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In a quantum system coupled with a non-Markovian environment, quantum information may flow out of or
into the system. Measuring quantum information flow and its sensitivity to perturbations is important for a better
understanding of open quantum systems and for the implementation of quantum technologies. Information gets
shared between a quantum system and its environment by means of system-environment correlations (SECs)
that grow during their interaction. We design a nuclear magnetic resonance (NMR) experiment to directly
observe the evolution of the SECs and use the second moment of their distribution as a natural metric for
quantifying the flow of information. In a second experiment, by accounting for the environment dynamics,
we study the sensitivity of the shared quantum information to perturbations in the environment. The metric
used in this case is a nonlocal out-of-time-order correlation function (OTOC). By analyzing the decay of the
OTOC as a function of the SEC spread, instead of the evolution time, we are able to demonstrate its exponential
behavior.

DOI: 10.1103/PhysRevResearch.2.013200

I. INTRODUCTION

The development of quantum technologies is obstructed by
the loss of quantum properties caused by interactions with
the environment that lead to decoherence [1–5]. Quantum
information is shared with the environment by means of
system-environment correlations (SECs) [6–8]. In the case
of interactions with a non-Markovian environment, the SECs
may lead to the flow of quantum information back to the
system [9,10]. Interferences arising from this backflow may
be catastrophic to quantum information processes taking place
in the system. The purpose of this work is to investigate
the growth of the SECs as a function of time and to gauge
how susceptible they are to perturbations in the environment.
An open question with respect to the latter point is whether
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environment perturbations can be used to reduce information
backflow.

Our experiment is well-equipped to directly measure cor-
relations between the system and the environment. It builds
upon solid-state nuclear magnetic resonance (NMR) methods
that have been employed to detect multiple-quantum coher-
ences in homonuclear many-body systems [11–19]. These
methods have recently been used for the investigation of
multiple-quantum coherences in ion traps [20,21]. A change
in the encoding basis has allowed for the observation of multi-
spin dynamics of correlation growth during the free induction
decay experiment [14,16]. Here, we extend these methods so
that they can be used for composite heteronuclear systems to
measure the growth of correlations with the environment.

We consider a central spin model, which consists of a
single spin-1/2 interacting with environment spins of another
spin species that may also be coupled [22–25]. Quantum
information initially resides in the central spin and is later
shared with the environment in the form of multi-spin SECs.
NMR techniques make it possible to separate the system-
environment evolution from the internal evolution of the envi-
ronment spins [26–29]. This allows us to examine the impact
of each process individually.
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We design two different NMR echo experiments. In the
first, the environment dynamics is off. We analyze the evo-
lution of the SECs in time and discuss how the second
moment of the distribution of these correlations can be
used to quantify the flow of quantum information between
the system and the environment. In analogy with recent
studies [21], this metric is related to the quantum Fisher
information.

In the second experiment, the environment dynamics is
turned on, causing the scrambling of quantum information.
To quantify the sensitivity of information to scrambling, we
employ the out-of-time-order correlation function (OTOC).
Despite great theoretical interest, very few experiments have
had access to this quantity. Since NMR echo techniques can
reverse time evolution, the OTOC function may be used to
study the decay of echo signal amplitude. The experimental
implementation of the OTOC was previously studied in closed
systems of ion traps [20,21] and nuclear spins [30,31].

The OTOC has become a prominent quantity in the analy-
sis of the scrambling of quantum information in black holes
and many-body quantum systems. It has been conjectured
that the exponential behavior of this quantity should be an
indicator of quantum chaos [32,33], the exponential rate be-
ing associated with the classical Lyapunov exponent. This
correspondence has so far been confirmed theoretically for
one-body chaotic systems [34,35] and for the Dicke model
[36], but not yet experimentally. In the case of many-body
quantum systems, existing NMR experiments have used the
Loschmidt echo and shown that depending on the interaction
Hamiltonian, both Gaussian and exponential decays can be
observed [37,38].

In the second echo experiment of this work, we employ
an OTOC function, that involves one global operator, to
investigate the sensitivity of the echo signal to the scrambling
of SECs in the environment. For the central spin system, the
decay of this nonlocal OTOC function with respect to the
evolution time is Gaussian. However, an exponential behavior
is revealed when the nonlocal OTOC is studied as a function
of the spread of the correlations between system and environ-
ment (that is, as a function of the Hamming weight spread of
SECs). The capability of our experiments to directly measure
these correlations is an essential ingredient for describing
the flow of quantum information and for uncovering the
exponential decay of the nonlocal OTOC.

II. MAPPING THE SYSTEM-ENVIRONMENT
CORRELATIONS

A. Sample description

The sample studied is a polycrystalline solid at room
temperature composed of an ensemble of Triphenylphosphine
molecules, as shown in Fig. 1(a) (see also Appendix A 1).
Each molecule has a central 31P nuclear spin coupled to 15 1H
environment spins via the heteronuclear dipolar interaction

HSE =
N∑
j

ω jσ
cs
Z ⊗σ

j
Z⊗1⊗N−1, (1)

where “cs” stands for central spin, N = 15 is the number of
environment spins, and σ

j
X,Y, Z represent Pauli matrices for the
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FIG. 1. Sample structure matching the central spin model. The
Triphenylphosphine molecule shown in panel (a) has a 31P nucleus
at the central spin position and fifteen 1H nuclei as the environ-
ment spins. The NMR experiment is performed on an ensemble
of these molecules in random orientations. Due to the angular
dependence of the dipolar interaction, environment spins located
near the two magic-angle cones (shaded area) are very weakly
coupled to the central spin. Therefore, environment spins may be
divided into a connected and a nonconnected group, as sketched in
panel (b).

jth spin. The dipolar Hamiltonian is a second rank spherical
tensor, where the coupling constant ω j ∝ (3 cos2 θ j − 1)/r3

j
has radial and angular dependence on the vector �r j connecting
the central spin to the jth spin in the environment. θ j is the
angle between �r j and the static field of the NMR magnet,
which is along z. These coupling constants for our sample
are typically lower than 8 kHz (see Appendix A 1). An envi-
ronment spin located on the cone defined by the magic angle
θM, with 3 cos2 θM − 1 = 0, does not interact with the central
spin. The orientation of the sample molecule illustrated in
Fig. 1(a) is such that two of the environment spins lie on
the magic-angle cone and consequently, do not interact with
the central spin. They belong to the “nonconnected” group,
while environment spins coupled to the central spin are
part of the “connected” group, as sketched in Fig. 1(b).
The size of the connected group grows in time (see
Appendix A 2).

The central spin is initially in the state ρcs(0) = [1 +
εσX]/2, where ε is the strength of the nuclear spin polar-
ization which is of the order of 10−5 at room temperature.
In what follows, we drop the identity operator to simplify
the notation, since it does not lead to any observable signal.
The N spins in the environment are initially in the maximally
mixed state ρE(0) = (1/2)⊗N , with no correlations. Thus, the
initial state of the composite system is uncorrelated, ρ(0) =
ρcs(0)⊗(1/2)⊗N .

B. Correlation detection experiment

We design an echo experiment, which we call multi-
spin correlation detection (MCD), to measure the correlation
growth between the central spin and the environment spins.
The stages of the MCD experiment are sketched in Fig. 2(a).
During the evolution time T , the environment self-interaction
is averaged to zero using the MREV-8 pulse sequence [26],
while the remaining system-environment interaction corre-
lates the two. The dynamics in the composite Hilbert space is
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FIG. 2. The multispin correlation detection (MCD) experiment.
The stages of the MCD experiment are sketched in panel (a). The
plot for the amplitude of each correlation order in panel (b) displays
the distribution of the system-environment correlations (SECs) at
a chosen time T . The dashed line is a Gaussian fit and the arrow
indicates the Hamming weight spread. The sum of the amplitudes
for +n and −n for each order gives |Cn(T )|2. The evolution of these
correlation amplitudes in time is plotted in panel (c). The error bars,
corresponding to the inverse of the signal-to-noise ratio, are very
small and not visible in panel (c).

described by the unitary propagator USE(T ) = e−iH̃SET , where
H̃SE represents the system-environment interaction Hamilto-
nian in the toggling frame of the MREV-8 pulse sequence [28]
(see Appendix A 3).

After the evolution with the system-environment Hamilto-
nian, the resulting density matrix is

ρ(T ) = USE(T )ρ(0)U †
SE(T )

= ρ(0) + iT [ρ(0), H̃SE] − T 2

2
[[ρ(0), H̃SE], H̃SE]

+ . . . . (2)

This equation indicates that at short times only the envi-
ronment spins strongly interacting with the central spin af-
fect the dynamics. The effects of the nested commutators,
which are associated with the multispin SECs involving
weaker interacting spins, become more pronounced as time
evolves. Therefore, the evolution of the composite system
can be equivalently described using the number of cou-
pled spins and the weight Cn(T ) of each cluster as follows

(see Appendix B 1),

ρ(T ) = C0(T )σ cs
X ⊗1⊗N

+C1(T )
N∑
j

σ cs
Y ⊗σ

j
Z⊗1⊗N−1

+C2(T )
N∑

j �=k

σ cs
X ⊗σ

j
Z⊗σ k

Z⊗1⊗N−2 + · · · . (3)

The observable signal S(T ) from the central spin corresponds
to the inner product of the reduced state of the central spin
and the measurement operator, S(T ) = Tr[TrE[ρ(T )].σ CS

X ].
Notice that only the first line of Eq. (3) survives the partial
trace. Since

∑ |Cn(T )|2 = 1, as the multispin correlations
increase, the observable signal from the central spin decays.
This is the free induction decay.

The measurement operator in the NMR experiment is
a transverse single-spin operator, so only the single-spin
term in the density matrix induces NMR signal, while the
multispin correlated terms are not directly observable. In
our case, the reduced state of the environment would not
reveal the evolution of SECs, because Trcs[ρ(T )] = 1⊗N .
To observe the growth of the SECs, we implement the
multiple-quantum coherence method for encoding the coher-
ence orders and then detect them through the central spin,
which is our probe. In the MCD experiment, by collectively
rotating the environment spins along the x axis, Rx(φ) =
exp (i φ

2

∑
j 1

cs⊗11⊗ · · · ⊗σ
j

X⊗ · · · ⊗1N ), we manage to get the
coherence order encoded in a phase factor

ρφ (T ) = Rx(φ)ρ(T )R†
x (φ) =

∑
n

einφCn(T )ρx
n . (4)

In the above, ρx
n indicates the subset of spin operators in

Liouville space with correlation order n with respect to the
x basis. Cn(T ) represents the weight of the multispin terms
with correlation order n. In this basis, the ladder operators
are �

j
± = σ

j
Y ± iσ j

Z, and the correlation order is defined as the
absolute value of the number of �+ minus �− operators. This
number represents the Hamming weight. Consequently, the
relevant description of the density matrix in the x basis is

ρ(T ) =
∑

n

Cn(T )ρx
n . (5)

In contrast with Eq. (3), where the multispin terms are catego-
rized by the number of correlated spins, in this equation they
are distinguished by their correlation orders (see details in the
Appendix B).

After the encoding rotation Rx(φ), by applying a π pulse
to the central spin, which changes the effective Hamiltonian
from HSE to −HSE, the system-environment Hamiltonian
is reversed to create an observable echo at time 2T . The
observable NMR signal for each encoding φ is

Sφ (2T ) = Tr
[

TrE[ρφ (2T )].σ CS
X

] = Tr
[
ρφ (2T ).σ CS

X ⊗1⊗N
]
,

(6)

where

ρφ (2T )=U †
SE(T )Rx(φ)USE(T )ρ(0)U †

SE(T )R†
x (φ)USE(T ).
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FIG. 3. Hamming weight spread. The second moment of the dis-
tribution of multispin system-environment correlations (SECs) and
the largest correlation order as a function of time are indicators for
the growth of the system-environment correlations. The Hamming
weight spread is used to quantify the extent of quantum information
shared with the environment.

The encoding angle is incremented in steps determined by the
Nyquist rate, 2π

2N . The array of echo amplitudes obtained here
is Fourier transformed with respect to φ, generating corre-
lation amplitudes for each correlation order n. The resulting
spectrum of correlation amplitudes provides a snapshot of the
SECs at each time T . As seen in Fig. 2(b), the distribution
of the correlation orders has a Gaussian shape. This form
emerges because the signal is an ensemble average over
various molecules where each one has a binomial distribution
of Cn(T )’s (see Appendix B 2).

A map of the SEC production is obtained by adding the
correlation amplitudes for n and −n at each evolution time
T , as depicted in Fig. 2(c). There, we show the six largest
amplitudes of |Cn(T )|2. At short times, the first term in C0(T )
coincides with the C0(T ) term and dominates the dynamics.
At longer times, we observe that the values of the C0(T )
and C2(T ) terms approach each other. This is because the
production of the C2(T ) term is responsible for the onset of
both C2(T ) and also the terms �

j
+⊗�k

− in C0(T ).

C. Flow of quantum information

To quantify the SEC production, one can use the largest
correlation order observed in the MCD experiment, which
is plotted in Fig. 3. However, it becomes more difficult to
detect the correlation orders as they increase, because the
amplitude of the largest correlation order drops exponentially
(see Appendix B 2). Alternatively, the second moment of
the distribution of the correlation orders,

∑
n |Cn(T )|2n2, is

a more reliable experimental measure for quantifying the
extent of the correlations. The second moment (variance) of
a binomial distribution centered at 0 is equal to n. This value
is the square of the width of the SEC distribution in Fig. 2(b).
Here, we refer to the second moment as the “Hamming weight
spread.” The second moment of the coherence distribution
is also used in Refs. [12,15] for quantifying the number of

spins involved in the clusters of linked spins in homonuclear
solid-state systems.

In Fig. 3, we show the Hamming weight spread as a
function of T , which initially grows slowly and later linearly
before saturating. The point of saturation depends on the size
of the connected group of environment spins (see Appendix
A 2).

In Ref. [21], it was shown that the second moment of the
multiple quantum coherences for many-body systems with
mixed states is a lower bound on the quantum Fisher informa-
tion (QFI). In our experiment, the QFI is associated with the
information shared between the system and the environment
and the rate of its change measures the information flow, as
discussed in Ref. [39]. By extension, the slope of the curve
for the Hamming weight spread can be used as a metric to
quantify the flow of information between the system and the
environment.

III. SCRAMBLING OF INFORMATION IN THE
ENVIRONMENT

A. Information scrambling experiment

In the second experiment, we explore the resistance of the
quantum information shared between the system and environ-
ment against perturbations in the environment. The latter refer
to changes that take place when we turn on the dynamics in the
environment. The homonuclear dipolar Hamiltonian is given
by

HE = 1cs⊗
N∑

j<k


 jk

[
σ

j
Zσ k

Z − 1

4
(σ j

+σ k
− + σ

j
−σ k

+)

]
, (7)

where 
 jk ∝ (3 cos2 θ jk − 1)/r3
jk is the coupling strength be-

tween the environment spins j and k, with typical values
below 20 kHz (see Appendix A 1). The operators in paren-
thesis in Eq. (7) represent the flip-flop term that swaps the
states of pairs of environment spins and scrambles quantum
information. The eigenvalues of this Hamiltonian satisfy level
statistics given by random matrix theory (see Appendix D), as
in quantum systems with chaotic classical counterparts.

To analyze the sensitivity of quantum information to
scrambling in the environment, we use the echo experiment
outlined in Fig. 4(a). In this experiment, the evolution interval
T , where only the coupling between the system and the
environment is effective, is followed by a scrambling window
of length τ , where only the environment spins interact and the
propagator is UE (τ ) = e−iHE τ . Information shared with the
environment in the course of time T gets scrambled during
τ . The length of the scrambling window τ determines the
strength of the environment perturbation. The observable echo
signal amplitude at 2T + τ is given by

S(2T + τ ) = Tr
[
ρ(2T + τ ).σ CS

X ⊗1⊗N
]
, (8)

where

ρ(2T + τ )=U †
SE(T )UE (τ )USE(T )ρ(0)U †

SE(T )U †
E (τ )USE(T ).

For a fixed value of τ , as the evolution time T increases, the
overlap between the density matrix ρ(2T + τ ) and the initial
density matrix decreases, resulting in the decay of the echo
signal.
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FIG. 4. The OTOC Fτ (T ) measures the sensitivity of quantum
information to environment perturbations. Sketch of the steps in-
volved in the OTOC experiment is depicted in (a). The decay of
the echo amplitude as a function of the scrambling window length
τ for different values of the evolution time T is shown in (b). For
small perturbations (short τ ), the central spin for most molecules gets
refocused and the OTOC is nearly independent of T , while for large
perturbations, the OTOC decays significantly with T . The surface
plotted here is a guide for the eye.

B. Nonlocal out-of-time-order correlation function

The signal S(2T + τ ) for a fixed scrambling window τ can
be written in the form of an OTOC function with a nonlocal
operator. The latter is defined as

F (T ) ≡ 〈
W †(T )V (0)†W (T )V (0)

〉
, (9)

where V (0) and W (T ) are two unitary operators that commute
at T = 0. We choose V (0) to be proportional to the observable
operator for the central spin V (0) = σ cs

X ⊗1⊗N and consider the
environment operator in the Heisenberg picture as the second
operator which is nonlocal in this case

Wτ (T ) = U †
SE(T )U †

E (τ )USE(T ). (10)

Therefore, with the assumption of infinite temperature, the
expectation value in Eq. (9) can be written as

Fτ (T ) ≡ Tr[W †
τ (T )V (0)Wτ (T )V (0)]

= 2N+1S(2T + τ )· (11)

The OTOC function is related to the commutator between
V (0) and Wτ (T ) as Re[Fτ (T )] = {1 − 〈|[Wτ (T ),V (0)]|2〉/2}.
As T becomes larger and Wτ (T ) gets more distant from Wτ (0),
the commutator [Wτ (T ),V (0)] increases and the nonlocal
OTOC decreases. Physically, what happens is that as the
SECs grow, the environment interaction HE has access to a
larger subset of correlated spins and the number of swaps
that effectively scramble information increases. Therefore, the
decay of this nonlocal OTOC quantifies the level of sensitivity
of quantum information to perturbations in the environment.

In Fig. 4(b), the result of the nonlocal OTOC decay is
presented for various evolution and perturbation times. When
τ = 0, the state of the central spin is completely refocused
(revived) and Fτ=0(T ) = 1 for any T . This happens because
the information that is initially encoded in the central spin

is not lost during the evolution time. It is simply stored in
the form of multispin correlations between the system and the
environment spins from the connected group. By reversing the
evolution, the information can be recovered in the system.

The refocusing degrades and the echo amplitude decays
as τ increases. During the scrambling window, the flip-flop
term of HE swaps the states of coupled spin pairs in the
environment. As a result, the subsequent evolution under
the inverse of the system-environment Hamiltonian can only
partially revive the initial state. This situation is aggravated by
the existence of the nonconnected group of environment spins,
which do not develop correlations with the central spin during
T , but may have their states swapped with those from the con-
nected group during the scrambling window. Information that
is shared with the nonconnected group cannot be recovered,
which ultimately leads to the loss of quantum information
in the environment. Consequently, the sensitivity of shared
quantum information to perturbations in the environment, de-
pends on the scrambling window length as well as the size of
connected and nonconnected spin groups in the environment.

C. Effectiveness of information scrambling

For a more detailed analysis of the results for the nonlocal
OTOC presented in Fig. 4(b), we now show in Fig. 5(a), the
OTOC as a function of the evolution time T for different
perturbation strengths and compare it with Fig. 5(b), where
the OTOC is presented as a function of the Hamming weight
spread.

As seen in Fig. 5(a), the OTOC decay in time is well
described by a Gaussian function. This is understandable, be-
cause the evolution of environment spins under the homonu-
clear dipolar interaction HE , examined with a free induction
decay experiment, is known to give a signal decay with Gaus-
sian shape. This behavior is typical of solid-state spin systems
[40,41]. In the case of our composite system, the scrambling
of quantum information that happens only in the environment,
is subject to the same homonuclear dipolar Hamiltonian.

The effectiveness of quantum information scrambling,
probed with the nonlocal OTOC decay, increases with the
extent of quantum information shared with the environment.
As seen in Fig. 3, the extent of shared information, which is
measured with the Hamming weight spread, does not always
grow linearly in time. So in Fig. 5(b), we shift the perspective
of the analysis and use the Hamming weight spread obtained
in the first experiment as the variable for the OTOC instead of
time. The resulting behavior of the OTOC is exponential, as
corroborated by the exponential fits in Fig. 5(b). One sees that
by removing the nonlinear rate of the correlation growth, that
is by investigating the OTOC against SEC sizes, the exponen-
tial behavior is uncovered. This observation indicates that the
amount of quantum information shared between the system
and environment determines the capability of the flip-flop
Hamiltonian in scrambling the shared quantum information.

We developed a classical coin game to illustrate the dynam-
ics of spin swaps between connected and nonconnected spin
groups and to justify the exponential decay of the nonlocal
OTOC (see Appendix C). The idea goes as follows. Among
N coins, we randomly flip k. If these same k coins are flipped
a second time, then the initial state is recovered. However, if
we swap some of the N coins before the second flip, then the
final state may be different from the initial one. This happens
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FIG. 5. The OTOC decays exponentially as a function of system-
environment correlation spread. Panel (a) depicts the OTOC as a
function of the evolution time T and (b) as a function of the
Hamming weight spread. Each curve in the panels corresponds to a
fixed value of the scrambling window τ (perturbation strength). The
data are normalized with respect to the τ = 0 data set. The dashed
lines in (a) and (b) are Gaussian and exponential fits, respectively.
The exponential behavior is uncovered by analyzing the OTOC
decay as a function of the Hamming weight spread. Vertical error
bars in panels (a) and (b) indicate the inverse of signal-to-noise
ratio. Horizontal error bars in panel (b) are those from Fig. 3. In
panel (c), the scrambling immunity factor indicates the capability
of environment interactions in disrupting the system-environment
correlations. This plot indicates that with increasing τ , even small
SECs become sensitive to the environment perturbations. The data is
fitted with an exponential decay curve. The error bars correspond
to the errors for the exponential fits in the panel (b). Similar dy-
namics is observed for swapping coins in a classical coin game (see
Appendix C).

when some of the N − k coins get swapped with some of the
k coins. In this game, k coins represent the connected group of
the environment spins, N − k coins portray the nonconnected
group, and the number of coin swaps is analogous to the
perturbation strength in the environment. We find that similar
to Fig. 5(b), the probability of recovering the initial coin array
decreases exponentially as a function of the initial number
of flipped coins k. The inverse rate of this exponential decay
characterizes the capability of a fixed number of coin swaps to
disrupt the coin array recovery, and is called swap immunity
factor. As expected, the swap immunity factor is smaller when
a larger number of swaps are performed. This classical game
provides a simplified picture of the mechanism underlying the
exponential instability of the composite quantum system.

Motivated by the coin game analysis, we plot in Fig. 5(c)
the “scrambling immunity factors” obtained from the inverse
of the decay rates of the exponential fits in Fig. 5(b). Similar
to the concept of the swap immunity factor for a coin array,
the scrambling immunity factor characterizes the capability
of the flip-flop Hamiltonian to disrupt the SECs for a given
perturbation window τ , resulting in the incomplete revival of
the central spin state. In other words, this factor characterizes
the sensitivity of SECs to the scrambling of quantum informa-
tion in the environment for various perturbation strengths. For
the small scrambling windows τ = 6, 8 μs, the scrambling
immunity factor is unreasonably large, as the perturbation is
too small and leaves the environment effectively unscrambled
for most orientations of the spins. For larger perturbation win-
dows, the scrambling immunity factor decays exponentially
with τ . This shows that, the perturbation strength needed
for the effective information scrambling is much smaller for
larger SECs.

The scrambling of quantum information is most effective
when it involves the nonconnected spin group of the environ-
ment. Quantum information transferred to the nonconnected
group can be considered lost. As it cannot produce any echo
signal, it does not contribute to the backflow of quantum infor-
mation to the system. Thus, the scrambling immunity factor
provides an upper bound for the effectiveness of environment
perturbation in removing quantum information backflow.

We close this section with a discussion about the expo-
nential behavior of OTOCs and the connection with quantum
chaos. The search for the quantum counterpart of the expo-
nential instability observed in chaotic classical systems has
been a subject of discussion for many years [42–52]. This
is now under intense investigation in part due to studies that
associate the exponential rate of change of the OTOC with the
classical Lyapunov exponent. So far, most theoretical studies
of quantum chaos uses the OTOC to study the overlap of
local operators, while here a different implementation with a
nonlocal operator is considered. Whether the observed expo-
nential behavior does or does not relate to quantum chaos is
an interesting open question.

IV. CONCLUSION

We introduced the scrambling immunity factor to charac-
terize the capability of environment perturbations to disrupt
the system-environment correlations. Our experiments also
enabled us to quantify the flow of quantum information be-
tween the system and environment.

013200-6



SENSITIVITY OF QUANTUM INFORMATION TO … PHYSICAL REVIEW RESEARCH 2, 013200 (2020)

TABLE I. Characterization of relaxation times with and without
the application of the MREV-8 control sequences on the environment
spins.

Parameter Value

Proton T1 1.5 ± 0.1 s
Proton T2 9.8 ± 0.2 μs
Proton T2 with MREV-8 8.0 ± 0.5 ms

31P T1 61 ± 4 s
31P T2 Hahn echo 1.10 ± 0.02 ms
31P T2 with MREV-8 on environment 11.6 ± 0.4 ms

We proposed an alternative way to analyze nonequilib-
rium quantum dynamics, where instead of time, quantities
of interest are studied as a function of the SEC spread. This
approach uncovered the exponential instability of our many-
body spin system by showing that the nonlocal OTOC decays
exponentially as a function of the Hamming weight spread.

The heart of these experiments is our correlation detection
method and this technique is not restricted to the system
considered here. It can be used for any quantum system if
global control of the environment is available. This is relevant
for many-body quantum systems where the measurements are
performed on a subsystem and the rest acts as an environment.
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APPENDIX A: SAMPLE AND METHODS

1. Sample

Triphenylphosphine is a common organophosphorous
compound and was obtained from SIGMA-ALDRICH with
99% purity. To reduce the T1 relaxation time of the protons
we used Chromium(III) acetylacetonate as a relaxation agent.
1 mmol of the sample and 0.13 mmol of the relaxation agent
were resolved in 300 ml of Chloroform-d and left for crystal-
lization over night. The resulting powder was compressed into
a NMR-sphere sample tube which was flame-sealed to best
preserve the contents. Using the relaxation agent resulted in
the reduction of the proton T1 relaxation time from 630 ± 30s
to 1.5 ± 0.1s, as shown in Table I.

The distribution of the coupling constants for the system-
environment Hamiltonian, Eq. (1), is shown in Fig. 6. They
are calculated for 10 000 random orientations of the sample
molecule. Notice that the coupling strengths are calculated for
static molecules and due to their motion, the observed cou-
plings are slightly weaker in the experiment. These coupling
constants determine the system-environment evolution and
the consequent map of the correlation amplitudes in Fig. 2(c).
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FIG. 6. A simulation of 10 000 random orientations of the Triph-
enylphosphine molecule is used to calculate the coupling constants
for the heteronuclear dipolar couplings between the central spin and
the environment spins given by Eq. (1). This histogram indicates the
distribution of the absolute value of these coupling constants.

A similar simulation is used to study the distribution of the
105 coupling constants for the homonuclear dipolar interac-
tion between the 15 spins of the environment. The scrambling
of quantum information in the environment is determined by
these coupling constants as described by Eq. (7). Figure 7
shows the distribution of the three strongest couplings for each
of the 10 000 different orientations of the molecule.

2. Spin groups in the environment

The multispin correlation growth and the information
scrambling in the environment, both depend on the strength
of the dipolar interactions. The dipolar interaction strength
depends on the relative orientation of the spins with respect to
the static field of the NMR magnet. The idea of distinguishing
connected and nonconnected spin groups in the environment
can be explored by considering the number of spins in the
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FIG. 7. This histogram shows the distribution of the absolute
values for the three strongest couplings in the environment Hamil-
tonian, Eq. (7). A simulation of 10 000 random orientations of
the Triphenylphosphine molecule was done to calculate the cou-
pling constants for the homonuclear dipolar interaction between the
15 spins of the environment.
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FIG. 8. A simulation of 10 000 random orientations of the Triph-
enylphosphine molecule is used to estimate the size of the connected
spin group for various evolution times in the MCD experiment.

environment with a high probability of being correlated to
the central spin. The total number of these spins in the envi-
ronment, increase with the evolution time. Figure 8 plots the
average number of environment spins that have a probability
larger than 1

2 for being correlated with the central spin as a
function of the evolution time in the MCD experiment. Het-
eronuclear dipolar coupling constants are evaluated for 2000
randomly orientated Triphenylphosphine molecules. For the
longest evolution time in the MCD experiment, T = 532 μs
on average 8.2 environment spins are found to be more likely
to correlate with the central spin.

3. NMR experiments

The MCD experiment captures snapshots of the multispin
SECs at specific evolution times. This experiment is designed
to initiate the growth of SECs from the central spin, and also
to use the central spin itself as a probe for the detection of
SECs. Figure 9(a) shows the two channel NMR pulse program
used for simultaneous control of the central spin ( 31P) and
the environment spins ( 1H) in the MCD experiment. The
cross polarization (CP) step is employed to remove any initial
environment correlations, and to increase the sensitivity of the
experiment by enhancing the initial polarization of the central
spin, in addition to reducing the necessary repetition delay
time.

Evolution under the heteronuclear dipolar interaction for
time T results in the growth of the SECs, while the homonu-
clear dipolar interaction in the environment is averaged out
with the MREV-8 pulse sequence. Under the MREV8 cycle,
the σZ operator for the environment spins is transformed to a
vector pointing at the (1,0,1) direction with the scaling factor
of [26]

α =
√

2
[
1 + 2 3tp

τc

(
4
π

− 1
)]

3
, (A1)

where tp is the pulse length and τc is the length of the
MREV-8 sequence. Consequently, the zeroth order of the
average Hamiltonian for the heteronuclear dipolar interac-
tion in Eq. (1), in the toggling frame of the MREV-8 pulse

1H

31P
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MREV-8 MREV-8 Decoupling 
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CP contact 
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Det. 
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Scrambling 
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(a) 

FIG. 9. The NMR pulse sequence for the multispin correlation
detection (MCD) experiment is shown in panel (a). Panel (b) shows
the pulse sequence for the OTOC measurement with quantum infor-
mation scrambling implementation in the environment.

sequence, is

H̃SE = 0.36
∑

j

ω j
(
σ cs

Z ⊗σ
j

X + σ cs
Z ⊗σ

j
Z

)
. (A2)

Note that because of the symmetry in this Hamiltonian, the
σX and σZ operators in the environment are produced with
the same weight. Hence, all the equations below Eq. (2)
are written for HSE instead of H̃SE. This is allowed be-
cause this experiment uses x as the quantization axis, and
therefore it is insensitive to σX operators that appear in H̃SE

and not in HSE. However, the reader should keep in mind
that the environment σX operators have an equal rate of
production as the σZ operators. The only observable difference
between these two Hamiltonian in the MCD experiment is
that for the H̃SE, the rate of production of the σZ oper-
ators in the environment is scaled down with the scaling
factor α.

As shown in Fig. 9(a), after T , we apply a collective
rotation φx on the environment spins to encode the correlation
order as a phase factor einφ , which is observed at the end of
the experiment. Next, the sign of the heteronuclear dipolar
interaction is virtually changed by sandwiching the evolution
period with π rotations on the central spin, to create an echo
signal at time 2T . Finally, a decoupling sequence is applied to
remove interactions with the environment during the detection
and to achieve the maximum signal-to-noise ratio.

Figure 9(b) sketches the pulse sequence used for measuring
the OTOC decay. In this experiment, the collective rotation of
the environment spins is removed and a scrambling window is
introduced. During this window, the environment spins evolve
under the homonuclear dipolar interaction, while the central
spin is decoupled from them. The echo signal at the end of this
experiment provides the ratio of the multispin correlated terms
that were not affected by the homonuclear dipolar interaction
during the scrambling window.
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4. Control sequence for the environment

The MREV-8 sequence [26,28] is used to freeze the
homonuclear dipolar interaction in the environment. Un-
der this pulse sequence, the zeroth- and first-order terms
of the homonuclear dipolar interaction get eliminated and
the second-order corrections will be the leading factor for
line broadening in the environment. The advantage of using
MREV-8 sequence is that pulse imperfections, such as pulse
width errors, pulse frequency errors, and phase transients can
be minimized using average Hamiltonian theory. The effects
of these radio frequency (RF) pulse errors are particularly
important in our experiment, since our control sequences
are applied repeatedly during the evolution time, and any
deviation from the ideal pulse Hamiltonian could accumulate
very quickly and potentially destroy the efficiency of the ex-
periment. To take care of remaining errors, we have used a set
of experiments known as the “tune-up cycles” for multipulse
NMR experiments [27,29], which enable us to minimize the
RF pulse error terms in an iterative process.

Table I gives a summary of sample characteristics under
our control sequence. The first line for proton and the first
line for ( 31P) indicate the T1 relaxation time. Since the initial
polarization is transferred from protons to the Phosphorous
nuclei, the experiment can be repeated with respect to proton
T1. The second line of Table I gives the decoherence time
T2 = 9.8 ± 0.2 μs associated with the strong homonuclear
dipolar couplings in the environment. The application of the
MREV-8 sequence removes the majority of the environment
interactions and slows down the exchange of information

between protons. Therefore, the decay of the NMR sig-
nal occurs much slower with decoherence time T2 = 8 ±
0.5 ms (third line of Table I). The dynamics of the central
spin also gets affected and the decoherence time for the
echo signal of the central spin goes from 1.1 ± 0.02 ms to
11.6 ± 0.4 ms.

With the application of the MREV-8 control on the envi-
ronment spins, the leading terms causing decoherence are the
second-order terms remaining from the homonuclear dipolar
interaction, their cross terms with pulse errors, and also the
effects of the external environment. The decoherence time of
the central spin reflects the strength of these terms. Notice
that although decoherence still exists in the sample, the de-
coherence time of the central spin, T2 = 11.6 ± 0.4 ms, is at
least one order of magnitude larger than the evolution time
2T = 1064 μs. This means more than 91% of the spin signal
survives. This signal drop is taken into account by normalizing
the signal amplitude with respect to a reference signal with
zero degree encoding pulse. Consequently, it is crucial to keep
the total length of the experiments precisely constant for each
set of experiments. To do this, a composite pulse with constant
length is used for the encoding step.

APPENDIX B: CORRELATIONS IN THE x BASIS

1. Growth of the correlated multispin terms

For a closed environment with N spins, the unitary evo-
lution of the system-environment under the heteronuclear
dipolar Hamiltonian, Eq. (1), can be written as

ρ(t ) = U (t ).ρ(0).U †(t ) = 1

2N+1

{
σ CS

X ⊗1⊗N
N∏

i=1

cos(ωit ) +
N∑

j=1

σ CS
Y ⊗σ

j
Z⊗1⊗N−1 sin(ω jt )

N∏
i �= j

cos(ωit )

−
N∑
j,k

σ CS
X ⊗σ

j
Z⊗σ k

Z⊗1⊗N−2 sin(ω jt ) sin(ωkt )
N∏

i �= j,k

cos(ωit )

−
N∑

j,k,l

σ CS
Y ⊗σ

j
Z⊗σ k

Z⊗σ l
Z⊗1⊗N−3 sin(ω jt ) sin(ωkt ) sin(ωl t )

N∏
i �= j,k,l

cos(ωit ) +
N∑

j,k,l,m

. . .

}
. (B1)

The equation above can be put in the form of Eq. (3) if all of the coupling constants are known for the molecules in the ensemble,
one can calculate the weight of each correlation order Cn(T ) in Eq. (3). The equation above shows that higher orders of SECs
become nonnegligible only at longer evolution times.

In the x basis the environment part of the total density matrix leads to off-diagonal elements (coherences) along x axis, that
can be accessed experimentally. In this basis, the ladder operators are �

j
± = σ

j
Y ± iσ j

Z and the density matrix is written as

ρ(T ) = C0(T )
N∑

j �=k

σ cs
X ⊗

[
1N − (

�
j
+⊗�k

−⊗1N−2) + · · · ] + C1(T )
N∑
j

σ cs
Y ⊗

[(
�

j
+⊗1N−1) − (

�
j
−⊗1N−1) + · · · ]

+C2(T )
N∑

j �=k

σ cs
X ⊗

[(
�

j
+⊗�k

+⊗1N−2) + (
�

j
−⊗�k

−⊗1N−2
) + · · · ] + · · ·

=
∑

n

Cn(T )ρx
n , (B2)
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where ρx
n ’s are vectors from the Liouville space describing

the measurement basis of the MCD experiment, and they
include all permutations of �± operators with correlation
order n.

2. Correlation orders versus number of correlated spins

To understand the spin physics of the MCD experiment,
an example of a central spin model with two spins in the
environment, N = 2, is explored in this section. After the
cross polarization step, the density matrix for the central spin
and the environment is

ρ(0) = 1

23
σ CS

X ⊗1⊗1. (B3)

Since preexisting correlations between the central spin and the
environment spins disappear during the spin locking pulse,
the initial system-environment state is uncorrelated. To main-
tain our SEC terms as simple as possible, we assume that
the homonuclear dipolar interaction in the environment is

completely turned off during the evolution step and the central
spin evolves under the heteronuclear dipolar interaction:

H1,2
SE = ω1

2

{
σ CS

Z ⊗σ 1
Z ⊗1

} + ω2

2

{
σ CS

Z ⊗1⊗σ 2
Z

}
. (B4)

After the evolution time T , the density matrix evolves to

ρ(T ) = 1
8

{
cos(ω1T ) cos(ω2T ) σ CS

X ⊗1⊗1

+ sin(ω1T ) cos(ω2T ) σ CS
Y ⊗σZ⊗1

+ cos(ω1T ) sin(ω2T ) σ CS
Y ⊗1⊗σZ

− sin(ω1T ) sin(ω2T ) σ CS
X ⊗σZ⊗σZ

}
. (B5)

This is equivalent to the description of the density matrix
using the number of coupled spins, Eq. (3). The coefficients
of the various spin terms above correspond to the Cn(T )’s
in Eq. (3). Notice that in the NMR experiment, spins are
not distinguishable and only the sum of all single spin cor-
relation terms in Eq. (B5) are observed. Collective rotation
of the environment spins by φ about the x axis, RX(φ) =
exp(i φ

2

∑
i 1

CS⊗σ i
X), transforms the density matrix to

ρφ (T ) = 1
8

{
σ CS

X ⊗1⊗1 cos(ω1T ) cos(ω2T ) + cos(φ)
{
σ CS

Y ⊗σZ⊗1 sin(ω1T ) cos(ω2T ) + σ CS
Y ⊗1⊗σZ cos(ω1T ) sin(ω2T )

}
+ sin(φ)

{
σ CS

Y ⊗σY⊗1 sin(ω1T ) cos(ω2T ) + σ CS
Y ⊗1⊗σY cos(ω1T ) sin(ω2T )

}
− sin(ω1T ) sin(ω2T )

{
cos(φ)2σ CS

X ⊗σZ⊗σZ + sin(φ)2σ CS
X ⊗σY⊗σY

}
− sin(ω1T ) sin(ω2T ) cos(φ) sin(φ)

{
σ CS

X ⊗σZ⊗σY + σ CS
X ⊗σY⊗σZ

}}
. (B6)

Consequently, the density matrix terms gain a cos(φ)n factor where n corresponds to the number of σZ operators in the multispin
correlated terms. The next step is another evolution interval T with the inverse of Eq. (B4). The resulting density matrix ρφ (2T )
is given by a long equation shown in Ref. [53]. But from this equation, the only observable terms are the following ones:

cos(ω1T )2 cos(ω2T )2 σ CS
X ⊗1⊗1,

cos(φ) sin(ω1T )2 cos(ω2T )2 σ CS
X ⊗1⊗1,

cos(φ) cos(ω1T )2 sin(ω2T )2 σ CS
X ⊗1⊗1,

cos(φ)2 sin(ω1T )2 sin(ω2T )2 σ CS
X ⊗1⊗1.

The signal amplitude is evaluated with the inner product of the reduced state of the central spin and the measurement operator,
σ CS

X , at 2T :

Sφ (2T ) = Tr
[

TrE[ρ(2T )].σ CS
X

] = cos(ω1T )2 cos(ω2T )2 + cos(φ){cos(ω1T )2 sin(ω2T )2 + sin(ω1T )2 cos(ω2T )2}
+ cos(φ)2 sin(ω1T )2 sin(ω2T )2. (B7)

The data set containing amplitudes of Sφ (2T ) for various encoding angles φ is Fourier transformed to evaluate the weight of
each correlation order |Cn(T )|2:

F [Sφ (2T )] = cos(ω1T )2 cos(ω2T )2δ(n)

+{cos(ω1T )2 sin(ω2T )2 + sin(ω1T )2 cos(ω2T )2}[ 1
2δ(n − 1) + 1

2δ(n + 1)
]

+ sin(ω1T )2 sin(ω2T )2
[

1
4δ(n − 2) + 1

2δ(n) + 1
4δ(n + 2)

]
. (B8)

We can compare these coefficients with the density matrix
weights Cn(T ) expressed in Eq. (B5). First, notice that the am-
plitude of the order n of the Fourier transformed signal is given
by the squared coefficients |Cn(T )|2 of ρ(T ). The first line in

the equation above is the signal resulted from the uncorrelated
spin term in the first line of Eq. (B5), the C0(T ) term. In the
SEC spectrum, this is the amplitude for n = 0. The second
line is produced by spin terms with one spin correlated to the
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central spin, that is the C1(T ) terms. In the SEC spectrum they
show up at n = ±1. The third line is produced by the term
which has two environment spins correlated to the central
spin, that is the C2(T ) term. In the SEC spectrum it shows
up at n = 0,±2. Thus, the C2(T ) term contributes to the
production of both C0(T ) and C2(T ) terms. This explains why
in Fig. 2(c), |C0(T )|2 and |C2(T )|2 have similar values after
decay of the C0(T ) term and before the C4(T ) term becomes
significant.

It is easy to show that all even(odd) powers of cos(φ)n in
the Cn(T ) terms produce Fourier components at even(odd)
orders of Cn(T ) terms, where the amplitude of each peak is
evaluated with the coefficients of the binomial distribution
[53]. Therefore, the amplitude of the largest observed corre-
lation order for each molecule scales down with a factor of
1
2n . Consequently, the second moment of the correlation order
spectrum is more suitable as a measure for the extent of SECs,
than the largest observed order.

APPENDIX C: CLASSICAL COIN GAME

We have designed a classical game to make a parallel
with the swap dynamics of the environment spins that take
place in our second experiment. This game simulates the loss
of echo signal resulting only from spin swaps between the
connected and nonconnected spin groups. It does not address
the decay resulting from spin swaps in the connected spin
group. Consider an array of N coins initially set to heads.
We randomly flip k of these coins to represent spins in the
connected group at time T , with the constraint that each
coin may be flipped only once. The remaining N − k coins
represent the nonconnected group. Subsequently, if the coins
are not swapped, then flipping the same random k coins for a
second time results in the complete return to the initial state.
This is equivalent to a perfect echo of the spin signal at time
2T . However, when we add random swap actions between the
two flipping stages, the final state of the coin array may be
different from its initial state. The distance between the initial
and the final state of the coin array depends on the number of
swaps performed between flipped coins and un-flipped coins.
The probability of having this sort of “successful swap” (ssw)
for each spin pair, that is swaps that increase the distance
between the two states of the coin array, is given by

Pssw = 2
kN − k2

N2 − N
· (C1)

We ignore the cases where the same two coins swap more
than once, and we assume that after each swap, the probability
of having a successful swap remains unchanged. Then the
probability of success for m random coin swaps is m times the
probability of success for one coin swap. Consequently, the
overlap amplitude AOL between the initial state and the final
state of the coin chain after two rounds of flips with a round
of coin swap in the middle is

AOL(m, k, N ) :=
(

1 − 2m

N
Pssw

)2

=
(

1 − 4m

N

kN − k2

N2 − N

)2

. (C2)
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FIG. 10. The classical coin game is similar to the scrambling of
quantum information in the spin environment. The overlap between
the initial and final state of the coin array decays exponentially with
the number of performed coin swaps.

AOL(m, k, N ) is plotted in Fig. 10 for an array of N = 15
coins, which is the number of environment spins, while k
is set according to the Hamming weight spread for various
evolution time steps T in the MCD experiment, and m is
varied from 0 to 10.

We have fitted the data in Fig. 10 with a series of decaying
exponential functions to characterize the capability of vari-
ous numbers of coin swaps to disrupt the overlap between
the initial and final coin state [53]. The overlap probability
becomes 1

e , when k is the inverse of the exponential decay
rate. We call this inverse rate the “swap immunity factor” and
plot it as a function of m in Fig. 11. The swap immunity factor
indicates the effectiveness of the number of coin swaps in
obstructing the coin array recovery. Similar to the nonlocal
OTOC experimental results in Fig. 5(c), the swap immunity
factor decays exponentially with m, for m above a threshold.
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FIG. 11. The swap immunity factor for m > 4 shows an expo-
nentially decaying behavior, similar to the experimental results for
the Fig. 5(c). The dashed line indicates an exponential fit for this part
of the data. For m < 4 the swap immunity factor is larger than the
size of the coin array, which means that coin swap cannot effectively
disturb the coin array recovery. This final remark is also similar to
the discussion about Fig. 5(c), when τ is small.
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APPENDIX D: CHAOTIC ENVIRONMENT

Quantum chaos refers to properties of the spectrum that
indicate whether the classical counterpart of the quantum
system is chaotic. One of the main signatures of chaos
is the strong repulsion of the eigenvalues [54]. The en-
ergy levels of quantum systems that are classically chaotic
are correlated and prohibited from crossing. This is de-
tected, for example, with the distribution P(s) of the un-
folded spacings s between neighboring levels. In the case
of real and symmetric Hamiltonian matrices, as in our case,
the level spacing distribution follows closely the Wigner

surmise,

P(s) = πs

2
exp

(
−πs2

4

)
. (D1)

We verified that P(s) for the Hamiltonian in Eq. (7) is well
described with this equation. The spread of information in
chaotic systems far from equilibrium happens very fast [55].
This is the scenario of our composite system, where informa-
tion is initially confined to a single spin and the environment
is chaotic.
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