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Optimal frequency window for Floquet engineering in optical lattices
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The concept of Floquet engineering is to subject a quantum system to time-periodic driving in such a way
that it acquires interesting properties. It has been employed, for instance, for the realization of artificial magnetic
fluxes in optical lattices and, typically, it is based on two approximations. First, the driving frequency is assumed
to be low enough to suppress resonant excitations to high-lying states above some energy gap separating a
low-energy subspace from excited states. Second, the driving frequency is still assumed to be large compared to
the energy scales of the low-energy subspace, so that also resonant excitations within this space are negligible.
Eventually, however, deviations from both approximations will lead to unwanted heating on a time scale τ .
Using the example of a one-dimensional system of repulsively interacting bosons in a shaken optical lattice, we
investigate the optimal frequency (window) that maximizes τ . As a main result, we find that, when increasing
the lattice depth, τ increases faster than the experimentally relevant timescale given by the tunneling time h̄/J ,
so that Floquet heating becomes suppressed.

DOI: 10.1103/PhysRevResearch.2.013241

I. INTRODUCTION

The idea of Floquet engineering is to subject a quantum
system to time-periodic driving in such a way that it acquires
interesting properties that are difficult to achieve by other
means. This concept has been applied very successfully to
systems of atomic quantum gases in optical lattices [1]. The
fact that these systems are extremely clean, well isolated
from their environment, and highly tunable also in a time-
dependent fashion makes them an ideal platform for studying
coherent many-body dynamics. Examples for Floquet engi-
neering in optical lattices include, among others, dynamic
localization [2,3], photon-assisted tunneling [4–8], the control
of an interaction-induced quantum phase transition [9,10],
the creation of kinetic frustration [11,12], artificial mag-
netic fields [13–22], topological band structures [23–25], and
number-dependent gauge potentials [26].

A simple explanation of the basic concept underlying Flo-
quet engineering is often given by considering the one-cycle
time-evolution operator

Û (T, 0) = T exp

[
1

ih̄

∫ T

0
dt Ĥ (t )

]
(1)
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for a quantum system described by a time-periodic Hamilto-
nian with angular driving frequency ω = 2π/T ,

Ĥ (t ) = Ĥ (t + T ), (2)

where T denotes time ordering. The fact that this operator is
unitary allows one, at least formally, to express it in terms of
an Hermitian operator ĤF that is called Floquet Hamiltonian,

Û (T, 0) ≡ exp

(
1

ih̄
T ĤF

)
. (3)

This effective time-independent Hamltonian ĤF governs the
time evolution of the system, when it is monitored strobo-
scopically in integer steps of the driving period T . Thus, at
first glance, one might expect that the driven system behaves
as some effective nondriven system described by the Hamil-
tonian ĤF . However, while the above reasoning applies to
small quantum systems, the situation in many-body systems
is more complex. Here the eigenstates of ĤF will typically
be superpositions of states having very different energies.
This is a consequence of the lack of energy conservation in
driven systems, which is reflected in the possibility of resonant
coupling, and the fact that in a large system resonances will be
ubiquitous. The lack of energy conservation suggests that in
the thermodynamic limit the system approaches an infinite-
temperature-like state, so that in the sense of eigenstate
thermalization the eigenstates of ĤF represent an infinite-
temperature ensemble [27,28]. From this point of view, the
Floquet Hamiltonian ĤF does not seem to be a suitable object
for engineering interesting system properties.

The fact that Floquet engineering can, nevertheless, be
a useful concept also in many-body quantum systems, is
related to the observation that in some parameter regimes
the timescale τ associated with unwanted resonant processes,
where the system absorbs (or emits) energy quanta h̄ω,
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can become rather long. Since typically energy absorption
dominates, in the following, we will denote such detri-
mental energy-non-conserving processes as “heating” and
τ as the corresponding “heating” time.1 On times shorter
than τ , we might be able to engineer and study interesting
driving-induced physics described by an approximate time-
independent effective Hamiltonian Ĥeff, corresponding to a
nondriven system with modified properties. The standard
strategy employed for deriving such an effective Hamiltonian
involves two steps [9]:

The first step is given by a low-frequency approximation,
where the assumption is made that the system remains in a
low-energy subspace, which is separated by an energy gap
from excited states, which is much larger than the driving
frequency. In nondriven systems, such low-energy approxi-
mations are common. For example, in a lattice system, higher-
lying orbital states spanning Bloch bands above a band gap are
neglected, when deriving Hubbard-type tight-binding models,
or doublon-holon excitations lying above a charge gap of a
Mott insulator are eliminated adiabatically, in order to derive
spin Hamiltonians. For a sufficiently large energy gap, in
nondriven systems one can expect that the admixture of higher
lying states is captured by a converging perturbation theory
and will always remain small. In contrast, in a periodically
driven many-body system, the situation is generically differ-
ent. Here resonant excitations to the neglected excited states
can occur, where the drive provides one or several energy
quanta h̄ω. Such processes contribute to the aforementioned
detrimental heating. However, for driving frequencies (and
amplitudes) much lower than the gap, so that the system
would need to absorb many energy quanta h̄ω (“photons”)
at once, they can be exponentially slow with respect to the
photon number. Thus, by estimating the associated heating
rate [29–38], we might be able to argue that we can still
neglect higher lying states on the timescale of an experiment.

The second step is given by a high-frequency approxima-
tion. Let us assume that according to the first step we are
able to neglect, say, higher lying Bloch bands, so that we can
describe our system by a Hubbard Hamiltonian acting in the
lowest Bloch band. Now, the periodic drive can still resonantly
create excitations within this low-energy subspace. This form
of energy absoprtion (heating) can be reduced considerably
by considering driving frequencies that are sufficiently large,
so that absorbing an energy quantum of h̄ω corresponds to
an exponentially slow high-order process in which several
elementary excitations are created at once [39,40]. If this
is the case, we can employ a rotating-wave approximate
and describe the system by the time-averaged low-energy
Hamiltonian (or compute also further corrections using a
high-frequency expansion [40–44]). In this way, we arrive at
an approximate effective Hamiltonian Ĥeff that describes the
dynamics of our system on timescales before driving-induced
heating sets in. The leading order of this expansion is simply
given by the time-averaged Hamiltonian and corresponds to a
rotating-wave approximation.

1This (rather common) terminology shall not imply that the system
is described by thermodynamic variables such as temperature.

The two steps outlined above require that there is a window
of suitable driving frequencies that are both low compared to
the relevant energy gap separating the low-energy subspace
from higher lying states and large compared to the energy
scales governing this low-energy subspace. In this article, we
investigate the question of whether such an optimal frequency
window exists, using the experimentally relevant example of
repulsively interacting bosonic atoms in a periodically shaken
one-dimensional optical lattice. For this purpose, we compare
the evolution generated by an approximate effective Hamil-
tonian Ĥeff acting in the lowest Bloch band to the evolution
obtained from integrating the dynamics of the fully time-
dependent model that, apart from the lowest band, contains
also first excited band.

The remaining part of this paper is organized as follows:
After introducing the system and the model in Sec. II, in
Sec. III we recapitulate the derivation of the approximate ef-
fective Hamiltonian Ĥeff from the low- and high-frequency ap-
proximations. In the following two sections, we then compare
the evolution generated by Ĥeff to numerical simulations: In
Sec. IV, we investigate the breakdown of the high-frequency
approximation due to intraband heating and in Sec. V we
study the combined effect of intraband and interband heating
beyond the high- and low-frequency approximation. Finally,
we close with Sec. VI.

II. SYSTEM AND MODEL

We consider a system of ultracold bosonic atoms in a one-
dimensional optical lattice potential

V (r) = V0 sin2(kLx) + V⊥(y, z). (4)

Here, the laser wave number kL defines the recoil energy ER =
h̄2k2

L/(2m) with atom mass m, corresponding to the kinetic
energy required to localize a particle on the length of a lattice
constant a = π/kL. Typical recoil energies take values of a
few kHz. The deep confining potential V⊥(y, z) � m

2 ω2
⊥(y2 +

z2) shall reduce the dynamics to one spatial dimension via a
large transverse excitation gap h̄ω⊥ that freezes the particles in
the lowest transverse single-particle state. More precisely, ω⊥
will be chosen large enough, so that the timescale for driving-
induced transverse heating can be expected to be much longer
than the one for resonant excitations of longitudinal degrees of
freedom in lattice direction, which we are going to investigate
here.

The system shall be driven periodically in time by the
homogenous sinusoidal force pointing in the lattice direction
ex,

F(t ) = −Ka cos(ωt )ex. (5)

It is characterized by the driving strength K , corresponding
to the amplitude of the potential offset between neighboring
lattice sites, and the angular driving frequency ω, which
defines also the driving period T = 2π/ω. Such a force can
be realized as an inertial force by shaking the lattice back and
forth in the x direction.

In the absence of periodic forcing, experiments performed
in the regime of deep lattices, V0/ER � 5, at the typical
ultracold quantum gas temperatures are described accurately
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by the single-band Bose Hubbard model [45]

Ĥs = −Js

M−1∑
�=1

(b̂†
s�+1b̂s� + H.c.) + Us

2

M∑
�=1

n̂s�(n̂s� − 1). (6)

Here the index � denotes the lattice sites in ascending order
from 1 to M and the label s indicates the lowest Bloch
band to be distinguished from the first excited band, labeled
by p, which is considered below. Moreover, b̂†

α�, b̂α�, and
n̂α� = b̂†

α�b̂α� denote the creation, annihilation, and number
operator for a boson in a Wannier state of band α on site �.
Nearest-neighbor tunneling is described by the parameter Js

and on-site interactions by the Hubbard parameter Us.
While in a nondriven system, a description in the low-

energy subspace of the s band is well justified, this assumption
is not as clear in a system that is driven periodically. Even
if the driving frequency is small compared to the band gap
separating the s band from the first excited p band, states of
excited bands might still be populated via multiphoton excita-
tions corresponding to either single-particle processes [30,35]
or two-particle scattering [36]. If periodic driving is used
to control the physics of the lowest band, such excitation
processes must be viewed as unwanted heating. In order to
estimate this effect, we will also take into account the first
excited band, which for the undriven lattice is captured by the
Hamiltonian

Ĥp = �

M∑
�=1

n̂p� + Jp

M−1∑
�=1

(b̂†
p�+1b̂p� + H.c.)

+ Up

2

M∑
�=1

n̂p�(n̂p� − 1), (7)

and coupled to the s band via the interband interaction term

Ĥsp = Usp

M∑
�=1

[
2n̂s�n̂p� + 1

2
(b̂†

p�b̂†
p�b̂s�b̂s� + H.c.)

]
. (8)

Here � denotes the orbital energy required to excite a particle
to a Wannier state of the p band and Jp and Up describe
nearest-neighbor tunneling and on-site interactions in this
p band, respectively. The on-site scattering and repulsion
between s and p states is quantified by Usp.

If the energy scales of the periodic force, h̄ω and K , remain
below the band gap �, the bands of the undriven problem, s
and p, provide a useful basis also for the description of the
driven system (see the supplemental material of Ref. [36]).
Assuming this regime, we project the potential −r · F(t )
induced by the force to the lowest two bands and obtain the
driving term of the Hamiltonian:

Ĥdr(t ) = K cos(ωt )
M∑

�=1

[�(n̂s� + n̂p�) + η(b̂†
p�b̂s� + H.c.)],

(9)
where η is the dipole matrix element between two Wannier
states of the s and the p band on the same lattice site in units
of the lattice constant.

The total Hamiltonian to be used for our analysis is now
given by

Ĥ (t ) = Ĥs + Ĥp + Ĥsp + Ĥdr(t ). (10)

FIG. 1. Parameters characterizing the two-band Bose-Hubbard
model for a shaken one-dimensional optical cosine lattice plotted vs
the lattice depth V0/ER.

The number of independent parameters that describe this
model is reduced considerably by noticing that Js/ER, Jp/ER,
�/ER, and η are determined completely by the dimensionless
lattice depth V0/ER. Moreover, the interaction parameters Us,
Up, and Usp share the very same (linear) dependence on both
the s-wave scattering length as (which can be tuned using
Feshbach resonances) and the transverse confinement ω⊥, so
that their ratios Up/Us and Usp/Us equally depend on V0/ER

only. Thus, taking Js and h̄/Js as the units for energy and time,
respectively, the undriven model is characterized by V0/ER

and Us/Js as well as by the average number of particles per site
N/M. The periodic driving is furthermore characterized by
the dimensionless diving strength K/Js and angular frequency
h̄ω/Js. The dependence of the model parameters on the lattice
depth V0/ER, obtained from band-structure calculations, is
shown in Fig. 1.

III. LOW- AND HIGH-FREQUENCY APPROXIMATIONS

Most schemes of Floquet engineering in optical lattices
(such as, for example, the control of the bosonic Mott transi-
tion [9,10], the implementation of kinetic frustration [11,12],
the creation of artificial gauge fields [13,15–19,22], and the re-
alization of Floquet topological insulators [23–25]) are based
on two approximations: a low-frequency approximation with
respect to orbital degrees of freedom and a high-frequency
approximation with respect to processes occurring in the
lowest band described by Hs.

The low-frequency single-band approximation is based
on the assumption that the driving frequency and amplitude
remain low enough to ensure that the system remains in the
subspace spanned by the lowest (s-type) Wannier-like orbital
at each lattice site. It roughly requires driving frequencies

h̄ω � � (11)

and driving amplitudes K smaller than a threshold value Kth

below which multiphoton transitions are expected to be sup-
pressed exponentially with the photon number �/h̄ω [35]. It
leads to a description of the system in terms of a tight-binding
model with a single orbital state per lattice site, which in our
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case is given by the single-band model

Ĥsb(t ) = Ĥs + K cos(ωt )
M∑

�=1

�n̂s�. (12)

The high-frequency approximation is based on the assump-
tion that the driving frequency is still large compared to the
energy scales Js and Us governing the low-energy model (12),

h̄ω � Js,Us. (13)

Under these conditions, the resonant creation of collective
excitations of energy h̄ω becomes a slow high-order process
that can be neglected on sufficiently short timescales. This
allows us to describe the system using an approximate ef-
fective time-independent Hamiltonian obtained from a high-
frequency expansion [9,40,43,44]. For that purpose, we first
perform a gauge transformation with the time-periodic unitary
operator

Û (t ) = exp

(
−i

M∑
�=1

θ (t )�n̂s�

)
(14)

with θ (t ) = K/(h̄ω) sin(ωt )�, which integrates out the driving
term. The transformed Hamiltonian Ĥ ′ = Û †ĤsbÛ − iÛ † ˙̂U
reads

Ĥ ′(t ) = −Js

M−1∑
�=1

(eiθ (t )b̂†
s�+1b̂s� + H.c.) + Us

2

M∑
�=1

n̂s�(n̂s� − 1).

(15)

The fact that it possesses typical matrix elements that are
small compared to h̄ω even for large K ∼ h̄ω justifies the
high-frequency approximation also for strong driving. Its
leading order is given by the rotating-wave approximation,
where the system is described by the time-averaged Hamil-
tonian

Ĥeff = 1

T

∫ T

0
dt Ĥ ′(t )

= −Jeff
s

M−1∑
�=1

(b̂†
s�+1b̂s� + H.c.) + Us

2

M∑
�=1

n̂s�(n̂s� − 1)].

(16)

Here the effective tunneling matrix element

Jeff
s = JsJ0(K/h̄ω) (17)

acquired a dependence on the scaled driving amplitude
K/(h̄ω) described by a Bessel function Jn. In this way, the
time evolution of the system’s state |ψ (t )〉 is approximately
described by

|ψ (t )〉 ≈ Û (t )e− i
h̄ (t−t0 )ĤeffÛ †(t0)|ψ (t0)〉. (18)

In particular, we expect

|ψ (nT )〉 ≈ e− i
h̄ nT Ĥeff |ψ (0)〉 ≡ ∣∣ψeff

n

〉
(19)

for integers n, when monitoring the dynamics stroboscopi-
cally in steps of the driving period at those times t = nT ,
for which Û (nT ) = 1. Higher orders of the high-frequency
expansion will provide relative corrections of the order of
Js/h̄ω to the evolution governed by Ĥeff [40,43].

The single-band high-frequency approximation, leading
to a description of the system’s dynamics in terms of
the approximate effective Hamiltonian (16), requires that
there is a window of driving frequencies for which both
conditions (11) and (13) are fulfilled. Since with increasing
lattice depth V0/ER both Js decreases rapidly and � increases
moderately (see Fig. 1), while the interaction parameter Us

can be made small by tuning the s-wave scattering length
using a Feshback resonance, such a window will open
for sufficiently large V0/ER. However, even within such a
frequency window, heating will not be suppressed completely
and will eventually make itself felt on some timescale τ . This
heating time τ has to be compared to the typical duration of
an experiment, which will be given by some fixed multiple of
the tunneling time h̄/Js, which in turn increases exponentially
with the lattice depth (asymptotically for deep lattices
ln(Js/ER) � −2

√
V0/ER [46]; see also Fig. 1). Thus, in order

to take into account also this latter effect, in the following we
will investigate the behavior of the dimensionless heating time
τJs/h̄. In doing so, we have to keep in mind that there will
also be background heating (resulting from noise, three-body
collisions, or scattering with background particles), which
is independent of the periodic driving and happens on
some timescale τ0. Assuming τ0 ∼ 1 s (∼10 s), requiring
τ0 � h̄/Js, and noting that ER ∼ 2π h̄ 3 kHz for typical
experiments, we can see from Fig. 1 that the lattice depth is
limited to values V0/ER � 15 (20).

IV. INTRABAND HEATING

Let us first investigate the validity of the high-frequency
approximation, before considering also heating due to the cou-
pling to the first excited band. For this purpose, we consider
the following quench scenario. We assume that the system is
prepared in the ground state of the undriven Hamiltonian (6),
when at time t = 0 the driving amplitude is switched on
abruptly to a finite value K . We integrate the time evolution
of the system described by the time-dependent single-band
Hamiltonian Ĥsb(t ) [Eq. (12)] and compare it to the ap-
proximate solution |ψeff

n 〉 [Eq. (19)] obtained from the time-
averaged single-band Hamiltonian Ĥeff. For that purpose, we
consider a small system of N = 6 particles on M = 10 lattice
sites, for which we can integrate the time evolution exactly.

In order to monitor the deviation between the exact time
evolution and the dynamics predicted by the rotating-wave
approximation, we consider the expectation value

n0(t ) = 〈â†
s0âs0〉 with âs0 = 1√

M

M∑
�=1

b̂s�, (20)

which corresponds to the mean occupation of the single-
particle state with quasimomentum 0 in the s band. The
difference

�n0(t ) = n0(t ) − neff
0 (t ) (21)

between the exact expectation value and the one obtained
within the rotating-wave approximation taken at times t = nT
with integer n will serve as an indicator for the validity of
the approximations made. While for the results presented in
this section, n0(t ) refers to the dynamics generated by the
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FIG. 2. Difference �n0 between the exact time evolution of the
single-band Hamiltonian (12) and that obtained from the rotating-
wave approximation (19), taken at times t = nT with integer n. The
time evolution is initiated by abruptly switching the amplitude of
the drive at t = 0 from 0 to K . The parameters are N = 6, M = 10,
V0/ER = 14, U/Js = 1, h̄ω/Js = 30, and K/h̄ω = 4. At time τ , the
difference �n0 exceeds 0.2 for the first time.

time-dependent single-band Hamiltonian (12), later on in the
following section, n0(t ) will correspond to the dynamics of
the full driven two-band model (10).

In Fig. 2 we plot �n0(t ) for a quench to a large driving
amplitude K/h̄ω = 4 (the other parameters are specified in
the caption). For this value, the effective tunneling parameter
changes its sign, Jeff

s ≈ −0.4J , so that the quench is signifi-
cant also on the level of the rotating-wave approximation. We
can see that �n0(t ) shows an irregular oscillatory behavior,
with a roughly linearly growing envelope. We define the
heating time τ as the time at which |�n0(t )| exceeds the
value �ncut = 0.2 for the first time. Note that τ gives only
an estimate for the timescale on which heating starts to play
a role. The value of �ncut is obviously somewhat arbitrary. It
is chosen to be much smaller than the initial occupation of the
zero momentum state, which is of the order of N , and it is also
smaller than (and of the order of) the filling factor N/M = 0.6
corresponding to the mean occupation of each momentum
state. The linear spreading of the envelope of �n0(t ) implies
that altering �ncut by a factor of order 1 will simply alter
the heating time τ by roughly the same factor. Note also that
the typical deviations |�n0(t )| at time t = τ are smaller than
�ncut = 0.2, since in most cases �ncut is reached the first
time during the time evolution when an extreme fluctuation
of |�n0(t )| occurs.

Note that, alternatively, the time τ could also be defined via
the (stroboscopic or period-averaged) energy absorption. Such
a definition would possess the advantage that, to some extent,
in experiments it can be measured (or at least estimated)
directly from time-of-flight images [30,36–38]. On the other
hand, from the point of view of Floquet engineering, the
relevant quantity to look at is the deviation from the approxi-
mate effective Hamiltonian, the physics of which we wish to
implement. These deviations are not necessarily proportional
to the absorbed energy. Namely, the excitation of a particle
within the lowest band might be as detrimental as its excitation

FIG. 3. Heating time τ (dots) vs driving frequency h̄ω/Js for
two different values of the interaction strength Us/Js. The other
parameters are chose as in Fig. 2: N = 6, M = 10, K/h̄ω = 4, and
VR/ER = 14. The solid lines are exponential fits.

to the first excited band via a multiphoton process, despite the
fact that the former is associated with a much lower energy
absorption than the latter. Therefore, we have decided to
define the “heating” time τ via deviations from the dynamics
expected from the target Hamiltonian, as described in the
previous paragraph.

In Fig. 3, we plot the heating time τJs/h̄ versus the driving
frequency h̄ω/J for two different values of the interaction
strength U/Js = 1 and U/Js = 5 (the other parameters are
specified in the caption). We see that the heating time is
considerably reduced for the larger value of the interactions.
Moreover, an exponential dependence of the heating time
on the driving frequency can be observed. This agrees with
the expectation for heating processes based on perturbation
theory in Floquet space [39]. Namely, one can argue that the
order of the process of absorbing an energy quantum h̄ω,
corresponding to the number of elementary excitations (quasi-
particles) that have to be collectively excited, will grow like a
power of ω and that the corresponding matrix element will
be suppressed exponentially with the order [39,40]. Such an
exponential suppression of heating with respect to the driving
frequency has recently also been proven for spin systems
having a finite local energy bound [47,48]. Note, however,
these proofs do not apply to the bosonic Hubbard model
considered here, which in principle allows for macroscopic
site occupations.

V. INTRABAND AND INTERBAND HEATING

The exponential increase of the heating time with re-
spect to the driving frequency visible in Fig. 3 is an artifact
of the single-band description of the driven lattice system.
Namely, for sufficiently large driving frequencies unwanted
excitations to higher lying orbital states (spanning excited
Bloch bands) will become the dominant heating effect. In
order to take into account this effect, we will include also
the coupling to the p band. For this purpose, we consider
the two-band Hamiltonian (10) and monitor the heating time
τ defined in the same way as in the previous section. In
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FIG. 4. Heating time vs driving frequency both for the single-
band Hamiltonian (empty symbols) and the two-band Hamiltonian
(full symbols) for a system of N = 4 particles on M = 8 sites (cor-
responding to 16 single-particle states) with V0/ER = 14, K/h̄ω = 4,
and two different interaction strengths.

an experiment, of course, also further (higher lying) bands
will play a role. However, the coupling to the first excited
band is most dominant, because with respect to the low-
est band it both is energetically closest and possesses the
largest coupling matrix elements. Therefore, the characteristic
timescale for the interband heating processes is determined
by transitions to the p band. Higher lying bands can still
make themselves felt, e.g., in the precise shape of resonance
lines (as discussed in Ref. [30]). However, such details are
not crucial for the present analysis, which is interested in the
timescales only.

In Fig. 4, we plot the heating time τ versus the driving
frequency for a system of N = 4 particles on M = 8 sites
(corresponding to 16 single-particle states) with lattice depth
V0/J = 14. For strong driving, K/h̄ω = 4, and two different
interaction strengths, Us/Js = 1 and Us/Js = 5, we compare
the heating times obtained from the single-band model (12)
(open circles) to those obtained from the two-band model (10)
(filled circles). As expected, we can observe that, while the
coupling to the p band does not influence the heating time
for low frequencies, it becomes dominant for large driving
frequencies. For the two-band model, the interplay between
intraband and interband heating gives rise to a maximum of
the heating time, τopt, at some optimal intermediate driving
frequency ωopt. For the larger interaction strength, τopt is lower
and occurs at a larger frequency.

To study the impact of interactions in more detail, we
compare the frequency-dependent heating times for various
interaction strengths Us/Js in Fig. 5. The inset shows the
optimal (maximum) heating time τopt (diamonds, right axis)
and the corresponding optimal driving frequency ωopt (circles,
left axis) versus Us/Js. We observe a significant reduction of
τopt combined with an upshift of ωopt, when increasing the
interaction strength Us/Js up to values of about 3. Both the
shift of ωopt and the noticeable reduction of τopt for the single-
band model (Fig. 3) suggest that increasing the interactions
mainly enhances intraband heating, so that intraband heating
becomes the dominant heating processes limiting τ up to

FIG. 5. Heating time τJs/h̄ vs driving frequency h̄ω/Js for the
two-band model with different interaction parameters Us/Js, for N =
4, M = 8, V0/ER = 14, and K/h̄ω = 4. The inset shows the optimal
(maximum) heating time τopt (diamonds) and the corresponding
optimal frequency ωopt vs Us/J .

larger values of ω. For values of Us/Js that are larger than
3, both τopt and ωopt approximately saturate. We attribute this
favorable behavior to the reaching of the strongly interacting
regime Us/|Jeff

s | ≈ 2.5(Us/Js) � 1 in the lowest band. Here
the kinetic energy of the particles is not sufficient anymore
to induce changes in the site occupations that are associated
with a change of interaction energy (for an initial state without
multiply occupied sites this regime corresponds to the hard-
core boson limit). Once this regime is reached, the physics
within the lowest band does not change much anymore, when
the interactions are increased further, which is consistent with
the observed saturation. This argument holds until eventually
for even stronger interactions, Usp ∼ �, deviations due to
interband coupling will make themselves felt.

In Fig. 6, we depict the lowest-band zero-quasimomentum
occupation n0(t ) in units of its initial value n0(0) at time
t ≈ 40h̄/Js. This time is chosen to be large compared to the
tunneling time h̄/Js, which is the relevant timescale for exper-
iments. It is plotted versus the interaction strength Us/Js and
the driving frequency h̄ω/Js, where the low-frequency regime
is shown in the left panel, while results for higher driving
frequencies are given in the right panel. In the underlying
simulations, we have considered a lattice depth of V0/ER = 10
and a driving strength of K/h̄ω = 1.5, which is smaller than
the one used previously and does not induce a sign change of
the effective tunneling matrix element (17), Jeff

s ≈ 0.51Js. The
latter implies that on the level of the effective Hamiltonian,
the quench induced when switching on the driving does not
correspond to an inversion of the effective dispersion relation
but rather to a reduction of the band width by a factor of
one half. On the level of the time-averaged Hamiltonian (16),
this rather mild quench will excite the system only weakly,
so that the occupation n0(t )/n0(0) will retain a rather large
value also during the dynamics following the quench. Thus,
a significant reduction of n0(t )/n0(0) indicates unwanted
driving-induced heating. Note also that (for fixed K/h̄ω) the
ideal dynamics generated by Ĥeff, and thus also n0(t )/n0(0),
should be independent of the driving frequency. Therefore,
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FIG. 6. Map of n0(t )/n0(0) at time t = 100 ms for the two-
band model vs driving frequency and interaction strengths, with
N = 4, M = 8, V0/ER = 10, and K/h̄ω = 1.5. Here n0(t ) is defined
in Eq. (20). We assumed a recoil energy of ER = 3.332π h̄ kHz, a
typical value for an experiment with 87Rb atoms, for which the chose
time span corresponds to tJs/h̄ ≈ 40 tunneling times. The driving
strength corresponds to an effective tunneling matrix element of
Jeff

s ≈ 0.5Js.

also any frequency dependence of n0(t )/n0(0) must be viewed
as a deviation from the target dynamics generated by Ĥeff.

In Fig. 6, we find signatures of heating in the form of a
significant reduction of n0(t )/n0(0) in various regimes. In the
regime of weak interactions Us/Js � 1, heating is visible both
for too low frequencies, when h̄ω ∼ Js, as well as for too high
frequencies, when h̄ω ∼ � (with �/Js ∼ 250 for the given
lattice depth). When the interband interactions Us become
larger than the interband tunneling Js, low-frequency heating
sets in already for larger h̄ω, in accordance with condi-
tion (11). At the same time, we can also observe that interband
heating at large frequencies is enhanced in the presence of
interactions. For the chosen lattice depth of V0/ER = 10, we
observe that strong interactions Us/Js � 1 lead to significant
heating at any frequency.

The dependence of the heating time τJs/h̄ on the lattice
depth V0/ER is investigated in detail in Fig. 7, where we plot
the scaled heating time τJs/h̄ versus h̄ω/Js for various values
of V0/Js and for Us/Js = 5 as well as K/h̄ω = 4. The inset
shows τoptJs/h̄ and h̄ωopt/Js versus V0/ER. We can observe
that both τoptJs/h̄ and h̄ωopt/Js increase with the lattice depth.
The main figure shows that this behavior is associated with a
significant reduction of heating for large h̄ω/Js. Let us discuss
this behavior in more detail.

First, we can notice that the intraband dynamics, described
by the single-band Hamiltonian (12) and measured in the
natural unit of the tunneling time h̄/Js, is determined by the
dimensionless ratios Us/Js, h̄ω/Js, and K/h̄ω, which we kept
fixed in our simulations when increasing the lattice depth
V0/ER. This choice of fixed parameters is natural from the
point of view of quantum simulation, where we wish to
engineer the properties of the lowest band described by the
approximate effective Hamiltonian (16). It explains why for
small h̄ω/Js, for which interband coupling is negligible, the

FIG. 7. Heating time τJs/h̄ vs driving frequency h̄ω/Js for the
two-band model with different lattice depths V0/ER, for N = 4,
M = 8, Us/Js = 5, and K/h̄ω = 4. The inset shows the optimal
(maximum) heating time τopt (diamonds) and the corresponding
optimal frequency ωopt vs V0/ER.

dimensionless heating time τJs/h̄ is hardly influenced by the
lattice depth. This can be seen from the fact that all curves in
Fig. 7 agree up to the point (∼h̄ωopt/Js), where τJs/h̄ starts to
be reduced by interband processes.

We can, moreover, observe in Fig. 7 that the interband
heating, which is responsible for the reduction of τJs/h̄ at
large frequencies, is significantly reduced with increasing lat-
tice depth. This behavior results from the interplay of various
effects. On the one hand, with increasing lattice depth V0/ER

the band separation �/ER increases, whereas the interband
coupling parameter η decreases (Fig. 1). Both effects tend to
reduce interband heating. An additional and much stronger
reduction of interband heating, however, results from the
exponential suppression of the tunneling parameter Js with the
square root of the lattice depth V0/ER (Fig. 1). Namely, since
we keep the dimensionless ratio h̄ω/Js fixed (taking the point
of view of quantum simulation, as explained in the previous
paragraph), the number nph of photons (i.e., energy quanta h̄ω)
needed to overcome the band separation �, nph ≈ �/(h̄ω),
will strongly increase with the lattice depth. This, in turn,
implies a very strong suppression of interband heating, since
we expect an exponential suppression of interband transitions
with nph [30,35].

The effects described in the previous paragraph explain a
strong increase of the heating time τ with increasing lattice
depth. However, from the point of view of quantum simu-
lation, we have to compare the heating time to the relevant
experimental timescale, given by the tunneling time h̄/Js.
This is why here we are always plotting the scaled heating
time τJs/h̄. Therefore, when increasing the lattice depth, the
expected strong increase of τ directly competes with the
exponential increase of h̄/Js with the square root of the lattice
depth. The results presented in Fig. 7 clearly show that the
former effect wins over the latter one, so that, all in all, τJs/h̄
is reduced when the lattice depth V0/ER is raised. We can,
thus, see a noticeable increase of the optimal heating time
τoptJs/h̄ (shown in the inset of Fig. 7) with V0/ER.

While the results of Fig. 7 imply that driving-induced
heating can effectively be reduced by raising the lattice depth,
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FIG. 8. Heating time τJs/h̄ vs driving frequency h̄ω/Js for the
two-band model with different driving amplitudes K/h̄ω, for N = 4,
M = 8, V0/ER = 14, and Us/Js = 5. The inset shows the optimal
(maximum) heating time τopt (diamonds) and the corresponding
optimal frequency ωopt vs K/h̄ω.

this possibility is limited by non-driving-induced heating pro-
cesses, originating, e.g., from three-body collisions, scattering
with background particles, or noise. Namely, the tunneling
time, which increases with the lattice depth, has to remain
short compared to the timescale τ0 associated with such
background heating. In turn, this means that by increasing τ0

by reducing non-driving-induced heating, the experimentalist
can also reduce driving-induced heating. This is a major result
of this article.

Let us, finally, also have a look at the dependence of the
heating time on the driving strength. In Fig. 8, we plot τJs/h̄
versus K/h̄ω for a system with V0/ER = 14 and Us/Js =
5. We focus on values of K/h̄ω that are interesting for
Floquet engineering (i.e., that are large enough to achieve
a significant modification of Jeff

s and not much larger than
required for tuning Jeff

s to negative values). For the smallest
considered driving strength of K/h̄ω = 1, a narrow window
of frequencies is found for which the heating time takes
large values of more than 300 tunneling times. This window
disappears for stronger driving. Note that we do not find a
simple monotonous decrease of the heating time with respect
to the driving strength. We attribute this observation to the
nonmonotonous behavior of the finite-frequency components
∝ eimωt of the time-dependent Hamiltonian (15) in the rotating
frame (as well as of the corresponding two-band Hamilto-
nian). Namely, these terms, which describe heating processes
beyond the rotating wave approximation (16) where the sys-
tem exchanges m energy quanta h̄ω, involve Bessel-function
expressions Jm(K/h̄ω) that depend in a nonmonotonous way
on the driving strength K/h̄ω.

VI. CONCLUSIONS

In summary, we have investigated the conditions for Flo-
quet engineering in optical lattices. In particular, we were
interested in the existence of a frequency window where both
low-frequency intraband heating and high-frequency inter-
band heating is suppressed on a timescale τ that is large com-
pared to the tunneling time. Considering the concrete example
of a small one-dimensional system of interacting bosons in
a shaken optical lattice, we presented numerical results that
show that such a frequency window exists for sufficiently deep
lattices. The maximum ratio of heating and tunneling time,
τoptJs/h̄ (which is found for an optimal intermediate driving
frequency ωopt), is found to increase with the lattice depth.
This result, which is not obvious since also the tunneling time
increases exponentially with the lattice depth, implies that we
can reduce driving-induced heating by simply ramping up the
lattice depth. However, we have pointed out that this strategy
is limited to lattice depths for which the tunneling time is still
much smaller than the timescale τ0 for non-driving-induced
background heating. Thus, the larger the timescale for such
background heating, the more we can reduce also driving-
induced heating.

We have also found that by ramping up the interaction
strengths, driving-induced heating is significantly enhanced,
until a saturation value is reached roughly when the ratio Us/Js

reaches values of 3. This saturation behavior is a promising
result regarding the possibility of Floquet engineering of
strongly correlated states of matter such as fractional Chern
insulators [49–52].

An interesting direction for future work concerns the role
of disorder. It has been argued that many-body localization
can protect the driven system against unwanted heating as-
sociated with deviations from the high-frequency approxima-
tion [53,54]. Roughly speaking, within the localization length,
the system is not able to create excitations of a sufficiently
large energy h̄ω. The mechanism is crucial also for the stabi-
lization of discrete time crystals [55–61]. However, disorder-
induced localization cannot be expected to prevent the system
also against unwanted heating associated with deviations from
the low-frequency approximation. Unwanted resonant multi-
photon excitations to states above the gap can still occur. It is
an interesting question, in how far the corresponding heating
rates are influenced by disorder-induced localization.
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