental realization of the Maldacena-Qi model using quantum
dots (see Sec. IV below), and for the sake of brevity, we
henceforth dub the two SYK subsystems as L and R “dots.”

Without loss of generality, we define a complex fermion
basis as

c j = 1√
2

(
χ

j
L − iχ j

R

)
(29)

to construct the many-body Hilbert space. This basis is helpful
because the antiunitary time-reversal symmetry of the model
is manifest and simply represented by � = K, where K
denotes complex conjugation. The Majorana operators then
transform as �χ

j
L�−1 = χ

j
L and �χ

j
R�−1 = −χ

j
R. With such

a choice, H becomes purely real in the many-body basis
defined by the operators c j . The coupled SYK system is also
invariant under the total fermion parity

P = (−i)N
N∏

j=1

χ
j

Lχ
j

R
∼= (Nf ) mod 2, (30)

where Nf = ∑
j c†

j c j is the total fermion number. What is
less obvious is that the fermion number modulo 4, Q4 ≡
(Nf ) mod 4, is also a symmetry of H . This property re-
lies on the perfectly correlated disorder between the two
subsystems [48].

The model can be solved in the limit of large N by
methods developed in the context of the original SYK
model [3–5]. This involves formulating the theory as a
Euclidean-space path integral, averaging over the disorder
using the replica formalism, and finally writing the large-
N saddle-point action for the averaged fermion propagator
Gαβ (τ1, τ2) = 1

N

∑
j〈T χ

j
α (τ1)χ j

β (τ2)〉. The resulting saddle-
point action reads [27]

S = S0 + N

2

∫
τ1,τ2

∑
α,β

[

αβ (τ1, τ2)Gαβ (τ1, τ2) − J2

4
Gαβ (τ1, τ2)4

]
+ iμ

N

2

∫
τ1

[GLR(τ1, τ1) − GRL(τ1, τ1)], (31)

where S0 = −N ln Pf(δαβ∂τ − 
αβ ) and 
αβ denotes the self
energy associated with Gαβ . The corresponding saddle-point
equations are obtained by varying the action with respect
to Gαβ and 
αβ . Using the time-translation invariance, so
that Gαβ (τ1, τ2) = Gαβ (τ1 − τ2), and the mirror symmetry be-
tween the L and R subsystems, one can write the saddle-point
equations in terms of two independent correlators GLL(τ ) and

GLR(τ ). Their frequency-space counterparts are given as

GLL(iωn) = iωn − 
LL(iωn)

D(iωn)
,

GLR(iωn) = − iμ − 
LR(iωn)

D(iωn)
, (32)
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FIG. 2. Spectral properties of the Maldacena-Qi model obtained numerically through exact diagonalization (ED) for 2N = 28 and 32
[(a)–(c)] and solving the large-N saddle-point equations [(d)–(e)]. (a) Overlap between the ground state |G〉 and the best-fit thermofield
double state |TFDβ〉. The shaded area represents the standard deviation obtained from 16 independent disorder realizations. (b) Inverse
temperature βmax characterizing the best-fit |TFDβ〉 state. (c) Scaling of the energy gap to the first excited state as a function of 1/βmaxJ
in panel (b). The dashed line indicates the corresponding large-N result obtained in Sec. III C in the limit of small μ/J . (d) Spectral
function A(ω), with the inset showing a series of additional spectral peaks, centered approximately at harmonics (3n + 1)Egap of the gap.
(e) Imaginary part of the retarded Green’s functions Gret

LL (t ) and Gret
LR(t ) in real-time domain. (f) Comparison of the energy gaps extracted from

ED and large-N saddle-point solution. The expected scalings Egap ∼ (μ/J )2/3 and Egap ∼ μ/J at small and large μ/J , respectively, are shown
by dashed lines.

where D(iωn) = [iωn − 
LL(iωn)]2 + [iμ − 
LR(iωn)]2 and
ωn = πT (2n + 1) is the nth Matsubara frequency. The self-
energies are given by


LL(τ ) = J2GLL(τ )3, 
LR(τ ) = J2GLR(τ )3. (33)

In the following, we support the ideas for OTOC measure-
ment using the TFD state presented in Sec. II by analyzing
numerical solutions of the Maldacena-Qi model defined by
Eqs. (26) and (27). We perform exact diagonalizations of
the Hamiltonian for system sizes 2N as large as 32 and use
the results to calculate various quantities of interest. We also
numerically solve the large-N saddle-point equations (32) and
(33) by analytically continuing to real time and frequency
domain, and then employing the iterative procedure described
in Refs. [5,49]. This yields retarded propagators Gret

αβ (ω)
and their time domain counterparts. Some useful analytical
simplifications of the above Schwinger-Dyson (SD) equations
and details of our numerical procedures are described in
Appendix F.

B. TFD ground state

In Ref. [27], it was argued that the model in Eq. (26)
admits an approximate TFD ground state for all values of the
dimensionless parameter μ/J and an exact TFD ground state

in the limits of either small or large μ/J . This can be under-
stood intuitively as follows. For μ/J → 0, the ground state of
the system is simply given by |0〉L ⊗ |0〉R, which coincides
trivially with the zero-temperature TFD state |TFD∞〉. For
μ/J → ∞, the system is best understood as a collection of N
decoupled two-level systems with the Hamiltonian given by
the last term in Eq. (26) and energy levels ±μ corresponding
to the presence or absence of a fermion in that state. The
many-body ground state |	0〉 of this system is unique and
such that all N single-particle states are empty,

c j |	0〉 = 0, ∀ j = 1 . . . N, (34)

where the c j are defined in Eq. (29). This state is equivalent
(see Ref. [48] for an explicit proof) to the infinite-temperature
TFD state

|TFD0〉 = 1√
Z0

∑
n

|n̄〉L ⊗ |n〉R, (35)

where |n〉 are the eigenstates of HSYK. For intermediate values
of μ/J , one must resort to numerical exact diagonalization,
which confirms that the TFD state is always a good approxi-
mation to the true ground state of the system, as summarized
in Fig. 2(a) (see also Refs. [27,48]). The overlap is always
greater than 0.96, with the minimum occurring around μ/J ∼
0.1. This minimum was argued to indicate the location of a
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phase transition of the Hawking-Page type [50] between a
wormhole phase at small μ/J and low temperature, and a
black hole phase at large temperature [27,48].

The parameter β characterizing |TFDβ〉 which best de-
scribes the ground state is monotonically decreasing as a func-
tion of μ/J [see Fig. 2(b)]. The energy gap to the first excited
state, displayed in Fig. 2(c), scales as the temperature of the
TFD state 1/β, as expected from the arguments of Ref. [29].
In Sec. III C, we obtain the constant of proportionality as
Egap ≈ 1.3T from the large-N solution, which agrees well
with the ED numerics. However, as shown in Fig. 2(f), our ED
calculation does not show the scaling Egap ∼ μ2/3J1/3 at small
μ/J , expected from the wormhole duality and confirmed by
solving the imaginary-time SD equations (32) and (33) in
Ref [27]. This is presumably due to finite-size effects which
become important at energy scales smaller than ∼J/N .

We can extract the gap amplitude more precisely from the
numerical solution of the large-N saddle-point equations (32)
and (33), but now solved in real time and frequency domain.
This is most easily done by analyzing the spectral function

A(ω) = − 1

π
ImGret

LL(ω), (36)

defined using the retarded propagator Gret
LL(ω), which is related

to the Matsubara frequency propagator GLL(iωn) by the stan-
dard analytical continuation iωn → ω + iδ [51]. The spectral
function is shown for several values of μ in Fig. 2(d). The
spectral gap Egap, defined here as the position of the first
peak in A(ω), is plotted in Fig. 2(f). It shows Egap = μ2/3J1/3

scaling (with numerical prefactor very close to 1) for small
μ/J , with a crossover to a linear dependence occurring around
μ/J ≈ 0.1. An extensive symmetry analysis and substantial
simplifications of the SD equations (32) and (33), discussed in
Appendix F, allows us to converge the numerical solution for
smaller μ/J than was previously reported [27,48]. This proce-
dure gives access to the conformal ∼μ2/3 scaling regime and
is also crucial in providing accurate results for the dynamics
of the left-right correlators shown in Fig. 2(e).

Note that the spectral function A(ω) displayed in Fig. 2(d)
shows intriguing additional structure, beyond what was re-
ported in previous works. We find a sharp peak at ω = Egap

followed by an sequence of peaks centered close to harmonics
of the gap, with spacing �ω ∼ 3Egap. The peak at Egap

appears to be infinitely sharp (i.e., resolution limited in our
numerics), while the harmonics get progressively broader as
shown in the inset of Fig. 2(d). This structure is reflected in
the behavior of Gret (t ) which shows nondecaying oscillations
with a period 2π/Egap at long times, Fig. 2(e). The presence
of sharp quasiparticle peaks in A(ω) at low frequency suggests
an emergent Fermi-liquid description at low energies and
temperatures, which is yet to be developed and poses an
interesting challenge for future work.

C. Measuring OTOCs in coupled SYK models

It is known that, in the limit of N → ∞ and at strong
coupling βJ � 1, the SYK model is maximally chaotic with
a Lyapunov exponent saturating the chaos bound λL = 2πT .
In numerical calculations at relatively small N , the maxi-
mally chaotic nature of the SYK model, as seen through the
Lyapunov exponents, was never reliably observed and the
failure was attributed to finite-N effects [44,52]. Indeed, the
exponential growth of the OTOC, parametrized by

Re[F (t )] = A + B

N
eλLt (37)

with A, B real constants, can be expected for times J−1 � t <

1/λL log(N/B) and βJ < N .
However, previous numerical calculations were carried out

using the standard OTOC in Eq. (3) which shows stronger
finite-size effects [37,42]. We compare in Fig. 3 the OTOCs
obtained numerically (in a single SYK model) for the three
different regularizations discussed in Sec. II B above: stan-
dard, regularized, and asymmetric. We then extract the Lya-
punov exponent for each choice by fitting to the expected
functional from, Eq. (37), for intermediate times. Inspired by
Ref. [53], we define the lower bound of the fitting region
by a time t− such that F (t−) ∼ 0.98F (0) which marks the
beginning of the exponential growth. Similarly, we define the
upper bound t+ as the time at which the second derivative
F ′′(t+) < 0 and thus cannot describe an exponential. For each
regularization, we can fit an exponential growth character-
istic of quantum chaotic systems—however, the Lyapunov

FIG. 3. Out-of-time-order correlators F (t ) obtained through numerical exact diagonalization of a single SYK model with N = 30 using
(a) standard, (b) asymmetric, and (c) regularized forms defined by Eqs. (3), (17), and (16), respectively. The asymmetric and regularized
forms of the OTOC correspond to the time-ordered correlators in a TFD state given by Eqs. (17) and (10), respectively. (d) Comparison of the
extracted Lyapunov exponents λL for the three different regularizations. The chaos bound λL = 2πT is indicated by the horizontal dashed line;
the Lyapunov exponent of the SYK model extracted from solving self-consistent ladder diagram equations at large N [5,49] is shown in red.
Taking the latter as a benchmark for finite-N numerical results, we conclude that the regularized OTOC allows to access lower temperatures
more reliably than the asymmetric or standard forms.
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exponent λL extracted from our fitting procedure at low tem-
perature differs drastically between the three regularizations.
Specifically, the standard and asymmetric forms appear to
violate the chaos bound (as also reported elsewhere [44,52]).
This is, of course, not a physical effect but rather reflects
the breakdown of our fitting procedure, which occurs because
the separation of timescales is insufficient for the small sys-
tem sizes N considered. The regularized form of the OTOC
captures the expected trend for the SYK model (red line in
Fig. 3(d), cf. Refs. [5,49]) more accurately due to weaker
finite-size effects (see also Ref. [37]).

As discussed above, the TFD setup naturally leads to
regularized OTOCs with a square-root of thermal density
matrices inserted inside the trace as indicated in Eq. (16). This
is an interesting feature, because such symmetric insertion
of thermal factors does not naturally appear in most other
measurement schemes such as the Lochsmidt echo or those
described in Refs. [11–13].

As discussed in Sec. II-D, a possibly more convenient
way to access the OTOC is through a measurement of the
two-sided Green’s function GLR(t − t ′) in the ground state
of the coupled system. This is clearly a more straightforward
measurement but is limited to weak couplings μ/J . To verify
that this approach indeed works, we adapt Eq. (23) to the
Maldacena-Qi model by identifying O j = χ j . Following the
steps outlined in Sec. II D, we derive the short-time expansion
of the retarded version of the averaged LR Majorana propaga-
tor,

iGret
LR(t,−t ) = θ (t )

N

∑
j

〈{
χ

j
L (t ), χ j

R(−t )
}〉

� +4μ

N

∑
j,k

∫ t

0
ds Re tr[χ j (t + s)χ ky2χ kχ j (t − s)y2]

+ 4μ

N

∑
j,k

∫ t

0
ds Re tr[χ j (t + s)χ ky2χ j (t − s)χ ky2],

(38)

valid for 0 < t � μ−1. Similar to the time-ordered case,
Gret

LR(t ) contains an OTOC contribution [last line of Eq. (38)],
and we therefore expect an exponential growth at intermediate
times.

In Fig. 4(a), we show the imaginary part of Gret
LR(t ) cal-

culated numerically from the large-N saddle-point equations
for several values of μ/J . For sufficiently weak couplings
μ/J , we observe an approximately exponential growth in the
expected regime, from which we extract a putative Lyapunov
exponent λL(μ) as shown in the inset of Fig. 4(a). The
extracted exponents follow the ∼μ2/3 scaling of the energy
gap [see Fig. 2(f)] at small μ/J . Given that Egap scales linearly
with the effective temperature 1/β of the corresponding TFD
state [29] [see Fig. 2(c)], our results imply that λL ∼ T ,
consistent with the expectation for the SYK model at low
temperatures.

In order to make quantitative statements, we need to
establish the coefficient of proportionality of λL(T ) which
requires the knowledge of the function T (μ). This can be in
principle obtained from our ED results shown in Fig. 2(b).
However, because ED does not accurately capture the Egap ∼
μ2/3 scaling at small μ/J , we do not expect this approach to be
quantitatively reliable. On the other hand, as we show below,
it is possible to extract the T (μ) dependence directly from the
large-N formalism which correctly captures the Egap ∼ μ2/3

scaling. To do this, we apply Eq. (6) with OL = HSYK
L to the

Maldacena-Qi model, obtaining〈
HSYK

L

〉
TFD = 〈HSYK〉β. (39)

The left-hand side is evaluated in the ground state of the
Maldacena-Qi model and gives 〈HL〉TFD as a function of μ

(dropping the SYK superscript from here on). The right-hand
side is evaluated in the thermal ensemble of a single SYK
model and gives 〈H〉β as a function of temperature. Matching
these two energies through Eq. (39) then yields the required
function T (μ).

The expectation value of the Hamiltonian operator can be
extracted from the system Green’s functions obtained from
the large-N saddle point equations. A textbook procedure [51]

FIG. 4. Measuring OTOCs using two-point functions in a TFD state. (a) Imaginary part of the retarded Green’s function Gret
LR(t ) in real

time, obtained from the numerical solution of the saddle-point equations with a small physical temperature Tphys/J ≈ 0.001. At intermediate
times J−1 � t � μ−1, an exponential behavior is observed. By fitting the region shown by a shaded area, we extract Lyapunov exponents
λL (μ) shown in the inset. (b) Using the procedure discussed in Sec. III C, Eqs. (39)–(41), we obtain the functional dependence between the
effective temperature of the TFD state T = 1/β and the coupling μ. [The inset shows 〈HL〉 calculated using both sides of Eq. (39)]. This allows
us to extract λL (T ) in panel (c), which is consistent with the chaos bound λL = 2πT at low temperature. The scaling of λL (T ) expected [5,49]
for the SYK model (as in Fig. 3) is also shown.
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applied to the Maldacena-Qi Hamiltonian yields

〈HL〉TFD = N

4
lim

τ ′→τ+

[
∂

∂τ
GLL(τ ′ − τ ) + iμGLR(τ ′ − τ )

]
,

(40)

where Gαβ (τ ) is the imaginary-time Green’s function. Fourier
transforming into the Matsubara frequency space and using
the spectral representation of Gαβ (iωn), we can rewrite this in
the integral form

〈HL〉TFD = N

4

∫ ∞

−∞
dω n(ω)[ωρLL(ω) + μρLR(ω)], (41)

which is convenient for numerical evaluation. Here n(ω) =
1/(eβω + 1) denotes the Fermi-Dirac distribution and ραβ (ω)
are the spectral functions defined in Appendix F.

We use Eq. (41) to evaluate the left-hand side of Eq. (39).
The right-hand side can be obtained in an analogous manner
and is given by Eq. (41) with μ = 0 and ρLL replaced by
the spectral function ρ(ω) of the single SYK model. The
results of this calculation are summarized in Fig. 4(b). We
find that T = μ for large μ/J while T/J ≈ 0.76(μ/J )2/3 at
small μ/J . Using this result, we obtain Lyapunov exponents in
good agreement with the prediction for maximal chaos at low
temperatures, λL = 2πT , as shown in Fig. 4(c). However, we
do not obtain a quantitative agreement with the full solution
for the Lyapunov exponents of the SYK model (also shown
in Fig. 3). Our method overestimates the value of λL for
intermediate T/J , which could be due to uncertainties in
selecting the optimal time window for the fitting procedure, or
contamination from the NTOC terms and higher order terms
in μ in the expansion leading to Eq. (38).

IV. PHYSICAL REALIZATIONS
AND MEASUREMENT SCHEMES

The general scheme to probe quantum chaos using the
thermofield double state discussed in Sec. II is applicable to
physical systems of essentially any type. The key require-
ment is to have two identical copies of the system which
can be initialized into the TFD state and then measured.
Although there are other known systems that exhibit quan-
tum chaos, we continue focusing here on the SYK fam-
ily of models which are exactly solvable in the large-N
limit and have been widely studied in the literature. Below
we discuss possible physical realizations of two coupled
SYK models, as well as protocols that yield out-of-time
ordered correlation functions by performing legitimate causal
measurements.

A. Realizations of coupled SYK models

1. Quantum dots

Perhaps the most conceptually transparent realization of
the Maldacena-Qi model [27] is depicted in Fig. 5. It consist
of N semiconductor quantum wires proximitized to realize
a topological superconductor phase with a pair of Majorana
zero modes bound to their ends [54–58]. The wires are weakly
coupled to a pair of identical quantum dots, such that the
zero modes delocalize into them and form two identical SYK

FIG. 5. Possible realization of the Maldacena-Qi model [27]
based on the SYK platform proposed in Ref. [45]. Majorana fermions
localized at the ends of quantum wires are weakly coupled to two
identical quantum dots containing electronic disorder. Under suitable
conditions, each quantum dot realizes an SYK model. If the wires are
relatively short, then overlap between the Majorana wave functions
in the bulk of each wire leads to their pairwise coupling of the form
indicated by the last term in Eq. (26). Similar terms arise if capacitive
effects are included for the nanowires; cf. Appendix D. In both cases,
the strength of this coupling can be controlled by the electrostatic
gates. Tunnel probes are used to perturb the system by injecting
electrons and allow to perform spectroscopic measurements.

models when interactions between the underlying electrons
are taken into account [45]. In a wire of finite length L,
the two Majorana end modes are weakly coupled due to the
overlap of their exponentially decaying wave functions in
the bulk of the wire. For the jth wire, this coupling has the
form iμχ

j
Lχ

j
R with μ ∼ e−L/ξ cos (kF L), where ξ denotes the

superconducting coherence length and kF is the Fermi wave
vector of electrons in the wire. Both ξ and kF are sensitive
to the gate voltage applied to the wire, which makes the
coupling strength μ tunable, at least in principle. A similar
term arises for long wires L � ξ upon including capacitive
effects in each quantum wire. Since the device in Fig. 5
serves as an instructive example below, we expand on some
technical details of its realization, following Ref. [45], in
Appendix D.

While the device depicted in Fig. 5 may look straight-
forward, its experimental realization presents a significant
challenge for reasons that we now discuss. On the positive
side, there now exists compelling experimental evidence for
Majorana zero modes in individual proximitized InAs and
InSb wires. The initial pioneering study by the Delft group
[59] has been confirmed and extended by several other groups
[60–65]. Assembling and controlling large collections of such
wires, as would be needed in the implementation of a single
SYK model, represents a significant engineering challenge.
Constructing an identical pair of SYK models entails another
level of difficulty. In the proposal of Ref. [45], a random
structure of the SYK coupling constants Ji jkl originates from
microscopic disorder that is present in the quantum dot. It is
clearly impossible to create two quantum dots that would have
identical configurations of microscopic disorder. A possible
solution to this problem would be to engineer quantum dots
that are nearly free of disorder and then introduce strong
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(a) B

TI
SC

SC

(b) B

FIG. 6. Other possible realizations of coupled SYK systems.
(a) A topological insulator film covered by a superconducting film on
both sides realizes two copies of the Fu-Kane superconductor. Two
identical holes prepared in the SC films, threaded by N flux quanta,
then realize two identical weakly coupled SYK models with N
Majorana fermions each. (b) A bilayer graphene flake with irregular
shape in a perpendicular magnetic field B realizes two coupled copies
of the cSYK model.

disorder by hand in a controlled and reproducible fashion.
This could be achieved, e.g., by creating a rough boundary
or implanting scattering centers in the dot’s interior. In such a
situation, the electron scattering (and therefore the structure of
Ji jkl ) would be dominated by the artificially introduced defects
and two nearly identical quantum dots could conceivably be
produced.

2. Fu-Kane superconductor

Another proposal to realize the SYK model starts from
Majorana zero modes localized in vortices at the interface
between a topological insulator (TI) and an ordinary super-
conductor (SC) [66]. Specifically, when N such vortices are
trapped in a hole fabricated in the superconducting layer, and
when the chemical potential of the TI surface state is tuned
close to the Dirac point, the effective low-energy description
of the system is given by the SYK Hamiltonian [44]. The
random structure of Ji jkl here comes from the randomly
shaped hole boundary and can be well approximated by a
Gaussian distribution in certain limits [44,67]. This setup can
be turned into a realization of the Maldacena-Qi model, by
using a thin film of a TI with a SC layer equipped with
an identical hole on each surface, as illustrated in Fig. 6(a).
For a thick film, this setup generates two decoupled identical

copies of the SYK model. For a thin film (e.g., composed
of several quintuple layers of Bi2Se3), the tails of Majorana
wave functions extending into the bulk from the two surfaces
will begin to overlap. The leading term describing such an
overlap will be of the form iμ

∑
j χ

j
Lχ

j
R, as required for

the Maldacena-Qi model. The coupling strength μ here will
depend exponentially on the film thickness d but cannot be
easily tuned once the device is assembled.

The advantage of this proposal over the quantum dots in
Fig. 5 is that randomness in Ji jkl here comes from the shape
of the hole and is therefore under experimental control. Two
nearly identical SYK models can conceivably be fabricated
in this setup. On the other hand, the experimental status of
Majorana zero modes in the Fu-Kane superconductor is not
nearly as well developed as in quantum wires. Experimental
signatures consistent with zero modes bound to individual
vortices have been reported in Bi2Te3/NbSe2 heterostruc-
tures [68,69], but this result remains unconfirmed by other
groups. More recently signatures of Majorana zero modes
have been observed in surfaces of the iron-based supercon-
ductor FeTe0.55Se0.45 [70–74]. It is thought that this material
is a topological insulator in its normal state, and its surfaces
realize the Fu-Kane model when the bulk enters the supercon-
ducting phase below the critical temperature Tc � 14 K.

These experimental developments identify the Fu-Kane
superconductor as a promising platform for Majorana device
engineering. Future efforts might bring us closer to realizing
the SYK and Maldacena-Qi models.

3. Graphene flake bilayers

The complex fermion version of the SYK model, some-
times abbreviated as cSYK, exhibits properties in many ways
similar to the canonical SYK model with Majorana fermions
[3,6]. It is defined by the Hamiltonian

H cSYK =
∑
i j;kl

Ji j;kl c
†
i c†

j ckcl − μ̃
∑

j

c†
j c j, (42)

where c j annihilates a complex fermion and μ̃ is the chemical
potential. A realization of the cSYK model has been proposed
using electrons in the lowest Landau level of a nanoscale
graphene flake with an irregular boundary [46]. Once again,
randomness in Ji j;kl originates from the irregular boundary of
the flake.

Two identical flakes forming a bilayer illustrated in
Fig. 6(b) could realize a complex fermion version of the
Maldacena-Qi model if electrons were permitted to tunnel,
with weak tunneling amplitude, between the adjacent sites
of the two flakes. The tunneling amplitude would depend
sensitively on the distance d between the flakes (or on the
number of layers in a multilayer graphene sandwich), but
again cannot be easily changed once the device is assembled.
This proposed setup eliminates the need for Majorana zero
modes, which is a significant potential advantage. On the other
hand, the detailed theory of a TFD-like state and its relation
to the ground state of the coupled system has not been worked
out for the complex fermion version of the model, and we
leave this as an interesting problem for future study.
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B. OTOC measurement schemes

Because the available experimental probes will depend
on the specific details of the physical realization, we offer
here only general remarks on how OTOC may be measured
using the protocols developed in Sec. II. For concreteness and
simplicity, we focus again on the proposed coupled SYK dot
realization of the Maldacena-Qi model, depicted in Fig. 5, but
we expect our discussion to be valid more generally.

At the highest level, we may distinguish two types of
situations when attempting to probe OTOC through a causal
(time-ordered) measurement: We either have the ability to
control the coupling strength μ on microscopic timescales
(i.e., times of order h̄/J), or we do not. In the first case, we can
manipulate μ to prepare the initial resource state |TFDβ (−t )〉
and then perform a two-sided time-ordered measurement as
discussed in Sec. II and Appendix A. This has the advantage
of directly probing the regularized or asymmetric OTOCs.
We give some concrete examples of this below. If μ cannot
be controlled on microscopic timescales, it is still possible
to extract the OTOC by measuring Gret

LR(t ) in a system with
constant nonzero μ, as discussed in Sec. II-D. While this
measurement is in principle easier, the quantitative interpre-
tation is less clean, because it necessitates disentangling of
the OTOC contributions from the NTOC terms in Eq. (23).

1. When μ can be controlled

Following existing theoretical work on eternal traversable
wormholes [27,29], we discussed a method to reliably create
a TFD state by cooling down to the ground state of a weakly
coupled two-system Hamiltonian H (λ) = H0 + λHI . Measur-
ing the OTOC requires the TFD state evolved to negative
time, |TFDβ (−t )〉, which we demonstrate in Appendix A can
be achieved, for short time durations at least, by tuning the
dimensionless coupling λ. We emphasize that in a generic
many-body system, this should be a much easier task than
true backward time evolution of a many-body excited state
that would normally be required to measure an OTOC. Such
backward time evolution necessitates the reversal of the sign
of the many-body Hamiltonian H0 which is, in the vast major-
ity of cases, not feasible by any known technique. On the other
hand, manipulating the strength of couplings between two
systems can often be achieved, e.g., by gating, as discussed in
the previous section and Appendix D for the setup of Fig. 5.

With the above caveats, the proposed protocol to measure
OTOC using the TFD state could be defined as follows. (i)
Prepare two identical copies of the system that are weakly
coupled and described by H (1) = HS . (ii) Cool the coupled
system to a physical temperature Tphys that is much smaller
than the energy gap of the combined system, which puts it
into its ground state well approximated by |TFDβ (0)〉. (iii)
Increase coupling λ to a value larger than 1 for a short period
of time. This creates a good approximation of |TFDβ (−t )〉
where the time evolution is with respect to H0, cf. Appendix
A. (iv) Decouple the system by setting λ = 0 and probe it by
a conventional measurement. One possibility, mathematically
expressed in Eq. (17), is to excite the system on one side
at time −t and then preform a two-sided measurement at
time zero. This procedure yields a direct measure of the
asymmetrically regularized OTOC shown in Fig. 3.

A way to measure two-sided two-body Majorana opera-
tors is via wire-charge measurements, cf. Refs. [75,76] and
detailed in Appendix D, that only rely on a capacitive coupling
between an external readout circuit and the nanowire charges.
We consider the simplest case where a single, collective gate
in Fig. 5 couples to all nanowires. Quantizing a fluctuat-
ing global gate voltage vg(t ) → [a(t ) + a†(t )] and assuming
roughly isotropic capacitive coupling parameters ∼gj � g to
all nanowires, one finds

Hcharge−readout = Hres − gQ̂(t )[a + a†] , (43)

with a single photon species a and total nanowire-charge
operator Q̂(t ) = ∑

j q̂ j (t ) = ∑
j iχ j

L (t )χ j
R(t ). The term Hres

encodes the external resonator readout circuit and generates
the dynamics for resonator photons a(t ). Either the trans-
mission amplitude or phase shifts in this external circuit, by
means of the capacitive coupling in Eq. (43), and then yields a
probe of the total nanowire charge Q(t ). The latter is directly
related to the averaged equal-time left-right Green’s function,
as GLR(t ) = −iQ(t )/N .

2. When μ is fixed

In Secs. II D and III D, we showed that the averaged LR
Green’s function of the coupled theory at fixed μ contains
information on the OTOC for small couplings μ/J and short
times. We now argue that the retarded version of the LR
Green’s function [Eq. (38)] can be probed by a straightforward
tunneling measurement in the setup of Fig. 5. Consider a
tunnel probe weakly coupled to one of the wires at a point
distance x from its left end (represented as the central probe in
Fig. 5). A standard tunneling experiment measures differential
tunneling conductance g(V ) = dI/dV , which is proportional
to the electron spectral function in the wire ρx(ω) at point x
and frequency ω = eV , where V is the applied bias voltage.
In Appendix C, we show that this quantity is related to
the retarded LR two-point Majorana correlator by a simple
relation

iGret
LR(t ) � Kxθ (t )

∫ ∞

−∞
dωρx(ω) sin ωt . (44)

The constant of proportionality Kx depends on the tunneling
matrix element and on the position x in the wire, but is
time independent as the measurement is performed under
equilibrium conditions. Therefore, time dependence of Gret

LR(t )
and the relevant Lyapunov exponent can be extracted from the
measured spectral function, using Eq. (44).

The result given in Eq. (44) relies on two simple ob-
servations, discussed in more detail in Appendix C. First,
a retarded time-domain correlator of Hermitian operators is
purely imaginary. This fact follows directly from its defini-
tion and underlies the proportionality of iGret

LR(t ) to a real
quantity. Second, Majorana zero mode operators χ k

L/R are
simply related to the electron operators in the wire through
the solution of the relevant Bogoliubov–de Gennes equation
[54–58], which is largely dictated by symmetries of the setup.
This implies proportionality of iGret

LR(t ) to the electron spectral
function, Fourier transformed into the time domain.

Based on these observations, we expect Eq. (44) to be
robust and independent of system details. Remarkably, in

013254-12



DIAGNOSING QUANTUM CHAOS IN MANY-BODY SYSTEMS … PHYSICAL REVIEW RESEARCH 2, 013254 (2020)

conjunction with Eq. (38), it connects the Lyapunov exponent
of an OTOC with the electron spectral function in a proxim-
itized semiconductor system, which is routinely measured in
tunneling and other spectroscopic experiments.

V. CONCLUSIONS AND OUTLOOK

In this work, we introduced and extensively tested the
concept of entanglement in the thermofield double state as
a tool to measure out-of-time ordered correlators in quan-
tum many-body systems. OTOCs have been of great interest
recently because their exponential growth at intermediate
times provides direct access to diagnosing quantum-chaotic
behavior in many-body systems.

While previous work has implemented OTOC measure-
ments in small-scale and highly controllable quantum systems
[10–13], these approaches do not lend themselves to the
analysis of large, complex many-body systems that realize
quantum chaos in solid-state platforms. Based on the ther-
mofield double state, one of the main workhorses for the
theoretical description of black hole and wormhole quantum
physics [7,25,26], we proposed and tested protocols for OTOC
measurement, where the preparation of a specific resource
state—namely the TFD—replaces the need for complicated
time evolution or echo procedures at a later stage. The TFD
entangled pair can be obtained as a unique ground state of two
coupled copies of the interacting quantum system under inves-
tigation [27–29]. We showed that a conventional measurement
with no or only minimal control of the system parameters
can directly access the so-called regularized OTOCs. The
latter have been introduced as mathematical objects in field-
theoretical calculations, because in certain limits they are
less singular than the canonical OTOCs. Regularized OTOCs
have recently been argued to measure quantum chaos more
reliably than canonical OTOCs [35–37], a result corroborated
by our numerical analysis. However, regularized OTOCs are
even more difficult to access than canonical OTOCs in a
physical measurement, given that the insertion of square roots
of the density matrix on their Schwinger-Keldysh contours
(see Fig. 1) does not reflect a sensible thermal measurement,
even if backward time evolution is considered possible. To
our knowledge, only the interferometric approach of Ref. [17]
potentially allows for their extraction. It is all the more
exciting that they arise as naturally accessible objects in our
TFD-based protocols.

Perhaps the most surprising outcome of our considerations
is the realization, expressed mathematically in Eqs. (23) and
(25), that the Lyapunov exponent λL characterizing quantum
chaos is in fact encoded in the intermediate-time behavior of
the ordinary two-point correlator GLR(t ). The latter is mea-
sured under equilibrium conditions, between operators drawn
from the two subsystems forming the TFD. We confirmed
this result through a numerical solution of the large-N saddle-
point equations associated with two coupled SYK models.
These indeed show approximate exponential growth of GLR(t )
at intermediate times with a Lyapunov exponent λL ≈ 2πT
consistent with the presence of maximal chaos, saturating
the Maldacena-Shenker-Stanford bound [7] λL � 2πT in the
weak coupling limit μ/J � 1. This finding is significant
because in many systems such two-point correlators can be

probed without much difficulty by spectroscopic techniques.
For example, in the proposed quantum dot realization of
two coupled SYK models illustrated in Fig. 5, the retarded
Majorana correlator Gret

LR(t ) is found to be proportional to the
Fourier transform of the electron spectral function ρx(ω) [see
Eq. (44)], which is accessible through a routine tunneling
measurement.

Lastly, in this work we have made substantial progress in
understanding the structure of the large-N Schwinger-Dyson
equations for the Maldacena-Qi model [27] composed of two
coupled SYK models, cf. Sec. III A and Appendix F. We
showed that it becomes possible to describe the full real-time
dynamics in terms of a single (retarded) Green’s function,
the corresponding spectral function, and a single self-energy.
Finding an explicit analytical solution for the dynamics of
such coupled quantum chaotic systems, at least in certain
limiting cases, would clearly be very rewarding. Specifically,
as we argued, it should be possible to extract the intermediate-
time exponential growth of GLR(t ) and the corresponding
chaos exponent directly from the large-N saddle-point equa-
tions. By contrast, in the single SYK model one has to go
beyond the saddle point equations and sum an infinite series
of ladder diagrams to evaluate the OTOC [4,5].

As an outlook, interesting future work includes the detailed
investigation of physical platforms for coupled chaotic quan-
tum systems, for example, based on the ideas presented in
Sec. IV A and Refs. [44–46]. The key challenge here will be
to prepare two systems that are nearly identical in that the
interaction coupling constants Ji jkl are essentially the same
in both. We discussed several possible approaches to this
challenge in Sec. IV A, but none is fully satisfactory. Going
forward, the most promising route appears to involve an exact
microscopic symmetry that would relate two subsystems. For
instance, time reversal � in a systems of spin- 1

2 fermions
would mandate identical Ji jkl (up to a complex conjugation)
for the two spin projections. A closely related attractive
research direction is toward realizations of “wormholes” in
coupled complex-fermion SYK models [3,6]. Use of complex
fermions would alleviate the need for Majorana zero modes
as basic ingredients and would reintroduce electron spin as a
potentially useful degree of freedom. While it is not obvious at
present how to formulate the corresponding complex-fermion
TFD state, guidance can be taken from the pedagogical dis-
cussion of Ref. [29].

Further, the generality of the construction in Ref. [29] sug-
gests that many more interesting physical systems, including
in higher spatial dimensions, might lend themselves to an
investigation of their chaotic behavior using our proposed
method. We hope that our findings will stimulate further
developments on both theoretical and experimental fronts,
which will eventually lead to practical tools for quantum
chaos diagnosis in interacting many-body systems.
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APPENDIX A: TFD PREPARATION AT NEGATIVE TIMES

To demonstrate the preparation of an initial TFD state
|	0(−t )〉 at negative times, we consider a generalization of
the coupled systems’ Hamiltonian HS to

H (λ) = HL + HR + λHI , (A1)

where λ is a dimensionless parameter used to control the
strength of coupling between the L and R systems. We have
H (1) = HS and H (0) = H0. First, assume that the system
has been cooled down and is in the ground state |	0〉 of
H (1) = HS ,

HS|	0〉 = ε0|	0〉. (A2)

Now imagine we increase λ to a value larger than one.
The system will start evolving according to |	λ(t )〉 =
e−iH (λ)t |	0〉. Using H (λ) = λHS − (λ − 1)H0, which follows
from Eq. (A1), this evolution can be rewritten as

|	λ(t )〉 = e−iλHSt+i(λ−1)H0t |	0〉. (A3)

We next employ the Baker-Campbell-Hausdorff formula
eAeB = eA+B+ 1

2 [A,B]+... to separate the two terms in the expo-
nential and multiply from the right by e−B to obtain

eA = eA+B+ 1
2 [A,B]+···e−B, (A4)

where dots represent higher order commutators. Taking A =
−iλHSt + i(λ − 1)H0t and B = iλHSt , Eq. (A3) becomes

|	λ(t )〉 = ei(λ−1)H0t− 1
2 λ(λ−1)[H0,HI ]t2+···e−iλHSt |	0〉. (A5)

Using Eq. (A2), the last exponential evaluates to e−iλε0t . For
short time durations, one can furthermore neglect the t2 term
in the first exponential, which leads to

|	λ(t )〉 � e−iλε0t ei(λ−1)H0t |	0〉. (A6)

We see that increasing the coupling strength λ to a value larger
than 1 has the same effect as evolving the state |	0〉 backward
in time under the decoupled Hamiltonian H0 = HL + HR.
Manipulating the coupling strength λ can therefore be used
to prepare the TFD state at negative times and represents
a simple alternative to engineering a sign inversion of the
complicated, interacting Hamiltonian H0.

Equation (A6) remains true for sufficiently short times t
such that one can neglect the commutator term in the expo-
nential of Eq. (A5). This can be estimated from the condition

1
2λ〈i[H0, HI ]〉t2 � 〈H0〉t . (A7)

If we assume that the relevant energy scales for H0 and HI are
J and μ, respectively, then 〈H0〉 ∼ J and 〈i[H0, HI ]〉 ∼ Jμ.
Equation (A7) hence yields a constraint

t � (λμ)−1 (A8)
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FIG. 7. Preparation of the initial state at negative times. (a) The
principle of the backward time evolution illustrated on a simple spin-
1/2 model. The ground state |	0〉 of H (1), represented by the black
arrow on the Bloch sphere, precesses around B0 when λ is set to zero.
Backward time evolution can be approximated, for short times, if λ

is set to a value greater than one and precession around Bλ occurs.
(b) Overlap P(t ) for the spin model. The frequency is defined as ω =
J/2π . (c) Overlap P(t ) for the Maldacena-Qi model calculated using
ED with 2N = 24. In panels (b) and (c), we use J = 1, λ = 2 and
several values of μ as indicated.

on the time duration over which the evolution backward in
time following Eq. (A6) can be achieved. For weakly coupled
systems (μ � J ), this constraint gives a sufficient window to
probe OTOCs using the method described in Sec. II B.

Some intuitive understanding of the backward time evo-
lution described above can be gained by analyzing an ex-
ample of a simple system. Consider a spin-1/2 degree of
freedom in a magnetic field described by the Hamiltonian
H0 = −Jσ z and HI = −μσ x. The ground state |	0〉 of the
combined Hamiltonian H (λ) = H0 + λHI with λ = 1 has the
spin pointing along the direction parallel to the total magnetic
field B = (μ, 0, J ). If we switch off HI , the spin will start
precessing counterclockwise around the field direction B0 =
(0, 0, J ) associated with H0. This is analogous to the TFD
state evolving according to the decoupled Hamiltonian H0

forward in time. On the other hand, if we instead increase
the value of λ, the spin will start precessing counterclockwise
around the new field direction Bλ = (λμ, 0, J ), as illustrated
in Fig. 7(a). At short times t , we observe that the evolution for
λ > 1 approximates backward time evolution under H0. This
effect can be quantified by calculating the overlap

P(t ) = |〈	0(−t )|	λ(t )〉|2 (A9)

between the ground state evolved backward in time
according to H0, i.e., |	0(−t )〉 = e+iH0t |	0〉 and the
ground state evolved forward in time according to H (λ),
|	λ(t )〉 = e−iH (λ)t |	0〉. Elementary but somewhat tedious cal-
culation gives an explicit expression for P(t ) that we plot in
Fig. 7(b), for several values of μ. We observe that for short
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times and μ � J the overlap remains very close to 1, confirm-
ing that the method indeed yields an excellent approximation
to the state |	0〉 evolved backward in time. Crucially, this
backward time evolution does not require reversing the sign
of H0 and is achieved solely by controlling the strength of the
HI perturbation.

In Fig. 7(c), we present numerical evidence supporting this
claim for the coupled Maldacena-Qi model. Similar behavior
as described above is observed at short times in this interacting
many-body system, suggesting that it is generic and thus can
be used to prepare the required initial state |	0(−t )〉 in a wide
variety of settings.

APPENDIX B: SHORT-TIME EXPANSION OF LR
TWO-POINT CORRELATOR

In this Appendix, we derive Eq. (23), which we used in the
main text to argue that the LR two-point correlator GLR(t, t ′),
defined in Eq. (22), contains at short times information on the
OTOC. We proceed by evaluating the two-point correlator

iGLR(t, t ′) = 〈	0|T VL(t )VR(t ′)|	0〉. (B1)

Here |	0〉 denotes the ground state of the combined system,
described by the Hamiltonian H = HL + HR + HI , which we
will approximate later on by |TFDβ〉. We work in the Heisen-
berg picture where Vα (t ) is an arbitrary Hermitian operator
evolving according to the full Hamiltonian H .

GLR(t, t ′) is a naturally time-ordered correlator that a phys-
ical probe would measure in the ground state of the combined
system. We would like to know how this quantity is related to
what a physical probe would measure in a thermal ensemble
at inverse temperature β of a single, decoupled system. Math-
ematically, the goal is to express G(t, t ′) as an average with
respect to the TFD state of operators that evolve according to
H0 = HL + HR. To proceed, we pass to the interaction picture
by writing [51]

Vα (t ) = U (0, t )V I
α (t )U (t, 0), (B2)

where superscript I denotes the interaction picture and
U (t, t ′) = eiH0t e−iH (t−t ′ )e−iH0t ′

is the unitary operator that
translates between the Heisenberg and interaction pictures.
Using Eq. (B2), the correlator becomes

iGLR(t, t ′) = 〈	0|U (0, t )V I
L (t )U (t, t ′)V I

R (t ′)U (t ′, 0)|	0〉,
(B3)

where we used the property U (t, s)U (s, t ′) = U (t, t ′). For
simplicity, we henceforth also assume that t > t ′.

We now employ a standard result of diagrammatic many-
body theory [51] that expresses U (t, t ′) as a series expansion
in HI (t ) of the form

U (t, t ′) = 1 + (−i)
∫ t

t ′
dsHI (s)

+ (−i)2

2

∫ t

t ′
ds1

∫ t

t ′
ds2T [HI (s1)HI (s2)] + · · · .

(B4)

Here the time evolution of HI (t ) is according to H0. Sub-
stituting this into Eq. (B3), and retaining only terms up to first

order in HI (t ), we find

iGLR(t, t ′) � 〈
V I

L (t )V I
R (t ′)

〉
0

− i
∫ 0

t
ds

〈
HI (s)V I

L (t )V I
R (t ′)

〉
0

− i
∫ t ′

0
ds

〈
V I

L (t )V I
R (t ′)HI (s)

〉
0

− i
∫ t

t ′
ds

〈
V I

L (t )HI (s)V I
R (t ′)

〉
0. (B5)

where 〈· · · 〉0 denotes the expectation value with respect to
the ground state |	0〉. This expression is valid when one
can neglect all higher order terms in the expansion (B4)
of U (t, t ′), U (0, t ), and U (t ′, 0). This requires short time
durations |t − t ′| as well as individually small |t | and |t ′|.
In the following, we focus on the symmetric case t ′ = −t ,
which has a convenient property that short duration |t − t ′|
automatically assures that |t | and |t ′| are small.

As the final step, we substitute for HI the Maldacena-Qi
form given in Eq. (20) and approximate |	0〉 by |TFDβ〉. With
these choices, the expectation values in Eq. (B5) can be ex-
pressed in terms of single-sided averages using the procedure
explained in Sec. II B of the main text, see especially the steps
leading to Eq. (15). The correlator thus becomes

iGLR(t,−t ) � tr[V (−t )y2V (−t )y2]

− ημ
∑

j

∫ t

0
ds tr[V (−t )O j (−s)y2O j (s)V (−t )y2]

− ημ
∑

j

∫ 0

−t
ds tr[O j (−s)V (−t )y2V (−t )O j (s)y2]

+μ
∑

j

∫ t

−t
ds tr[O j (−s)V (−t )y2O j (s)V (−t )y2], (B6)

where η = +/− for bosonic/fermionic operators. We
dropped superscript I and subscripts R/L on all operators; it is
understood that they now evolve according to the single-sided
Hamiltonian, say HL, while the traces are taken with respect to
the eigenstates |n〉 of the same Hamiltonian. Each individual
trace in Eq. (B6) is time-translation invariant, and in the
following we find it convenient to shift all temporal arguments
of operators inside the traces by +t . In addition, using the
cyclic property of the trace, we may combine the second and
third lines and express the last line as an integral from 0 to t .
This leads to the form quoted in the main text Eq. (23).

Mathematically, Eq. (B6) can be viewed as an expansion of
the propagator G in powers of a dimensionless time variable
t̃ = μt to first order. Higher order contributions that would re-
sult from the omitted terms in Eq. (B4) can be neglected when
μt � 1, which constrains the expected domain of validity of
Eq. (B6) to short times or small values of coupling μ.

APPENDIX C: OTOC FROM ELECTRON
SPECTRAL FUNCTION

In this Appendix, we derive Eq. (44), which provides a
simple route to access OTOC and Lyapunov exponent through
an equilibrium tunneling measurement of the electron spectral
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function in a wire that forms a part of the device shown in
Fig. 5.

As a first step, we show that a time-domain retarded prop-
agator of Hermitian operators is imaginary valued. Consider a
retarded propagator defined as

iGret (t, t ′) = θ (t − t ′)〈{A(t ), B(t ′)}〉0 (C1)

evaluated in the ground state |	0〉 of the system. Expand-
ing the anticommutator and using the basic property of the
inner product 〈a|b〉 = 〈b|a〉∗, we can rewrite the average as
〈A(t )B(t ′)〉0 + 〈[B(t ′)A(t )]†〉∗0. For Hermitian operators A and
B, this equals 2Re〈A(t )B(t ′)〉0, and Gret (t, t ′) is therefore
purely imaginary.

As we already mentioned, a tunneling measurement can be
used to extract the electron spectral function ρx(ω) which is
related to the electron propagator Gx(ω). We therefore start
by considering the corresponding quantity defined in the time
domain as

iGx(t ) = 〈T cx(t )c†
x (0)〉0, (C2)

where cx(t ) annihilates electron at time t and at point x of
the wire. We want to relate G(t ) to the Majorana propagators
Gαβ (t ) discussed in the main text. To this end, recall the
relations

χL =
∫ L

0
dx�L(x)[c†

x + cx],

χR = i
∫ L

0
dx�R(x)[c†

x − cx], (C3)

which follow from the solution of the Bogoliubov–de Gennes
(BdG) equations for the Majorana wire [54–58]. Here,
�L/R(x) represent the Majorana wave functions. They are real
valued and peaked at the L or R end of the wire, respectively,
with exponentially decaying tails extending into the wire. The
form of Eqs. (C3) is constrained by the choice that χL/R

transform as even/odd under time reversal.
We may invert Eqs. (C3) to express the electron operators

in terms of the Majoranas,

cx � �L(x)χL + i�R(x)χR + · · · ,

c†
x � �L(x)χL − i�R(x)χR + · · · , (C4)

where the dots represent the remaining quasiparticle operators
that form the complete set of solutions of the BdG equations.
We will assume that these occur at nonzero energies separated
from the zero-mode manifold by a gap and will thus not affect
the low-energy spectral function. Substituting into Eq. (C2)
and neglecting these terms, we find the Majorana fermion
contribution to the electron Green’s function

Gx(t ) � �2
L(x)GLL(t ) + �2

R(x)GRR(t )

− i�L(x)�R(x)[GLR(t ) − GRL(t )]. (C5)

Making a further nonessential assumption of mirror sym-
metry between the L and R sides of the system, we have
GLL(t ) = GRR(t ) and GLR(t ) = −GRL(t ). Also, we note that
the same calculation can be repeated for the retarded function
iGret

x (t ) = θ (t )〈{cx(t ), c†
x (0)}〉0, with a similar result:

Gret
x (t ) � [

�2
L(x) + �2

R(x)
]
Gret

LL(t )

− 2i�L(x)�R(x)Gret
LR(t ). (C6)

Given that Gret
LL(t ), Gret

LR(t ) are imaginary while �L/R(x) are
real, we find

iGret
LR(t ) � − Re

[
Gret

x (t )
]

2�L(x)�R(x)
. (C7)

To complete this calculation, it remains to relate Re[Gret
x (t )]

to the electron spectral function which is the observ-
able quantity. We use the spectral representation Gret

x (ω) =∫ ∞
−∞ dω′ρx(ω′)/(ω − ω′ + iδ), which, upon Fourier trans-

forming, gives

Gret
x (t ) = iθ (t )

∫ ∞

−∞
dωe−iωtρx(ω). (C8)

Taking the real part and recalling that ρx(ω) is strictly real, we
obtain

Re
[
Gret

x (t )
] = θ (t )

∫ ∞

−∞
dωρx(ω) sin ωt . (C9)

Finally, combining with Eq. (C7), we arrive at Eq. (44) of the
main text.

APPENDIX D: MAJORANA NANOWIRE DEVICE

One of our example realizations of two coupled chaotic
systems is the two-sided SYK device shown in Fig. 5, inspired
by the SYK setup of Chew et al. [45]. Since this is the most
transparent and directly controllable realization we discuss, let
us here expand on its technical underpinning in the framework
of Ref. [45].

The system in Fig. 5 is described by N sets of Majorana
modes χ

j
L, χ

j
R at the left and right ends of the nanowires,

and by the NL/R � N complex fermions cs,α=L/R hosted in
disordered wave functions of its quantum dots. We write
the dot fermions in Majorana representation cs,α = (ηs,α +
iη̃s,α )/2, where ηs,α is even under time reversal (TR) while
η̃s,α is odd. Similarly, we take nanowire Majoranas χ

j
L and

χ
j

R to be even and odd under TR, respectively. Assuming that
both quantum dots preserve the BDI symmetry class of the
Majorana sector [45], the left and right ends of the device
then are guaranteed to host N TR-even (TR-odd) Majorana
zero modes. This statement holds unless the LR couplings
∼iχ j

Lχ
j

R are introduced, where in the main text we discuss the
full crossover from weak to strong bilinear couplings.

To express the toy-model Hamiltonian describing the de-
vice in Fig. 5, it is now convenient to introduce Majorana
spinors �χL/R, �ηL/R, and �̃ηL/R for the respective left/right
groups of Majorana fermions. Following Ref. [45], we first
describe the hybridization of Majoranas �χL/R into the left and
right quantum dots as

H0 = i
(
�χT

L MλL + �ηT
L MεL

)�̃ηL + i�ηT
R (MλR �χR + MεR �̃ηR). (D1)

Here Mλα are real rectangular matrices of couplings ∼λ

between the wire and dot Majoranas, cf. Fig. 5, and Mεα are
real Nα × Nα matrices encoding the dots level structure ∼ε.
The coupling Hamiltonians H0,α=L/R can be diagonalized by
orthogonal rotations obtained from a singular-value decom-
position of the coupling matrix encoded in Mλα and Mεα [45],
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giving new Majorana spinors(
�χ ′

L
�η′

L

)
=

(
Oχχ,L Oχη,L

Oηχ,L Oηη,L

)(
�χL

�ηL

)
(D2)

and �̃η′
L = Oη̃,L �̃ηL, and similar for right Majorana operators

with L → R and �η ↔ �̃η. In these new operators,

H0,α=L/R = i
Nα∑
j=1

Ej,αη′
j,αη̃′

j,α , (D3)

where η′
j,α and η̃′

j,α correspond to the rotated spinors �η′
α and

�̃η′
α , and Ej,α are associated hybridization energies obtained

from rotating the coupling matrix. Note that as guaranteed by
the BDI classification, each dots hosts N zero modes encoded
in spinors �χ ′

α that do not appear in H0,α . Further, assuming
strong wire-dot hybridizations λ � Nδε, where δε is the
typical level spacing in the dot, all wire Majoranas �χα are
absorbed into the respective left and right dots. Finite-energy
modes in Eq. (D3) are split off to energies ∼Nδε by level
repulsion.

We now add the LR coupling between the two SYK
dots. In the original basis, sensible couplings are pairwise
between Majoranas χ

j
L and χ

j
R on each wire, yielding Hint =

i
∑N

j=1 μ jχ
j

Lχ
j

R = i �χT
L μLR �χR with diagonal coupling matrix

μLR. The specific form and possible tuning of couplings μ j

is discussed below. Inverting the orthogonal transformations
in Eq. (D2), one can represent the original wire Majoranas
in the new variables as �χL = OT

χχ,L �χ ′
L + OT

ηχ,L�η′
L and �χR =

OT
χχ,R �χ ′

R + OT
η̃χ,R

�̃η′
R and obtain

Hint = i �χ ′T
L μχχ �χ ′

R + i �χ ′T
L μχη̃ �̃η′

R + i�η′T
L μηχ �χ ′

R + i�η′T
L μηη̃ �̃η′

R.

(D4)

Here the LR coupling matrices are given as μχχ =
Oχχ,LμLROT

χχ,R etc., connecting different species of the new
Majorana operators. Assuming that terms ∼μ j are small
against wire-dot hybridizations and the on-site level repulsion
scale, even in their presence the gapped Majorana-pairs in
Eq. (D3) will stay far removed. The remaining effective
Hamiltonian then reads

Hint,eff � i �χ ′T
L μχχ �χ ′

R, μχχ = Oχχ,LμLROT
χχ,R . (D5)

In the absence of left-right symmetry of the underlying disor-
dered quantum dots in Fig. 5, there is no reason to assume
that μχχ is diagonal. Nevertheless, it is always possible to
rediagonalize the LR Hamiltonian by re-applying the or-
thogonal transformations to Majoranas �χ ′

L/R. Given that the
original coupling matrix μLR was diagonal, one finds Hint,eff =
i �χ ′′T

L μLR �χ ′′
R with

�χ ′′
L = OT

χχ,L �χ ′
L = OT

χχ,LOχχ,L · �χL + OT
χχ,LOχη,L · �ηL, (D6)

and similarly �χ ′′
R = OT

χχ,R �χ ′
R. Note OT

χχ,sOχχ,s 
= 1, since
only the full transformation in (D2) is orthogonal.

We hence observe that under the approximations taken
above, the interaction matrix μLR = diag(μ j ) remains un-
changed by the absorption of Majorana modes χ j,L/R into the
SYK dots, but now acts on the modes �χ ′′

L/R.
Finally, for ease of notation, we relabel �χ ′′

L/R → �χL/R and
proceed to add on-site interactions for the remaining Ma-

jorana zero modes, inherited from Coulomb interactions of
the dot fermions cs,α=L/R [45]. Generically, one then obtains
a Hamiltonian H = HL + HR + Hint,eff with site-dependent
four-Majorana interactions as in Eq. (27)

HSYK
α=L/R =

∑
i< j<k<l

Jα
i jklχ

i
sχ

j
s χ k

s χ l
s . (D7)

From here, assuming left-right symmetry of the SYK dots
in Fig. 5 such that JL

i jkl = JR
i jkl identically, one obtains the

Maldacena-Qi Hamiltonian [27] in Sec. III.
We now discuss how one may realize (tunable) one-to-

one bilinear couplings across nanowires of the device in
Fig. 5. While one may use residual Majorana hybridizations
μ j ∼ μ0e−L/ξ that decay exponentially with wire length L,
in practice it is desirable to tune, or at least switch on and
off, the couplings in a more controllable fashion. To this end,
consider the TS nanowires in Fig. 5 to be strongly coupled to
a ground bulk superconductor but not fully grounded. For a
single wire, both its intrinsic single-electron charging energy
Ec and Josephson coupling EJ to the ground bulk SC then
become relevant. In the limit of large but finite EJ/Ec > 1, one
finds an effective parity splitting between even and odd charge
states on the wire, directly translating to a Majorana parity
splitting for pairs χ

j
L, χ

j
R [77]. On the Hamiltonian level, this

term can be incorporated as

Hint,j = μ(n j )iχ
j

Lχ
j

R , μ(n j ) = μ0 cos(πn j ) , (D8)

where μ0 depends on both Ec and EJ [77], and n j is a
gate parameter set by a nearby electrostatic gate, thereby
controlling the equilibrium charge (parity) on the wire. We
thus see that a nearby collective gate as in Fig. 5, controlling
charge on all nanowires in the device, can simultaneously
switch on and off the bilinear Majorana-coupling across all
pairs of modes χ

j
L/R. Further, at least in principle, one can

also address (few) wires individually via additional gates not
shown in Fig. 5.

APPENDIX E: MEASUREMENTS
IN THE NANOWIRE DEVICE

While one can measure some properties of the coupled-
wire SYK device with simple tunnel probes as indicated in
Fig. 5, here we mention another useful capability that comes
with the interside coupling implementation in Appendix D.
For each individually tunable gate voltage in the device,
e.g., the collective gate or ones attached to the top/bottom-
most nanowires, one can perform projective readouts of the
nanowire parities q̂ j = iχ j

Lχ
j

R or certain combinations thereof.
The more individually addressable gates, the more completely
one may map out the space of parity eigenvalues qj=1,...,N .
For a detailed discussion of Majorana-parity readout via res-
onators attached to electrostatic gates, see, e.g., Ref. [75,76].

To illustrate how this readout works, assume that a gate
parameter n in Eq. (D8) is set such that the corresponding
interaction is nearly switched off, n(t ) = 1

2 + v(t ) with a
small fluctuating gate voltage |v(t )| � 1. We then introduce
a resonator circuit capacitively coupled to the gate, described
by resonator photons a(t ). Upon quantizing the fluctuating
gate voltage v(t ), assuming a capacitive interaction strength
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g between resonator gate and nanowire, one replaces v(t ) →
[a(t ) + a†(t )]. The total nanowire-charge readout setup then
is described by

Hreadout = Hres − gq̂(t )[a + a†] , (E1)

where q̂(t ) is the time-evolving nanowire charge parity. Hres

here encodes the resonator spectrum and generates the dynam-
ics for resonator photons a(t ).

In the strong-coupling regime, leading to a net exchange
of resonator photons with the system, one can directly ac-
cess, e.g., the transmission amplitudes or phase shifts of the
resonator that depend on 〈a(t )〉, and via Eq. (E1) also on
〈q̂(t )〉 [75]. This readout mode hence allows for a direct,
time-resolved measurement of Majorana parities q(t ) between
the two coupled SYK dots in Fig. 5.

With similar but somewhat more complex measurements,
monitoring, e.g., the time-dependent resonator photon Green’s
function Ba(t, t ′) = 〈a†(t )a(t ′)〉 (or any quantity quadratic in
photon operators a, a†), one finds

Ba(t, t ′) = b0(t, t ′) + g2
∫

dt1,2b0(t, t1)Dq(t1, t2)Ba(t2, t ′) ,

(E2)

with nanowire-charge correlator Dq(t, t ′) = 〈q̂(t )q̂(t ′)〉. Here
b0(t, t ′) = b0(t − t ′) is a bare photon Green’s function of
the uncoupled resonator Hamiltonian Hres. Note that a
time-dependent Green’s functions as in Eq. (E2) is en-
coded by time- and frequency-resolved resonator occupations
Ba(τ, ω) = ∫

dτ ′eiωτ ′
Ba(τ + τ ′

2 , τ − τ ′
2 ) that can be measured

in principle. Ignoring backaction of the resonator on the
system [that generates an effective interaction as in Eq. (D8)],
and to lowest order in charge-resonator interaction g, this
gives information about d0(t, t ′) = 〈q̂(t )q̂(t ′)〉0. The latter
expression constitutes a four-Majorana two-sided correlator
evaluated with respect to the bare SYK Hamiltonian H =
HSYK

L + HSYK
R .

In Sec. IV B of the main text, we discuss how charge or
charge-correlator measurements can become useful tools to
access OTOCs in coupled-wire SYK dots.

APPENDIX F: NUMERICAL DETAILS

1. Exact diagonalization

The numerical exact diagonalization of the Maldacena-Qi
model proceeds in a standard fashion. One first defines a
complex fermion basis in order to build the Hilbert space
of dimension 2N (for 2N Majorana zero modes). The most
convenient choice, as discussed in the main text, is to define
complex fermions delocalized across the two subsystems,

c j = 1√
2

(
χ

j
L − iχ j

R

)
. (F1)

This basis has two key advantages: First, the antiunitary time-
reversal operator takes the simple form � = K, which makes
the Hamiltonian HS explicitly real and thus saves computa-
tional resources; second, the infinite-temperature TFD takes
the simple form

|TFD0〉 = |00...0〉. (F2)

reflecting the absence of fermions in all modes j. In practice,
one can then generate the TFDs for finite β through the
relationship [27]

|TFDβ〉 =
√

Z0

Zβ

e− β

4 H0 |TFD0〉, (F3)

where H0 = HL + HR is the Hamiltonian of the system with
zero coupling, μ = 0.

This procedure can be made more efficient by implement-
ing the symmetries of the problem: fermion parity P or—even
better—fermion number modulo 4 (Q4), cf. Ref. [48], which
includes fermion parity. The Hamiltonian then splits into four
blocks of unequal dimensions. The ground state |G〉 is always
found to be in the Q4 = 0 sector, and any thermofield double
state constructed using Eq. (F3) also has Q4 = 0 because
[Q4, H0] = 0.

2. Solution of Schwinger-Dyson equations

Here we discuss how to solve the large-N Schwinger-
Dyson (SD) equations pertaining to the two coupled SYK
models, cf. Sec. III A, Eqs. (31)–(33), in a numerically effi-
cient way. To this end, we first perform analytical manipu-
lations to implement as many of their subtle symmetries as
possible.

Since we are interested in real-time dynamics of the SD
equations, we work in real frequency ω and time t . To obtain
the relevant retarded propagators, we apply the standard ana-
lytical continuation iωn → ω + iδ to Eqs. (31) and write

Gret
LL(ω) = ω − 
ret

LL(ω)

D(ω)
,

Gret
LR(ω) = − iμ − 
ret

LR(ω)

D(ω)
, (F4)

with D(ω) = [ω − 
ret
LL]2 + [iμ − 
ret

LR]2. The retarded self-
energies follow from Eq. (33) as


ret
ab (t ) = J2Gret

ab (t )3. (F5)

We then employ the method introduced by Banerjee and Alt-
man [49] (supplement S2 therein) to express the self-energies
as


ret
ab (ω) = −iJ2

∫ ∞

0
dt[n2

+−n−− + n2
++n−+]eiωt . (F6)

The factors nss′ (t ) are calculated from the spectral representa-
tion of the corresponding propagators Gret

ab (ω) as

nss′ (t ) =
∫ ∞

−∞
dωρab(sω)nF (s′ω)e−iωt , (F7)

where nF (ω) = 1/(eβω + 1) is the Fermi function.
Given certain symmetries of the spectral functions ρLL(ω)

and ρLR(ω), we now show how to deduce all occupations
nss′ (t ) from just a single one. The spectral functions in our
case read

ρLL(ω) = − 1

π
Im

[
Gret

LL(ω)
]
,

ρLR(ω) = − 1

π
Im

[
iGret

LR(ω)
]
. (F8)
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While the first line is standard, the i factor on the second line
is unconventional but comes about to give the correct result
for ρLR(ω) within our conventions. Consider as an example
the retarded Green’s functions for the noninteracting case

gret
LL(ω) = ω + iδ

(ω + iδ) − μ2
,

gret
LR(ω) = −iμ

(ω + iδ) − μ2
, (F9)

which solve Eqs. (F4) and (F5) when J = 0. The spectral
functions then show Lorentzian peaks (with weight 1

2 )

ρab(ω) = 1

2π

[
δ

(ω − μ)2 + δ2
+ σab

δ

(ω + μ)2 + δ2

]
,

(F10)

centered at ω = ±μ, and are symmetric (antisymmetric)
around ω = 0, where σLL = +1 (σLR = −1).

In our numerical solution, we begin from the ansatz (F9)
with small nonzero δ and iterate together with Eqs. (F7)
and (F6). Given that the above symmetry properties persist
throughout the iterations of the SD equations, one can relate
factors nss′ (t ) as

n−−(t ) = n++(−t ) = [n++(t )]∗ ,

n+−(t ) = n−+(−t ) = [n−+(t )]∗ ,

n−+(t ) = σabn++(t ) ,

n−−(t ) = σabn+−(t ) . (F11)

The first two of above equations hold since both spectral
and Fermi functions are real, while the last two require the
knowledge about the ω parity σab of the spectral function. First
and third equations yield n−− and n−+ from n++. Inserting the
third equation into the second, one further obtains n+−(t ) =
σab[n++(t )]∗.

Hence, only n(t ) = n++(t ) is required to evaluate the
retarded self-energy 
ret

ab (ω). Henceforth, we only consider
this quantity and attach to it an index nab(t ) to denote its
relation to the specific spectral function ρab(ω). Note that
nab(t ) is not real in general; it is the Fourier transform of a
real function ρab(ω)nF (ω), so it is Hermitian on the time axis:
nab(t ) = n∗

ab(−t ).
Since we are working with imaginary Gret

LR(ω) (leading also
to the unconventional spectral function equation), one has to
put back a factor of −i in the self-energy Eq. (F6) above,

ret

LR → 
̃ret
LR = −i
ret

LR. With this additional factor, one can
also rephrase the self-energies as


ret
LL(ω) = −2iJ2

∫ ∞

0
dtRe

[
n3

LL(t )
]
eiωt , (F12)


̃ret
LR(ω) = 2iJ2

∫ ∞

0
dtIm

[
n3

LR(t )
]
eiωt . (F13)

This form makes apparent the explicit anti-Hermiticity of

ret

ab (ω) on the frequency axis: The argument of the Fourier
transform in Eq. (F12) is real and hence the transformed
function is Hermitian. With the prefactors ∓2iJ2, 
ret

LL(ω)
and 
̃ret

LR(ω) are manifestly anti-Hermitian: 
ret
LL(ω)∗ =

−
ret
LL(−ω) and 
̃ret

LR(ω)∗ = −
̃ret
LR(−ω). Since both the bare

noninteracting propagator [terms ω and iμ in Eq. (F4)] and


ret
ab (ω) are anti-Hermitian, the same holds true for any odd-

power product of the two emerging from the Dyson series.
Hence, also the full propagator [Gret

ab (ω)]∗ = −Gret
ab (−ω) is

anti-Hermitian on the frequency axis, and Gret
ab (t ) is strictly

imaginary.
After performing the above manipulations, we further find

it convenient to switch to Green’s functions and self-energies
that diagonalize the SD equation explicitly:

Gret
± (ω) = Gret

LL ± iGret
LR , 
ret

± (ω) = 
ret
LL ± i
̃ret

LR . (F14)

The spectral densities ρ± = ρLL ± ρLR here follow from the
standard relation ρ±(ω) = − 1

π
ImGret

± (ω). From our ansatz
in Eq. (F9), one sees that g+(ω) = −g∗

−(−ω) which im-
plies ρ+(ω) = ρ−(−ω) initially. One then finds 
+(ω) =
−
−(−ω)∗, and consequently also Gret

+ (ω) = −Gret
− (−ω)∗

which a priori is not obvious. Hence, the symmetry ρ+(ω) =
ρ−(−ω) is kept throughout, and the full solution of the SD
equations is encoded in

[Gret
+ (ω)]−1 = ω − μ − 
ret

+ (ω), (F15)

where broadening and shift of resonances in Gret
+ (ω) is directly

linked to the real/imaginary part of the self-energy


ret
+ (ω) = −2iJ2

∫ ∞

0
dt

[
Re

(
n3

LL

) − iIm
(
n3

LR

)]
eiωt . (F16)

Here we used

nLL/LR(t ) =
∫ ∞

−∞
dω

[ρ+(ω) ± ρ+(−ω)]

2
nF (ω)e−iωt . (F17)

The physical propagators Gret
LL,LR follow from Eq. (F14)

and using symmetries, e.g., as Gret
LR(ω) = − i

2 [Gret
+ (ω) +

Gret
+ (−ω)∗].
We made substantial progress in understanding the struc-

ture of the SD equations for the Maldacena-Qi model and,
using symmetries, reduced them to a single propagator Gret

+ (ω)
and self-energy 
ret

+ (ω). Equation (F16), however, is highly
nonlinear and Eq. (F15) contains an energy scale μ which
makes the solution difficult to access analytically.

To find the fixed-point solution of the SD equations, we
hence perform numerical iteration starting from the ansatz for
spectral functions given in Eqs. (F10) with small nonzero δ.
The self-energy 
ret

+ (ω) is calculated using Eqs. (F16) and
(F17) with help of fast Fourier transform algorithms. Gret

+ is
then computed from Eq. (F15) and used to reconstruct the full
retarded propagator. New spectral functions are then extracted
from Eqs. (F8) and the procedure is restarted from these. To
improve the convergence properties, we follow Ref. [5] and
after each round of iteration we mix the initial propagator
with the new solution obtained from the SD equation. We
declare convergence to a physical solution once the propaga-
tors, spectral densities, and, in particular, the energy gap stop
changing within the specified accuracy. We also check that
the solutions are stable with respect to increasing the number
of iterations, frequency/time resolution and cutoffs, and other
nonphysical ingredients of the numerical solution, such as the
initial broadening δ. Results of our numerics are discussed in
Sec. III of the main text.
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