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Probing new physics using Rydberg states of atomic hydrogen
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We consider the role of high-lying Rydberg states of simple atomic systems such as 1H in setting constraints
on physics beyond the standard model. We obtain highly accurate bound states energies for a hydrogen atom in
the presence of an additional force carrier (the energy levels of the Hellmann potential). These results show that
varying the size and shape of the Rydberg state by varying the quantum numbers provides a way to probe the
range of new forces. By combining these results with the current state-of-the-art QED corrections, we determine
a robust global constraint on new physics that includes all current spectroscopic data in hydrogen. Lastly, we
show that improved measurements that fully exploit modern cooling and trapping methods as well as higher
lying states could lead to a strong, statistically robust global constraint on new physics based on laboratory
measurements only.
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I. INTRODUCTION

Detailed measurements of atomic spectra were key to the
discovery of quantum mechanics and the development of
relativistic quantum electrodynamics (QED). Today, precision
atomic spectroscopy underpins the international standard (SI)
system of units, provides the values of some fundamen-
tal constants, and enables precise tests of standard model
calculations.

Looking for deviations between precise spectroscopic mea-
surements and their standard model predictions thus provides
a powerful way to set constraints on new physics [1]. One
powerful approach looks for small effects that break symme-
tries such as parity (P violation) or time reversal (T violation).
Alternatively, one can compare experimental and theoretical
transition frequencies. If additional force mediators (bosons)
were present that coupled strongly enough to the nucleus
and electrons, they would modify the frequency of spectral
lines. Thus, by comparing experimentally measured spectra
with theory, the existence of new so-called fifth forces can
be tested down to very small interaction strengths. In recent
years, extensions of the standard model, e.g., modified gravity
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[2,3], axions [4,5], and new gauge boson [6,7], have been
constrained in this way. In particular, if the force mediator X
is light, i.e., below 1 MeV in mass, and couples to partons
and electrons, the limits obtained from atomic spectroscopy
are many orders of magnitude stronger than from any other
laboratory-based experiment, including high-energy collider
experiments [6,8,9].

While modifications of the standard model through light
bosons are predicted by various models, they arguably re-
ceive strong constraints from astrophysical sources [10–12],
e.g., the energy loss from the sun, globular clusters or su-
pernovae. However, the need for independent laboratory-
based experiments has been pointed out frequently—see, e.g.,
Refs. [13–16]. As an example, a prominent class of light-
scalar models potentially related to modified gravity and dark
energy are chameleons [16–18]. Chameleons have a mass
that depends on the energy density of their environment and
thus can avoid being produced in stars, thereby avoiding
astrophysical bounds.

One of the main uncertainties in the prediction of spectral
lines arises due to the difficulty of solving the Schrödinger
or Dirac equations for many interacting electrons. Even state-
of-the-art calculations for species commonly used in atomic
clocks only attain a fractional uncertainty of ≈10−5 [19],
which is 14 orders of magnitude lower than the current
experimental precision. To circumvent this limitation, it has
been proposed to look for new physics using the difference
in spectral line positions between isotopes (isotope shifts)
[5,20], rather than by direct comparison with theory. Although
promising [21], the method is limited by the requirement that
at least three stable isotopes with two suitable transitions exist
for each element.

2643-1564/2020/2(1)/013244(16) 013244-1 Published by the American Physical Society

https://orcid.org/0000-0003-4624-1064
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013244&domain=pdf&date_stamp=2020-03-03
https://doi.org/10.1103/PhysRevResearch.2.013244
https://creativecommons.org/licenses/by/4.0/


JONES, POTVLIEGE, AND SPANNOWSKY PHYSICAL REVIEW RESEARCH 2, 013244 (2020)

An alternative approach is to use light atomic species such
as H or He for which full standard model predictions of
line positions including QED corrections (Lamb shift) and
weak interactions (Z boson exchange) are possible. Even here,
however, the complex structure of the nucleus, in particular
the details of its charge distribution, limits the achievable
accuracy. Spectroscopic data that do not strongly depend on
the details of how the nucleus is modeled can thus help to
improve the sensitivity on the presence of new forces.

In this paper, we explore how the precision spectroscopy
of states with a high principal quantum number n (Rydberg
states) might be used to set constraints on physics beyond the
standard model. In principle, such states offer several advan-
tages that could be exploited in a search for new physics. First,
the overlap of Rydberg wave functions with the nucleus scales
as n−3, vastly reducing their sensitivity to nuclear effects.
The radiative lifetime also scales as n−3, meaning that narrow
transitions from low-lying atomic states are available that
span the ultraviolet (UV) to near-infrared (NIR) wavelength
range that is amenable to precision laser spectroscopy. The
n−2 scaling of the energy levels means that for each atomic
species a large number of such transitions are available within
a narrow spectral range. Lastly, there is a natural length scale
associated with the atomic wave function that scales as n2.
As we will show, being able to vary this length scale enables
tests which are sensitive to the corresponding length scale
associated with any new forces [8].

Here we take hydrogen as a model system in which to
explore the use of Rydberg states in the search for new
physics. Measurements with a fractional uncertainty of 10 ppt
or better are already available for n up to 12. We calculate the
(nonrelativistic) spectrum of the combination of a hydrogenic
Coulomb potential and a Yukawa potential arising from new
physics to high accuracy. By combining the resulting ener-
gies with previously derived relativistic, QED, and hyperfine
corrections, we obtain predicted atomic transition frequencies
that can be compared directly to experimental data to set
a constraint on the strength of a new physics interaction.
We consider in detail how uncertainties due to the Rydberg
constant and the proton charge radius can be reduced or elim-
inated altogether, and show how a global statistical analysis
can be used to derive robust atomic physics constraints. Lastly,
we develop proposals for future improved tests using atomic
Rydberg spectroscopy in atomic hydrogen and other species.

The structure of the paper is as follows. In Sec. II, we
introduce the simplified model used to parametrize the effect
of new physics. Calculations of the effect of new bosons on
atomic energy levels are presented in Sec. III. We assess the
current experimental reach for new physics (NP) in Sec. IV.
In Sec. V, we discuss the impact of potential experimental
and theoretical improvements on the uncertainty budget and
in how far this can result in tighter constraints of new physics.
We offer a summary and conclusions in Sec. VI.

II. PARAMETRIZATION OF NEW PHYSICS

With the discovery of the Higgs boson [22,23], for the first
time a seemingly elementary scalar sector was established
in nature. Such a particle would mediate a new short-ranged
force, the so-called Higgs boson force [24]. While the Higgs

boson force is very difficult to measure in atom spectroscopy
[20], many extensions of the standard model predict ele-
mentary scalar or vector particles with a very light mass.
Examples include axions [4,5,25], modified-gravity models
[2,26], millicharged particles [27–29], Higgs-portal models
[30,31], and light Z ′ [32,33].

To remain as model independent as possible in parametriz-
ing deformations from the standard model (SM), it has be-
come standard practice to express new physics contributions
in terms of so-called simplified models [34]. The idea is
to add new degrees of freedom to the standard model La-
grangian without asking how such states arise from a UV
complete theory. Thus, one can describe the dynamics and
phenomenological implications of new degrees of freedom
without making further assumptions on the UV theory from
which they descend [35].

For example, if we assume a fifth force to be mediated
through a novel spin-0 particle X0 that couples to leptons and
quarks with couplings gli and gqi respectively, we can augment
the standard model Lagrangian LSM to

L = LSM +
∑

i

[
gli l̄ili + gqi q̄iqi

]
X0. (1)

Here i denotes the three flavor generations and li and qi refer
to the mass basis of the SM fermions. We note that the interac-
tions of Eq. (1) could be straightforwardly extended to (axial)
vector or pseudoscalar particles and to flavor off-diagonal
interactions, e.g., gqi j q̄iq jX0 with i �= j. Further, we should
emphasize that the operators of Eq. (1) are gauge invariant
only after electroweak symmetry breaking, which implies that
the coefficients g fi j must implicitly contain a factor v/�NP (v
is the vacuum expectation value of the Higgs field and �NP is
a new physics scale). However, this is only important for the
interpretation of the observed limit we derive on g fi . Studying
Rydberg states in hydrogen atoms, we will set a limit on the
combined interaction gegN , where ge and gN corresponds to
the interaction of X0 respectively with the electron and the
nucleon.

With the Lagrangian of Eq. (1), the interaction mediated
by the NP boson X0 between these two particles contributes
an additional Yukawa potential V (r) to the Hamiltonian. De-
noting by r the distance between the electron and the nucleon
and by mX0 the mass of the particle,

V (r) = (−1)s+1 gegN

4π

1

r
e−mX0 r, (2)

where s, an integer, is the spin of the force mediator (e.g.,
s = 0 for a scalar particle). Higher integer-spin mediators
would also give rise to a Yukawa potential of this form. There
is, however, a subtle difference in the sign of this potential
between even and odd integer-spin force carriers. Lorentz
invariance and the unitarity of the transition matrix element
lead to an attractive (repulsive) force if gegN > 0 (gegN < 0)
in the case of an even-spin mediator and to an attractive
(repulsive) force if gegN < 0 (gegN > 0) in the case of an
odd-spin mediator. For example, as the charges for the Higgs
boson (spin 0) and the graviton (spin 2) are the particles’
masses, the Higgs force and gravity are both attractive. As we
want to remain agnostic about the force carrier and the way
it interacts with the nucleons and electrons, in the following
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we will allow both positive and negative values for gegN .
Finally, we note that an excellent recent review of this type
of simplified model is provided in Ref. [1].

III. NEW PHYSICS LEVEL SHIFTS

The presence of the interaction potential V (r) would affect
the atomic transition frequencies. Its effect can be evaluated
perturbatively. To first order in V (r), and neglecting spin-orbit
coupling and other relativistic corrections, the energy of a
hydrogenic state of principal quantum number n, orbital an-
gular momentum quantum number l , and radial wave function
Rnl (r) is shifted by a quantity δENP

nl , with

δENP
nl =

∫ ∞

0
|Rnl (r)|2V (r) r2 dr. (3)

Since the interaction is spherically symmetric, the perturba-
tion is diagonal in l and in the magnetic quantum number m,
and δENP

nl does not depend on m.
Taking into account V (r) to all orders, which we have done

as a test of our numerical methods, confirms that second- and
higher order terms of the perturbation series are completely
negligible for the couplings of interest, i.e., |gegN | < 10−11.

The shift δENP
nl takes on a particularly simple form in the

limit mX0 → 0: Since

∣∣δENP
nl

∣∣ <
|gegN |

4π

∫ ∞

0
|Rnl (r)|2 1

r
r2 dr, (4)

the virial theorem guarantees that

∣∣δENP
nl

∣∣ <
|gegN |

4π

(−2En)

αZ
, (5)

where En is the nonrelativistic energy of the (n, l ) states, α is
the fine structure constant, and Z is the number of protons in
the nucleus. Moreover,

lim
mX0 →0

∣∣δENP
nl /En

∣∣ = |gegN |
2παZ

. (6)

(See Appendix A for the origin of the factor of 1/α and more
generally for the conversion between natural units and atomic
units.) Simple analytical forms of δENP

nl can be obtained for
states with maximum orbital angular momentum (l = n − 1)
or close to maximum orbital angular momentum—see, e.g.,
Appendix B. However, in most cases δENP

nl is best evaluated
numerically.

Various approaches to this problem have been considered
over the years, as has the calculation of energy levels for
a superposition of a Coulomb potential and a Yukawa po-
tential (the Hellmann potential) [36–44]. The most accurate
results reported to date are those of Ref. [41], in which
the energies of the ground state and first few excited states
were obtained to approximately 13 significant figures using
a generalized pseudospectral method. Our approach to this
problem is different and does not seem to have been used
so far in this context: We expand the radial wave functions
on a finite Laguerre basis of Sturmian functions Sκ

νl (r) [45],
find the generalized eigenvectors of the matrix representing
the unperturbed Hamiltonian in that basis, and use these to

calculate the first-order energy shift �Enl . Here

Sκ
νl (r) =

√
κ (ν − 1)!

(ν + l )(ν + 2l )!
(2κr)l+1e−κrL2l+1

ν−1 (2κr),

ν = 1, 2, . . . , (7)

with κ a positive parameter which can be chosen at will.
These basis functions have already been used in this context,
but in a different way [42]. Sturmian bases have proved
to be convenient in precision calculations of properties of
hydrogenic systems [46,47].

We obtain the eigenenergies and wave functions of the un-
perturbed Hamiltonian by solving the generalized eigenvalue
problem

H0c = E Sc, (8)

where H0 is the matrix representing the unperturbed non-
relativistic Hamiltonian of hydrogen in this basis and S is the
overlap matrix of the basis functions (Sturmian functions are
not mutually orthogonal). The corresponding matrix elements
and the elements of the matrix V representing the Yukawa
potential can be obtained in closed form using standard in-
tegrals and recursion formula [48]. Having the eigenvectors c,
the energy shifts are then calculated as δENP

c = cTVc. Since
the functions {Sκ

νl (r), ν = 1, 2, . . .} form a complete set, the
eigenvalues E and energy shifts δENP

c obtained with a basis of
N of these functions (ν = 1, . . . , N) converge variationally to
the exact eigenenergies and exact energy shifts when N → ∞.
We repeat the calculations for several different values of κ

and different basis sizes so as to monitor the convergence of
our results and the impact of numerical inaccuracies. With an
appropriate choice of κ , and taking N up to 200, the calcu-
lated energy shifts converged to at least 8 significant figures
[49]. Using the same method, but solving the generalized
eigenvalue problem for the full Hamiltonian rather than the
unperturbed Hamiltonian, we could also reproduce the results
of Ref. [41] to the 14 significant figures given in that article.

The results of these calculations are summarized in Figs. 1,
2, and 3. These results, like all the other numerical results
discussed in this paper, refer to the specific case of atomic
hydrogen. We will therefore assume that Z = 1 from now on.

Figure 1 shows the general trends. The fractional shift is
largest for light bosons, where the range of the Yukawa poten-
tial is comparable to or larger than the range of the atomic
wave function. In agreement with Eq. (6), |δENP

nl /En| �
|gegN |/2πα for low masses. As mX0 increases, the shift de-
creases, but in a way that depends on the shape of the atomic
wave function through both n and l . The effect of the Yukawa
potential is largest at the origin. As n and l increase, the
probability density of the atomic wave function in the region
close to the nucleus is reduced, leading to a smaller NP shift.

To gain further insight, in Fig. 2, we investigate the rela-
tionship between the two characteristic length scales of the
problem, i.e., the range of the Yukawa potential, � = 1/mX0 ,
and the range of the atomic wave function. The latter can
be characterized by the expectation value 〈nl|r|nl〉, which
for l = 0 states is 3a0n2/2 where a0 is the Bohr radius.
We see that these two ranges are comparable for principal
quantum numbers n ∼ n�, where n� is the integer closest
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FIG. 1. The NP shift, δENP
nl , divided by the nonrelativistic energy

of the state, En, for the states of atomic hydrogen with 0 � l � 4
and n = 5 (En/h = −1.32 × 1011, where h is Planck’s constant),
8 (En/h = −5.14 × 1010 kHz), 12 (En/h = −2.28 × 1010 kHz), or
26 (En/h = −4.87 × 109 kHz). A value of gegN of 1 × 10−12 is
assumed. From top to bottom, mX0 = 1 eV (orange circles), 10 eV
(green circles), 100 eV (brown circles), or 1 keV (black circles).

to (2 �/3 a0)1/2. Representative values of n� are given in
Table I. The NP shift is accurately predicted by Eq. (6) for
n 
 n� and is much smaller than that limit for n � n�. The
fractional shift is plotted in Figs. 2(a) and 2(b), respectively
against the ratio of these two characteristic lengths and against
the boson mass, for a range of values of n and l . These curves
show that for masses below ≈50 eV, the shift decreases with n
but is essentially independent of l . Above this breakpoint, the
shift decreases much more rapidly for d states (l = 2) than
for s states (l = 0). This trend is even more marked for higher

FIG. 2. The NP shift, δENP
nl , divided by the nonrelativistic energy

of the state, En, for the states of atomic hydrogen with n = 5 (solid
curves), n = 8 (dashed-dotted curves), n = 12 (dashed curves), or
n = 26 (dotted curves) and l = 0 (black curves) or l = 2 (red
curves), vs (a) the range of the NP potential divided by the charac-
teristic length scale of the atomic wave function, 〈nl|r|nl〉, or (b) the
mass of the NP particle. A value of gegN of 1 × 10−12 is assumed.

FIG. 3. The coupling constant ge gN at which the relative shift
|δENP

nl /En| is 1 × 10−12, vs the mass of the NP particle. The line
styles and colors are the same as in Fig. 2. Green triangles show the
results for the ground state.

values of l (not shown in the figure). In fact, for states with
l = n − 1 (which is the maximum value of the orbital angular
momentum for the principal quantum number n), |δENP

nl /En|
decreases as fast as n−2n when n increases beyond n� (see
Appendix B).

In Fig. 3, we fix the value of the fractional NP shift at
|δENP

nl /En| = 10−12, and show how the resulting constraint on
the mass mX0 and the effective coupling gegN depend on the
quantum numbers n and l . Thus combining measurements for
different values of n and l could provide additional informa-
tion on the properties of the fifth-force carrier, i.e., its mass
and its couplings to the electron and nuclei.

IV. NP BOUNDS BASED ON CURRENT
SPECTROSCOPIC DATA

In a nutshell, the existence of a new physics interaction
could be brought to light by demonstrating a significant
difference between the measured transition frequency for a
transition from a state a to a state b, �

exp
ba , and the corre-

sponding prediction of the standard model, �SM
ba (or, better,

by demonstrating such a difference for a set of transitions).
Bounds on the strength of the new physics interaction can be
set by finding the most positive and most negative values of
gegN for which �

exp
ba is consistent with the theoretical value

TABLE I. The range of the Yukawa potential (�), expressed as a
multiple of the Bohr radius, and the principal quantum number n� for
which this range is equal to that of the corresponding l = 0 state to
the closest approximation possible, for three values of mX0 , the mass
of the NP particle.

mX0 � n�

1 eV 3.73 × 103 a0 50
100 eV 3.73 × 101 a0 5
10 keV 3.73 × 10−1 a0 1
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�SM
ba + �NP

ba with

�NP
ba = (

δENP
nblb − δENP

nala

)
/h, (9)

where h is Planck’s constant. However, �SM
ba depends on

the Rydberg constant, R∞, and usually also on the charge
radius of the nucleus, whose values are primarily obtained
by matching spectroscopic data to theory [50,51]. Setting
bounds on gegN makes it therefore necessary to evaluate �SM

ba
with these constants set to values themselves obtained with
allowance made for the possibility of new physics shifts on
the relevant atomic transitions. Frequency intervals have been
both measured and calculated to a very high level of precision
for transitions in hydrogen, deuterium, and muonic hydrogen.
However, a new physics interaction might couple an electron
differently to a deuteron than to a proton and couple a proton
differently to a muon than to an electron. It is therefore
prudent, when establishing such bounds, to use data pertaining
to only one of these three systems rather than using mixed sets
of data. We consider bounds based exclusively on hydrogen
results in this paper.

�SM
ba is the sum of a gross structure contribution �

g
ba (as

given by the elementary treatment based on the Schrödinger
equation) and of various corrections arising from the Dirac
equation, from QED effects, and from the hyperfine coupling
[50–56]. In terms of the Rydberg frequency, R = c R∞,

�
g
ba = R

(
1

n2
a

− 1

n2
b

)
mr

me
, (10)

where mr is the reduced mass of the atom and me is the mass of
the electron. It is convenient to factorize �

g
ba into the product

R �̃
g
ba, with

�̃
g
ba =

(
1

n2
a

− 1

n2
b

)
mr

me
. (11)

The difference �SM
ba − �

g
ba depends on Rp, the charge radius

of the proton, through a term roughly proportional to R2
p

[50–56]. We denote this term by R2
p �̃ns

ba, aggregate all the
other corrections into a shift �oc

ba, and write

�SM
ba = R �̃

g
ba + R2

p �̃ns
ba + �oc

ba. (12)

The term �oc
ba includes fine structure and recoil corrections as

well as QED and hyperfine shifts. Detailed work by a number
of authors has yielded expressions for these corrections in
terms of R, of Rp and of a small number of fundamental
constants determined from measurements in physical systems
other than hydrogen. The values of R and Rp recommended
by the Committee on Data of the International Council for
Science (CODATA) were co-determined by a global fit of the
theory to a large set of data, including deuterium data [51].
Taking new physics shifts into account in a determination of R
based entirely on hydrogen data thus involves a simultaneous
redetermination of Rp. Equation (12) is a convenient starting
point for such calculations [57].

Bearing this in mind, we derive bounds on the value of
gegN in the following way: Given experimental transition
frequencies for several different intervals, e.g., �

exp
b1a1

, �
exp
b2a2

,
�

exp
b3a3

, etc., we calculate a value of R and a value of Rp

by matching these results with the corresponding theoretical

frequency intervals,

�th
biai

= R �̃
g
biai

+ R2
p �̃ns

biai
+�oc

biai
+ �NP

biai
,

i = 1, 2, 3, . . . . (13)

The values of these two parameters are determined by cor-
related χ2 fitting. We then obtain bounds on the coupling
constant by finding the most positive and most negative values
of gegN for which the model fits the data at the 5% confidence
level. The sensitivity to new physics arises because of the
dependence of the NP shift on the quantum numbers n and
l illustrated in Figs. 1–3. Put simply, states with high values
of n and l are only weakly sensitive to new physics, whereas
the opposite is the case for low-lying states.

Before describing the results of this analysis, we briefly
discuss the existing experimental results relevant for this
calculation and the related theoretical uncertainties. Further
details about the calculation can be found in Appendix C 1.

A. Existing spectroscopic data for hydrogen

Clearly, detecting a NP interaction from spectroscopic data
sets a challenging level of precision and accuracy on the
measurements. Apart from the hyperfine splittings of the 1s
and 2s states, which are not directly relevant here, the only
hydrogen frequency intervals currently known to an accuracy
better than 1 kHz are the 1s–2s interval, which has been
measured with an experimental error of 10 Hz (i.e., a relative
error of 0.004 ppt) [58,59], and intervals between circular
states with n ranging from 27 to 30, for which unpublished
measurements with an experimental error of a few Hz (about
10 ppt) have been made [60]. Circular states are states with
|m| = l = n − 1.

The recommended value for the Rydberg constant is based
on the 1s–2s measurement as well as on a number of mea-
surements with a larger error [51,61]. The latter include
measurements of the 2s–8s, 2s–8d , and 2s–12d intervals made
in the late 1990s with an experimental error ranging from 6 to
9 kHz (i.e., of the order of 10 ppt) [62–64]. Until recently, no
other transitions between hydrogen states differing in n had
been measured with an error of less than 10 kHz. However,
the centroid of the 2s–4p interval has now been determined
with an error of 2.3 kHz [65] and that of the 1s–3s interval
with an error of 2.6 kHz (1 ppt) [66].

B. Theoretical uncertainty

The overall uncertainty on the SM predictions of hydrogen
energy levels is mainly contributed by uncertainties on the
values of the Rydberg constant, of the proton radius, and
of various QED corrections. Uncertainties on the values of
other fundamental constants also contribute, although not in
a significant way at the level of precision these energy levels
can currently be calculated.

The uncertainty on the values of the Rydberg constant and
the proton radius does not affect our calculation of the bounds
on gegN (recall that within our approach, these values are
determined together with the bounds themselves in a self-
consistent way).

As is well known, the SM theory of the energy levels
of hydrogen has developed enormously since the early days
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FIG. 4. Upper bounds on the possible value of |gegN | derived
from existing spectroscopic data, (a) for an attractive interaction and
(b) for a repulsive interaction. Shaded areas: region excluded at the
95% confidence level (data set A). Solid and dashed curves: bounds
based on the same set of transitions as for the shaded areas, minus
the 2s–4p transition (data set B, solid curves) or minus the transitions
between high lying circular states (data set C, dashed curves). Dotted
curves: bounds arising from a comparison of experimental results for
these high lying circular states to theoretical predictions based on the
data set C.

of quantum mechanics [52,53]. Compilations of the relevant
QED and hyperfine corrections and their uncertainties have
been published, e.g., by the CODATA Collaboration [50,51],
and recent updates can be found in Refs. [54–56]. These
corrections roughly scale as n−3 and strongly depend on l .
Reference [55] gives the combined theoretical uncertainty
on the energy of a state of principal quantum number n as
(2.3/n3) kHz for l = 0, excluding the error contributed by
the uncertainty on Rp, and as less than 0.1 kHz for l > 0.
More recent work has lowered this uncertainty. For example,
Ref. [56] gives it as (1.8/n3) kHz for l = 0, excluding the
error arising from the uncertainty on Rp, and further progress
in this direction has been made since (e.g., Refs. [67–70]). Ex-
cept for the 1s–2s interval, the experimental uncertainty rather
than the theoretical uncertainty is thus the main limitation for
setting bounds on gegN based on the current spectroscopic
data.

C. Bounds based on existing data

Bounds on the NP interaction strength derived as explained
above are presented in Figs. 4(a) and 4(b), respectively, for
attractive and repulsive interactions. These results are based
on three different sets of data, which we refer to as sets
A, B, and C. Set A groups all the existing high-precision
spectroscopic measurements in hydrogen, namely all the 18
experimental hydrogen transition frequencies included in the
CODATA 2014 least squares fit [51], the recent results of
Ref. [65] for the 2s–4p interval and of Ref. [66] for the 1s–3s

TABLE II. Values of the Rydberg frequency obtained by previ-
ous authors or derived in this work, assuming no NP interaction. The
numbers between parentheses are the uncertainties on the last digit
quoted.

Reference R

CODATA 2014 [51] 3 289 841 960 355(19) kHz
Beyer et al. [65] 3 289 841 960 226(29) kHz
Fleurbaey et al. [66] 3 289 841 960 362(41) kHz
De Vries [60] 3 289 841 960 306(69) kHz
Dataset A 3 289 841 960 306(18) kHz
Dataset B 3 289 841 960 356(23) kHz
Dataset C 3 289 841 960 307(18) kHz

interval, and the results of Ref. [60] for the transitions between
high-lying circular states. The other two sets are the same as
set A but without the 2s–4p results (set B), or without the
circular state results (set C). The corresponding values of R
obtained when assuming no NP shift are given in Table II,
together with the recommended value of this constant [51],
values based on the recent measurements of either the 2s–4p
or the 1s–3s intervals [65,66] and a value based entirely on
measurements of transitions between the circular states [60].
As is well known, the results of Ref. [65] are discrepant with
both the CODATA results and those of Ref. [66] in regards
to the values of R and Rp, but yield a value of Rp in good
agreement with measurements in muonic hydrogen [71]. The
values of R obtained from dataset B are in close agreement
with the CODATA 2014 value and have an uncertainty of a
similar magnitude, although the CODATA fit also included
spectroscopic measurements in deuterium and scattering data.
Including the results of Ref. [65] in the fit reduces R signif-
icantly (the change is large because of the particularly small
experimental error on these measurements).

Our main results for the current bounds on gegN are based
on dataset A and are represented by the shaded areas in Fig. 4.
They set a constraint of better than 10−11 over the range of
101–103 eV. As seen from the figure, the shape of the ex-
cluded area somewhat differs between attractive and repulsive
interactions, particularly in the region around 100 eV. This
difference indicates that the range of allowed values of gegN

is not centered on zero—though we emphasize that a value
of zero remains compatible with the experimental data. The
regions below the shaded areas indicate the range of values
of gegN compatible with the data, given the experimental and
theoretical errors [72].

Next, we consider the effect of removing individual mea-
surements from the calculation. Removing the recent 2s–4p
measurement [65] has a considerable effect, not only weaken-
ing the overall bound, as expected, but also changing the shape
of the excluded region. These differences reflect the aforemen-
tioned inconsistencies in the values of the Rydberg constant
and the proton radius derived from the results of Ref. [65]
with those obtained in the CODATA 2014 fit. The effect of
removing this measurement illustrates the perils of selectively
setting bounds using individual measurements or combina-
tions of measurements. While individual measurements may
be precise, their accuracy can only be gauged against other
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measurements, particularly independent measurements of the
same transitions.

Instead of removing the 2s–4p measurements, we now
remove the unpublished circular state measurements of
Ref. [60] and use dataset C. The result is a substantial
weakening of the NP bound for lower masses, illustrating
the importance of using measurements of states with a large
spatial extension when probing for a NP interaction with a low
value of mX0 [8]. Although small, the NP shift of the circular
states is not negligible when the range of the interaction is
long enough. This leads to a decrease in the relative shift of
these states compared to the low-lying states when mX0 → 0,
and hence to a weakening of the bounds on |gegN | [73].

In summary, we have derived global NP bounds based
on all available measurements for hydrogen, with no input
from other atomic species. The sensitivity of the bound to
individual measurements and to the Rydberg constant il-
lustrates that bounds set using measurements on individual
transitions should be treated with a degree of caution. The
strong additional constraint provided by high-lying states at
low masses motivates precision measurements for states with
both higher n and l . For the latter, we note the proposal of the
Michigan group [74].

Before closing this section, we note that bounds on gegN

can also be found by comparing the values of R derived from
different sets of transitions. For example, let RC (mX0 , gegN )
and RD(mX0 , gegN ) be the NP-dependent values of R obtained
by fitting the theoretical model respectively to dataset C and
to the circular state results of Ref. [60]. These two sets of data
are completely independent of each other, and in contrast to
RC (mX0 , gegN ), the calculation of RD(mX0 , gegN ) is insensi-
tive to uncertainties on the proton radius and to poorly known
QED corrections. The corresponding errors on these Rydberg
frequencies, σC and σD, are also functions of mX0 and gegN .
As these errors are not correlated with each other, bounds on
the NP coupling constant can be obtained by finding the most
positive and most negative values of gegN such that

∣∣RC
(
mX0 , gegN

) − RD
(
mX0 , gegN

)∣∣ = f
√

σ 2
C + σ 2

D (14)

for a given choice of f (this constant sets the confidence limit
of the bounds—we take f = 2). The results are also shown
in Fig. 4 (the dotted curves). Cancellations of NP shifts are at
the origin of the large weakening of these bounds between 1
and 10 keV. They are similar, below 300 eV, to those obtained
from the global fit of the same set of data (the shaded areas).
Compared to a global fit, however, this approach to setting
bounds is potentially more sensitive to systematic errors in
some of the measurements. We thus prefer to take the shaded
areas as the best representation of the constraint on gegN that
can be set on the basis of the current body of spectroscopic
work in hydrogen.

V. SCOPE FOR TIGHTER BOUNDS

Three factors limit the strength of the current bound shown
in Fig. 4. The first is the experimental uncertainty of the
measured energy levels. So far, only the 1s–2s interval has
been measured with a relative uncertainty below the 0.01 ppt
level. For higher states such as the measurements at n = 12,

the ≈1 kHz uncertainty is approximately 100 times larger or
more. The second factor is the range of quantum numbers
n and l for which precise data exist. The importance of
additional measurements is highlighted in Fig. 4. Lastly, the
limitations on the SM calculation of the energies also plays
an important role. Here also there is much to be gained by
working with higher lying Rydberg states. In this section, we
consider the prospects for improvements in each of these three
areas.

A. Improved measurements

In this section, we consider the effect of reducing the cur-
rent experimental uncertainty approximately 100-fold, such
that all transition frequencies in the dataset are known to the
10-Hz level currently available for the 1s–2s interval. As an
aspirational goal, we also consider what could be achieved
with measurements at the 1-Hz level. A detailed discussion of
future experiments is outside the scope of this article. Here
we briefly discuss the dominant sources of uncertainties with
the 10-Hz goal in mind. The focus is on laser spectroscopy
of low-l states; improved measurements of circular Rydberg
states are considered in Ref. [74].

The current measurement uncertainty includes contribu-
tions from both the background electromagnetic environment
and atomic motion. Fundamental limits are provided by the
radiative linewidth and black-body radiation (BBR). We cal-
culated the radiative width and black-body shift and broaden-
ing of the relevant states (Appendix D). At n = 9, the radiative
linewidth (which varies as n−3) is approximately 100 kHz for
the s state and roughly ten times larger for the d state. The sim-
ple line shape when radiative broadening dominates should
enable line centers to be determined with high accuracy, with
recent measurements in hydrogen determining line centers to
one part in 10 000 of the linewidth [65]. As described in
Appendix D, we find that black-body related uncertainties can
be neglected even at 300 K provided that the temperature can
be stabilized to 0.01 K.

Concerning stray fields, we note that the magnetic moment
of low-l states does not vary with n. Therefore, methods
developed for precision measurements with low-n states can
be applied. For s states, the very small differential Zeeman
shift is easily controlled at the sub-Hz level [64,75], while
for d states differential measurements such as those routinely
carried out in optical atomic clocks [76] can be used to largely
eliminate magnetic field errors. A much greater challenge
is presented by the DC Stark shift, which scales as n2 and
n7 for the linear and quadratic components respectively. A
detailed analysis of the effect of the DC Stark shift on the
hydrogen Rydberg spectrum is provided in Ref. [64]. In their
experiments, a stray field of ≈3 mV cm−1 was reported,
leading to a final contribution to the uncertainty at the kHz
level. However, other experiments have shown that stray fields
can be reduced to the 30 μV cm−1 level by performing
electrometry with high-n states (n > 100) [77,78]. Drift rates
as low as 2 μV cm−1 h−1 have also been measured [79].
Such measurements could be performed independently using
a coelectrometry with a different species [78,79]. For a field
of 30 μV cm−1, the quadratic Stark effect is dominant for s
states, and measurements with 10-Hz uncertainty should be
possible up to n = 23, with n ≈ 40 accessible if the stray
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field is determined to 1 μV cm−1. For d states, the linear
Stark effect dominates but differential measurements between
different |m| states should enable the first-order shift to be
canceled. The resulting uncertainty thus becomes dominated
by the residual quadratic shift.

Considering motional effects, we note that all measure-
ments of hydrogen energy levels to date have been performed
in atomic beams, where second-order Doppler effects limit
the achievable linewidth to approximately 1 MHz. A complex
velocity-dependent line-shape analysis is thus required to
extract the true line center to the current 1-kHz accuracy [64].

In other atomic species, using ultracold atoms has enabled
a dramatic reduction in the uncertainty of optical frequency
measurements. Sub-10-Hz uncertainty has been achieved with
untrapped atoms [80], while measurements based on atoms
confined in magic-wavelength traps are entirely limited by the
uncertainty in the microwave-based definition of the SI second
[81,82].

For Rydberg states, experiments with ultracold atoms are
dominated by the large level shifts due to the long-range
van der Waals interaction [83], which scales as n11. Control
over the number of atoms and interparticle distance and
geometry is therefore essential. Confining atoms to a volume
of ≈1 μm3 would also largely eliminate errors due to field
gradients. Therefore, a suitable platform could consist of
individual hydrogen atoms confined in a single optical tweezer
or tweezer array. Single-atom arrays have now been achieved
with a growing range of atomic [84–87] and even molecu-
lar [88,89] species. Substantial hurdles exist for realizing a
similar system in hydrogen, not least the difficulty of laser
cooling [90], which has so far proven essential for loading
the optical tweezers. However, alternative approaches such
as loading from a hydrogen Bose-Einstein condensate [91],
careful dissociation of laser-cooled hydride molecules [92],
or in-trap Sisyphus cooling [93] may also provide possible
routes. Here we assume that such a system may be realized,
and that the contribution of the Doppler and recoil effects can
be reduced below the natural linewidth of the transition by
using well-established two-photon spectroscopy techniques
[64], possibly in combination with resolved sideband cooling
[94]. Trap-induced AC Stark shifts are eliminated by extin-
guishing the trap light during the spectroscopy, as is common
in Rydberg experiments with tweezer arrays.

Overall, we consider that a target of extending the range
of states measured with an absolute uncertainty of 10 Hz or
better to the full Rydberg series of s and d states up to a
principal quantum number of n ≈ 40 is feasible. We note that
this is still some way off the spectroscopic state-of-the-art
achieved with cold trapped atoms. For circular states, 10 Hz
uncertainty has already been achieved [60]; here achieving a
precision of 0.1 Hz in future measurements seems feasible.

B. Improved theory

Improved measurements at the 10-Hz level would also
provide a challenge to the current theory of SM corrections
to hydrogen energy levels. Uncertainties in R and Rp could
be removed by using the global fitting procedure described in
Sec. IV. Concerning the remaining correction due to QED and
other effects, we note that the current uncertainty on the Lamb

shift of the 2p1/2 state is 21 Hz, including the uncertainty
on the shift of the centroid of that level due to the hyperfine
coupling [56]. As the theoretical error on QED and hyperfine
corrections scales roughly like 1/n3 and has been found to
be smaller for states with larger orbital angular momentum,
the theoretical error for the states with l > 0 is already ex-
pected to be below 10 Hz for n � 3 and below 1 Hz for
n � 6. The situation for s states is less clear. Current work
assumes that the error on these corrections scales as n−3, at
least down to the 100 Hz level [55,56]. Given the current
theoretical uncertainty on the energy of the 2s state, achieving
an accuracy of 10 Hz would require a considerable effort in
the evaluation of QED corrections that are currently poorly
known. Alternatively, the data may be fitted to a theoretical
model which does not rely on values of the Lamb shift
accurate to the 10-Hz level but instead treats the theoretical
error on this quantity as a fitting parameter, assuming a n−3

scaling beyond the corrections that could be calculated. We
used such a model to obtain the illustrative results presented
in Sec. V C (the method is outlined in Appendix C 2). How-
ever, further theoretical work would be necessary to confirm
that the assumed n−3 scaling still holds, in sufficiently good
approximation, down to errors as small as 10 Hz or less.

C. Numerical illustration

Figure 5 illustrates the improvement on the NP bounds
which could be expected from reducing the experimental
error on transition frequencies to the 10 Hz level or to an
aspirational 1-Hz level.

Each of the bounds shown in Fig. 5(a) was obtained by
comparing the predictions of the standard model to a set of
hypothetical data, the latter having been generated from a
model including a NP shift. The details of the calculation are
given in Appendix C 2.

The two blue curves plotted in Fig. 5(a) represent the
bounds derived in this way from an arbitrary and hypothetical
set of eight transitions between s-states, namely the 1s–2s,
2s–5s, 2s–8s, 2s–9s, 2s–11s, 2s–15s, 2s–21s, and 2s–30s tran-
sitions. As seen from the figure, these results would improve
the current spectroscopic bounds by two orders of magnitude
over a wide range of values of mX0 , assuming an experimental
error of 10 Hz. Reducing the error to 1 Hz would yield a three
orders of magnitude improvement.

Using only transitions between states with l > 0 would
remove the uncertainty on how the theoretical error scales
with n. In practice, an experimental value for such a transition
could be obtained, e.g., by measuring the 2s to (n, l ) and 2s
to (n′, l ′) intervals and subtracting one from the other to find
the (n, l ) to (n′, l ′) interval. The two orange curves plotted in
Fig. 5(a) represent the bounds derived from a set of transitions
between d states only (namely the 8d–9d , 8d–11d , 8d–15d ,
8d–21d , and 8d–30d transitions). While proceeding in this
way has the advantage of avoiding the scaling issue, it has
the disadvantage of taking into account only states with a
relatively small NP shift. Correspondingly, and as is illustrated
by the numerical results of Fig. 5(a), the bounds derived from
such a set of data would be less stringent than those derived
from data that include transitions from or between deeply
bound states.
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FIG. 5. Upper bounds on the possible value of |gegN | for an at-
tractive interaction, as derived from hypothetical spectroscopic data.
For comparison, the region excluded by the analysis of the current
data is represented by a shaded area. (a) Solid curve and long-dashed
curve: Bounds based on a set of transitions between s states (solid
curve) and between d states (long-dashed curve), assuming a 10-Hz
experimental error and a theoretical error scaling as stated in the
text. Short-dashed curve and dotted curve: the same as respectively
the solid curve and the long-dashed curve but assuming a 1-Hz
experimental error. (b) Solid curve: Bound obtained by comparing
the value of the Rydberg constants derived from the same sets of
transitions between s states and between d states as in panel (a).
Dashed curve and dotted curve: the same as the solid curve but with a
further comparison with values of the Rydberg constant derived from
transitions between circular states.

As mentioned above, bounds on gegN can also be obtained
by comparing the values of Rydberg constants derived from
different sets of data. Assuming a 10-Hz experimental error
and performing this comparison between the same sets of
transitions as in Fig. 5(a) gives the bound represented by a
solid curve in Fig. 5(b). This bound is slightly tighter but
generally differs little from that obtained directly from the
fit of the transitions between s states. The dashed curve and
dotted curve show that this bound could be lowered still
further by also comparing these two values of the Rydberg
constants with the value derived from transitions between
circular states—i.e., transitions of the form (n, l = n − 1) ↔
(n′ = n + 1, l ′ = n′ − 1). We consider two different sets of
such transitions in Fig. 5(b). We took n = 10, 15, 20, 25, or
30 and assumed an experimental error of 0.5 kHz on these
transitions to calculate the bound represented by a dashed
curve, whereas for the bound represented by a dotted curve we
took n = 40, 41, 42, 43, or 44 and assumed an experimental
error of 0.1 Hz. Because the electronic density is concen-
trated further away from the nucleus when n > 40 than when
n � 30, adding the first or the second of these two sets of
transitions lowers the bound in different ranges of values of
mX0 .

VI. SUMMARY AND CONCLUSIONS

In summary, we have considered how the entire set of
currently available spectroscopic data may be used to set
global constraints on NP models that can be parameterized as
a Yukawa-type interaction. Such interactions would naturally
lead to so-called fifth forces which are a being searched for
intensively [5,95].

Light force mediators have been intensively tested in lab-
oratory experiments, e.g., through the Casimir effect [96]. As
such searches rely in general on all atoms in a macroscopic
object to contribute coherently and in concert to the resulting
force on a test object, they do not probe directly the existence
of a force on a microscopic level. This leaves large classes of
new physics models untested. For example, forces mediated
via kinetic mixing between a photon and a new Z ′ [32,33]
can easily avoid such bounds, as the atom as a whole is
not charged under the fifth force. The experiments discussed
above, however, would remain sensitive to such an interaction.

In addition, while other laboratory based experiments lose
sensitivity for mediator masses above 100 eV, atomic spec-
troscopy for hydrogen atoms retains a good sensitivity up to
masses of 10 keV. Thus, to our knowledge, the presented pre-
dicted limits provide the strongest constraints in laboratory-
based experiments obtained so far for that mass range.

The bounds we obtained in this work appear to be weaker
than those set by astrophysical bounds. However, astrophys-
ical bounds rely on the thermal production of light force
mediators in stars [10,97]. Particles like chameleons avoid
such production and thereby constraints from measurements
of the energy transport in stars. Here atomic spectroscopy
can help to close gaps in the landscape of standard model
extensions and provide an independent test of the physics
models underlying the assumptions of the models for the
evolution of stars.

We further argue that this type of laboratory-based bound
is unique, since it is independent of any many-body physics
effects, such as astrophysical models or the complex subtleties
of isotope shifts in many-electron atoms. Global constraints
of this type also reduce the sensitivity to systematic errors in
individual measurements, such as those which are currently
giving rise to the so-called proton radius puzzle.

We therefore argue that there is a strong case for improved
measurements in hydrogen based on extensions of current
methods for precision optical frequency measurements in
laser-cooled and trapped atoms. An important element would
be extending the reach of measurements to higher principal
quantum numbers, which has substantial benefits due to the
dependence of the new physics shift on the shape of the wave
function discussed in Sec. III. The ideal platform would be
trapped single atoms or arrays of atoms with a well-controlled
spacing, such as an optical tweezer array, opening also the
tantalizing prospect of an engineered many-body quantum
system with a complete SM description.

An extension of this work would consider other simple
atoms which have a complete SM description, such as D
and He, or even positronium, muonic hydrogen, or muonium.
More sophisticated statistical analysis methods might enable
measurements in all of these systems to be combined into a
highly robust extended extended bound or to create sensitive
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differential searches. Concrete limits could be obtained for
various classes of new physics models, e.g., chameleons or
kinetic mixing.
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APPENDIX A: CONVERSION BETWEEN ATOMIC
AND NATURAL UNITS

Because Eq. (2) is written in natural units, mX0 is expressed
as an energy and r as the inverse of an energy. In atomic units,
we have, instead,

V (r′) = (−1)s+1 B

r′ e−Cr′
, (A1)

where the distance r′ is expressed in units of the Bohr radius
a0, C in units of a−1

0 , and B in units of α2 me c2 a0, with me

being the mass of the electron and α being the fine structure
constant. If r and r′ refer to the same point of space and
r is expressed in eV−1, then r′ = rh̄c with the product h̄c
expressed in units of eV a0 (the product h̄c has the physical
dimensions of an energy times a length and has a numerical
value of 1 in natural units). Moreover, as mX0 r ≡ Cr′ if r and
r′ refer to the same position, we see that mX0 and C are related
by the equation

C
[
a−1

0

] = mX0 [eV]

(h̄c)[eV a0]
. (A2)

That is,

C
[
a−1

0

] = 2.68172763 × 10−4 mX0 [eV]. (A3)

To relate the constant B to gegN/4π , we note that in natural
units gegN is a pure number. However, since V (r) is actually
an energy and r a length, Eq. (2) should really be written as

V (r) = (−1)s+1 gegN

4π
h̄c

exp(−mX0 r)

r
. (A4)

Thus B, in atomic units, is (gegN/4π )h̄c with h̄c expressed
as a multiple of the product Eh a0. Since Eh a0 = αh̄c, h̄c =
(1/α)Eh a0. This gives, to 10 s.f.,

B[Eh a0] = (137.0359991/4π ) gegN

= 10.90497832 gegN . (A5)

APPENDIX B: THE NP SHIFT IN CLOSED FORM

Equation (3) can be integrated analytically for any n and l .
The result is particularly simple for the states with maximum

value of l (l = n − 1): In the notation of Eq. (A1) (we use
atomic units throughout this Appendix),

δENP
nn−1 = (−1)s+1 B

n2

(
nC

2
+ 1

)−2n

. (B1)

In particular, the NP shift of the 1s state is obtained as

δENP
10 = (−1)s+1 4B

(C + 2)2
. (B2)

Note the fast decrease of δENP
nn−1 for n → ∞, which arises

from the suppression of the electronic density at small values
of r caused by the increasingly strong angular momentum
potential barrier.

The analytical form of δENP
nl becomes rapidly unwieldy

when n − l exceeds 2 or 3. We quote results only for the
important cases of the 2s, 3s, and 4p states:

δNP
20 = (−1)s+1 B

2

C2 + 1/2

(C + 1)4
, (B3)

δNP
30 = (−1)s+1 4B

3

[
1

(3C + 2)2
− 8

(3C + 2)3

+ 32

(3C + 2)4
− 64

(3C + 2)5
+ 160/3

(3C + 2)6

]
, (B4)

δNP
41 = (−1)s+1 B

8

[
5

(2C + 1)4
− 20

(2C + 1)5

+ 35

(2C + 1)6
− 30

(2C + 1)7
+ 21/2

(2C + 1)8

]
. (B5)

APPENDIX C: DETAILS OF THE FITTING PROCEDURE

1. Bounds derived from current data

The calculation is outlined in Sec. IV. The full experimen-
tal dataset (set A) consists of the 18 measurements labeled
A26.1 to A40.2 in Ref. [61], supplemented by the results of
Refs. [65,66] and by a transition frequency for the transition
between the n = 27 and n = 28 circular states calculated
from the value of R quoted in Ref. [60]. (This value of R
was derived from a small set of measurements of the n =
27 to n = 28 and n = 29 to n = 30 transitions, the former
weighting more in the determination of R than the latter.
No recommended value for either of these two transition
frequencies is given in Ref. [60].) The set of data includes
a measurement of the 2s1/2–2p1/2 Lamb shift [98] recently
reanalyzed in Ref. [99]. We use the revised value of this
experimental result rather than its original value.

The correlation coefficients between the 18 measurements
mentioned in Ref. [61] are given in that reference. We take
the errors on these measurements to be uncorrelated with the
errors on the measurements of Refs. [60,65,66] and the latter
to be uncorrelated with each other.

The calculation of the terms R2
p �̃ns

biai
and �oc

biai
follows

Ref. [55] in regards to the hyperfine splitting and Ref. [56]
in regards to the Lamb shift. Reference [56] updates and com-
pletes the review of hydrogen theory given in the CODATA
compilations [50,51], in particular by taking into account a
number of more recent investigations [100–106]. We include
all the corrections listed in [56] (the details of the original
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publications can be found in this reference). However, we use
the result of Refs. [67,68] for the light-by-light contribution,
set the C50 coefficient to the value found in Refs. [67,69], and
use the value recommended by Ref. [70] for the pure self-
energy two-loop remainder term. Doing so reduces the the-
oretical uncertainties to 1.2 kHz for the ground-state energy
and to (1.8 kHz)/n3 for the excited states energies (excluding
the contribution from the uncertainty on Rp). We treat the
resulting errors on the terms �oc

biai
as completely correlated.

We neglect the theoretical uncertainty on the energies of
the states with l > 0, which is considerably smaller. The
theoretical error on the factors �̃

g
biai

and �̃ns
biai

is also too small
to be relevant in the present context.

2. Projected bounds

We assume that each of the measured transition frequencies
included in the set can be written as a sum of the form

R0H

(
1

n2
a

− 1

n2
b

)
+ �corr

ba + �NP
ba ,

within experimental error, where R0H = R0(mr/me) with R0

the true value of the Rydberg frequency and �corr
ba is the sum of

all the QED, hyperfine, and other corrections predicted by the
standard model. We take R0H and �corr

ba to be the exact values
of these quantities. We equate each of the experimental in-
tervals to its standard model prediction, RH(1/n2

a − 1/n2
b) +

�corr
ba + αcorr

ba , where RH is an effective Rydberg frequency
obtained by fitting theory to experiment and αcorr

ba represents
the theoretical error on �corr

ba . (This last term thus accounts
for the error introduced by the uncertainty on the value of
Rp as well as the errors on the values of the QED and
other corrections not calculated to a sufficient precision. We
do not need to consider the uncertainty on the mass ratio
(mr/me) separately from the uncertainty on R since this ratio
is subsumed into the fitting parameter RH.) We assume that
the n−3 scaling mentioned in Sec. V B holds for the s states of
interest and that the theoretical error on the states with l > 0
is negligible. Doing so for each of the N transitions of a same
set yields the following overdetermined system:

RH

(
1

n2
ai

− 1

n2
bi

)
+ �corr

biai
+ A

(
δlbi 0

n3
bi

− δlai 0

n3
ai

)

= R0H

(
1

n2
ai

− 1

n2
bi

)
+ �corr

biai
+ �NP

biai
± α

exp
biai

,

n = 1, 2, . . . , N, (C1)

where A is a constant and α
exp
biai

represents the experimental
error on the corresponding transition frequency. Simplifying
these equations gives

δRH

(
1

n2
ai

− 1

n2
bi

)
+ A

(
δlbi 0

n3
bi

− δlai 0

n3
ai

)
= �NP

biai
± α

exp
biai

,

n = 1, 2, . . . , N, (C2)

with δRH = RH − R0H. We determine the NP bounds by
finding the range of values of gegN within which the left-hand
sides of these equations fit the right-hand sides at the 5%
confidence level, treating δRH and A as fitting parameters.

As the experimental errors on different transitions measured
using a same methodology could be expected to be mildly
correlated, we assume a correlation coefficient of 0.1 between
the experimental errors on the measured transition frequencies
belonging to a same set of data.

The bounds shown in Fig. 5(b) follow from Eq. (14),
with the Rydberg frequencies RC and RD replaced by the
corresponding values of δRH. For simplicity, we assume no
correlation between the errors on these quantities.

APPENDIX D: BLACK-BODY RADIATION

We have calculated the BBR shift of the Rydberg states of
interest in order to ascertain the precision on the thermometric
measurements required in our approach. Our results complete
those of Refs. [107] and [108], which do not extend high
enough in principal quantum numbers. Except where specified
otherwise, we use atomic units throughout this Appendix.

To second order in the electric field component of the BBR
field, the thermal shift of a state a at a temperature T can be
written as [107–109]

δBB
a = 2(kT )3

3πc3

∑
i,b

|〈b|ri|a〉|2F

(
ωab

kT

)
, (D1)

where the ri’s are three orthogonal components of the elec-
tron’s position operator, k is Boltzmann constant, the summa-
tion over b runs over all the atomic states dipole-coupled to
the state a, ωab = Ea − Eb where Ea and Eb are the energies
of the respective states, and, with P.V. denoting the Cauchy
principal value,

F(y) = P.V.

∫ ∞

0

2y

y2 − x2

x3

ex − 1
dx. (D2)

The BBR field also depopulates state a by inducing transitions
to other states at a rate approximately equal to �BB

a , where

�BB
a = 4(kT )3

3c3

∑
i,b

|〈b|ri|a〉|2 U

(
ωab

kT

)
, (D3)

with U (y) = |y|3/(exp |y| − 1) [107–109]. �BB
a does not in-

clude losses due to the BBR-induced Stark mixing of degen-
erate states of opposite parity, which is significant in hydrogen
[108]. Equations (D1) and (D3) also neglect nondipolar tran-
sitions and corrections of fourth order in the BBR electric field
[110–112]; their contributions are small and can be neglected
for our purposes. Local anisotropies of the BBR field may also
need to be factored in when comparing to experiment [113].

We evaluate F (y) by contour integration in the complex x
plane. This method bypasses the need for a careful treatment
of the singularity at x = ±y inherent in the direct calculation
of a Cauchy principal value and only involves straightforward
numerical quadratures. Namely, we introduce the complex
function

FC (y) =
∫

C

2y

y2 − z2

z3

ez − 1
dz, (D4)

where the integration contour starts at z = 0 and goes to
Re z → ∞ in the lower half plane, avoiding the zeros of
exp(z) − 1. In practice, we use a rectangular contour running
from z = 0 to z = −i/2 and from z = −i/2 to z = 50 − i/2,
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FIG. 6. Difference between 300 K and the temperature at which
the frequency of the transition from the (n, l = 0) state to the (n′, l =
0) state differs by 0.2 Hz from its value at 300 K.

which is well adapted to the range of values of y involved in
this work. We have F(y) ≡ Re FC (y) owing to the relation

lim
ε→0+

1

y − x + iε
= P.V.

1

y − x
− iπδ(y − x), (D5)

and moreover

δBB
a − i

2
�BB

a = 2(kT )3

3πc3

∑
i,b

|〈b|ri|a〉|2FC

(
ωab

kT

)
. (D6)

We calculate the dipole matrix elements 〈b|ri|a〉 by solving
Eq. (8) for each of the states a and b. Having the correspond-
ing generalized eigenvectors, ca and cb, we obtain 〈b|ri|a〉 as
c†

bRica, where Ri is the matrix of elements∫
S∗

n′lb (r)Y ∗
lbmb

(θ, φ) ri Sn′la (r)Ylama (θ, φ) d3r.

Substituting these results into Eq. (D1) gives the shift in the
nonrelativistic approximation. We correct this for spin-orbit
coupling by replacing the nonrelativistic angular factors by
the appropriate expressions [107] and evaluating the Bohr
transition frequencies ωba using the relativistic energies. The
summation over the intermediate states b runs over all the gen-
eralized eigenvectors of the matrix H0 of the relevant symme-

try, including those corresponding to positive eigenenergies.
Doing so ensures (assuming that the basis is large enough)
that the shifts and widths properly include the contribution
of the continuum, which can be significant [114,115]. We
use 300 Sturmian functions for each symmetry. While the
BBR shift depends to some extent on the hyperfine structure
of the levels [116], taking it into account would not affect
the results at the level of precision required by the present
investigation. The calculations of radiative widths mentioned
in the text use exactly the same numerical method in regards
to the computation of the required dipole matrix elements.

The BBR shift of hydrogen state may be significant com-
pared to the NP shift at the relevant values of gegN and
may even be considerably larger. For example, for n = 10
and l = 0, |δNP

nl | is at most 0.7 kHz when gegN = 1 × 10−12

whereas δBB
nl is approximately 1.1 kHz at 300 K [107]. At

least in principle, this shift can be removed from spectroscopic
data for hydrogen since it can be accurately calculated for this
atom. In practice, however, taking it correctly into account re-
quires a sufficiently precise determination of the temperature
of the BBR field at the location of the atoms, and perhaps
also of its inhomogeneity and its deviation from of an ideal
Planck distribution. In situ temperature measurements with
an uncertainty of the order of 0.01 K have been achieved
using platinum resistance thermometers [117]. Spectroscopic
measurements of Rydberg states have also been proposed to
determine the temperature of the BBR background with a
similar uncertainty [118].

The BBR energy shift of the high Rydberg states is approx-
imately π (kT )2/3c3 [107,119]. An error of 0.01 K on T at
300 K translates into an error of 0.2 Hz (or lower) on the BBR
shift of these states. However, this error on the temperature
would have a smaller impact on measurements of the energy
difference between Rydberg states made in a same apparatus
because they all shift by roughly the same amount. This point
is illustrated by Fig. 6, which shows the accuracy to which T
must be known to reduce the error on the BBR shift to less
than 0.2 kHz in measurements of transitions between s states
made at room temperature. An easily achievable accuracy of
0.5 K is sufficient for transitions between the lowest states
or between high Rydberg states (the former because they shift
little, the latter because they shift similarly). The requirements
are more stringent for transitions between relatively low lying
states and high Rydberg states, particularly for low lying states
with n ≈ 5 (whose shift is larger and of opposite sign to that
of states with n � 5 [107]).

It should be noted that the error that can be tolerated on
T roughly scales with the maximum error on the transition
frequencies. If an accuracy of 10 Hz is sought, rather than
0.2 Hz, the temperature would not need to be known to better
than 0.5 K for any frequency interval.
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