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Subradiant bound dimer excited states of emitter chains coupled to a one dimensional waveguide
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This article shows that chains of optical or microwave emitters coupled to a one-dimensional (1D) waveguide
support subradiant states with close pairs of excited emitters, which have longer lifetimes than even the most
subradiant states with only a single excitation. Exact, analytical expressions for nonradiative excitation dimer
states are obtained in the limit of infinite chains. To understand the mechanism underlying these states, we
present a formal equivalence between subradiant dimers and single localized excitations around a chain defect
(unoccupied site). Our analytical mapping permits extension to emitter chains coupled to the 3D free space

vacuum field.
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I. INTRODUCTION

Subradiance, the cooperative inhibition of spontaneous
emission from an ensemble of emitters, has been pursued
since the seminal work by Dicke [1] and has been observed
only recently in atomic gases [2,3] and in metamaterial ar-
rays [4]. Applications in quantum information processing [5]
motivate the studies of collective light-matter interactions,
including the subradiant excitations of one-dimensional (1D)
emitter chains [5-23], 2D arrays [24-26], and other geome-
tries [27-29]. The phenomenon of subradiance is found to
occur due to different mechanisms, e.g., spin waves with
wave numbers outside the “light cone” [15], entangled states
between remote ensembles [26—28], subradiant edge states
enabled by nontrivial topology [22-24], etc. However, these
results were so far restricted to ensembles with only a single
excitation while subradiant states with more excitations have
remained largely unexplored.

An exception is the so-called fermionic multiexcitation
subradiant states in 1D systems [15-17]. While one might
expect emitter saturation to play only a perturbative role in
the few-excitation scenarios [30], it enforces an equivalence
between the multiexcitation subradiant states and the Tonks-
Girardeau gas of hard-core bosons [18]. This suggests a
class of subradiant states with state amplitudes which are
antisymmetric combinations of the one-excitation subradiant
states.
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However, numerical analyses of emitter chains coupled
to a 1D waveguide reveal the existence of another family
of subradiant states with entirely different properties; see
[18] and Appendix A. In this article, we first numerically
demonstrate and assess the extraordinary properties of sub-
radiant states with very close pairs of excited emitters, i.e.,
subradiant dimers. In particular, we find that for specific
distances between the excited emitters their radiative lifetimes
can be longer than the fermionic states and even than the most
long-lived one-excitation states [31]. Then, we present an ana-
Iytical treatment that explains the confinement mechanism that
leads to the subradiant dimers by a mapping to the localized
subradiant excitation near an unoccupied site (defect) in the
chain. This confinement-localization mapping is valid under
more general conditions and allows extension of our analysis,
e.g., to emitter chains coupled to the 3D free space quantized
field.

The Article is organized as follows. In Sec. II we introduce
the effective emitter-emitter coupling mediated by the waveg-
uide. In Sec. III we present the main numerical evidence of
the subradiant dimer excited states. In Sec. IV we illuminate
the mapping between the bound states and the defect-induced
localized state of a single excitation. In Sec. V we demonstrate
the universality of this mapping beyond the waveguide model.
In Sec. VI we conclude and discuss experimental feasibilities.
Detailed derivations and supplementary numerical results are
presented in the Appendices.

II. THE EFFECTIVE SPIN MODEL

Consider a chain of N two-level emitters equally spaced
by the distance d, as illustrated in Fig. 1(a). Each emitter
has a ground state |g) and an excited state |e) with transition
frequency wy. The emitters are coupled to a 1D waveguide
that supports light modes with a linear dispersion relation.
Using the Born-Markov approximation, the waveguide modes
can be eliminated to yield an effective theory for the emitters
[32], which entails a non-Hermitian infinite-range spin-spin
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FIG. 1. (a) A chain of two-level emitters coupled to a 1D waveg-
uide with parameters introduced in the main text. In the limit of
infinite chains, a dimer state has two excitations characterized by
a short relative distance A and the delocalized “center of mass”
(corresponding to a well-defined total wave number K). In this article
we study two types of subradiant dimers: type-I states, dominated
by K = 0 and A = d, and type-II states dominated by K = 7 /d and
A = 2d. For finite chains of N = 25 emitters, panels (b) and (c) show
examples of type-I and type-II dimers. Parameters of the resonant
wave number and single-emitter decay rates are specified in the upper
panels which show the distribution of the separation A between the
excitations. The lower panels show the strongly correlated spatial
distribution |(m, n|y)|* of excited emitter pairs in the dimer states.

interaction Hamiltonian [33-35]

. N
1 i _
He=—5Tip ) &P =l olo,. (1)

m,n=1

The bare excitation energies of the individual emitters are
not included, I'jp is the decay rate of an individual emitter
coupled to the waveguide, k|p is the wave number of the
waveguide mode resonant with wy, z, is the position co-
ordinate of the mth emitter, and a;’ = |e)m(gl. In a perfect
experimental implementation of Eq. (1) I'ip should dominate
all other decay processes, as in photonic crystal waveguides
[36,37] and superconducting qubits coupled to transmission
lines [38—41].

In the Monte Carlo wave function formalism [42], the
state of the emitter chain evolves under Eq. (1), interrupted
by stochastic quantum jumps representing spontaneous emis-
sion of a photon. The jump rate makes a system prepared
in a right eigenstate of H.s maintain its excitation with a
probability that decays with twice the negative imaginary
part of the corresponding eigenvalue. In this work, we obtain
these eigenstates by the exact diagonalization of H.ys with
use of the SLEPc (Scalable Library for Eigenvalue Problem
Computations) [43].

III. SUBRADIANT DIMER EXCITED STATES

We focus on the two-excitation subspace of eigenstates of
H.¢, for lattices with 0 < kjpd < 7 /2. This Hilbert space is

spanned by states |n, m) where the mth and nth emitters are
excited. As we illustrate in Fig. 1, by numerical diagonaliza-
tion of H.s we find subradiant dimer states with delocalized
center of mass Z. = (z,, + z,)/2 and well-defined distance
A = |z, — z,| between the excitations. To understand the
appearance of these states and their properties, we introduce
basis states,

w—A/2 A A
K=} e""ZCZC—E,ZC+3>, ©))
Ze=21+A/2

with center-of-excitation wave number K and spatial sep-
aration A between the excitations. In a finite chain, K is
not conserved but Z. distributions resembling standing waves
appear due to the boundary conditions at the chain ends.
The expansion of the identified type-I dimers on the basis
states (2) has wave numbers K ~ 0. For infinite chains, K
becomes a good quantum number and the type-I dimers can be
expressed as Y, €%|K; A), where gid = —ilncos(kipd);
see Appendix B. This implies a probability distribution for
the separation A > 0 between the excitations

pi(A) o (cos kipd )*A/? A3)

with the dominant amplitude on A = d; see Fig. 1(b). For
the type-II dimers identified, K ~ 7 /d, and on an infinite
chain the amplitudes on odd values of A/d vanish and the
state can be expressed as Y . €% |K; A). The summation
includes only the even values of A/d, and gnd = [7 —
ilncos(2k;pd)]/2. This implies a distribution for even-valued
separations

pu(A) o (cos 2kipd )/ 4

with the dominant amplitude on A = 2d; see Fig. 1(c). These
dimers are perfectly subradiant with vanishing decay rates on
infinite chains; i.e., the corresponding eigenvalues of H.g are
real. In Appendix B, we derive the asymptotic eigenvalues of
the two types of dimers, viz., w; = 2I'|p cot(k;pd) and wy =
2T p cot(2k;pd), and numerically obtain their corrections
on a finite chain. Knowing these asymptotic values allows
efficient search for the eigenstates for a finite chain with a
large number of emitters by the Krylov-Schur algorithm [44]
with the shift-and-invert method [45].

The dimers on finite chains have small but finite decay
rates. We find that the minimal decay rates of the most
subradiant type-I states scale asymptotically as nearly N~
see Appendix C. However, the type-II states show longer
lifetimes and a more complex behavior. The decay rate of the
most subradiant type-II dimers is shown versus N and k;pd
in Fig. 2, where a narrow region between kjpd = 0.167r and
0.17x is distinctively subradiant. Moreover, fringe textures
are seen to the right-hand side of that region. We compare
the minimal decay rates of type-II dimers with those of the
most subradiant fermionic states and one-excitation states,
and obtain the critical parameters of k;pd and N shown by the
red and black boundary curves in Fig. 2. Specifically, Fig. 2
demonstrates that the type-II dimer can be more subradiant
than the fermionic states, and even the one-excitation states.
This observation disproves an unwritten orthodoxy that states
with more excitations have shorter lifetimes, being true, for
example, for the fermionic states that decay with the sum of
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FIG. 2. Decay rates of the most subradiant type-II dimers (shown
by colors, with unit I';p) as a function of emitter number N and lattice
distance d. The red curve encloses the regime where the type-II
dimers are longer lived than the fermionic states. The black line
encloses the regime where the type-1I dimers are even longer lived
than the one-excitation states. In the shaded region, the dimer decay
rate oscillates around the single-excitation rates as a function of N
and d.

their one-excitation constituent decay rates [15—17]. Figure 2
shows that a short chain with N = 48 emitters is sufficient to
observe the even more subradiant dimer states, in the case of
kipd = 0.16767.

To study the extremely subradiant region in more detail,
we plot decay rates of the most subradiant type-II dimers
for a few values of N in Fig. 3(a). A sharp dip in decay
rates appears around kjpd = 7 /6 and a magnified view of
the interval kjpd/m € [0.17,0.18] shows the fringe textures
observed in Fig. 2. The robustness of the results to position
disorder is discussed in Appendix D. In Fig. 3(b), we observe
different scalings of the decay rate with N < 500 for different
values of kjpd. Around kpd = 7 /6, the decay rates thus
fall off faster than N=3 and show oscillations breaking the
conventional monotonicity with N. For kjpd near 0.257, the
decay rate is weakly modulated with a period of 4 [see inset
in Fig. 3(b)]: adding 4 emitters makes the chain longer by half
a resonant wavelength.

When kipd = 0.257, Eq. (4) vanishes so that amplitudes
of A > 2d are completely suppressed. On infinite chains this
state is an eigenstate of both the center-of-excitation wave
number, equivalent to a total momentum, p; + p,, and the rel-
ative position coordinate, X; — Xy; i.e., it is an implementation
of the Einstein-Podolsky-Rosen state [46]. A similar state is
found for the type-I dimer for k;pd = 0.57.

IV. CONFINEMENT-LOCALIZATION MAPPING

The Hamiltonian Eq. (1) does not provide any direct evi-
dence for the emergence of the subradiant dimer states, and
neither does our analysis based on the Holstein-Primakoff
transformation [18]. Here we provide the physical mechanism
leading to the long-lived excitation dimers.
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FIG. 3. Decay rates of the most subradiant type-II dimer states.
(a) Decay rates as a function of k;pd /7 for different values of N. A
narrow dip is found near k;pd = 7 /6. The inset shows a magnified
view of the oscillatory behavior of the decay rates. (b) Decay rates
as a function of emitter number for k;pd /7 from 0.1 to 0.4 (every
0.05), 0.1676, and 0.16666. The dashed line shows the decay rate of
the most subradiant one-excitation state for k;pd = 0.16767, scaling
as N73. The inset shows a period-4 modulation of the decay rate as a

function of N for kipd = 0.257.

Applying H.g on the ansatz of Eq. (2) yields

Her|K; A) = Y HA o IK; A) + (tails). 5)
A>d

It separates H.g into contributions preserving K, i.e., the
matrix HX defined by elements

i . K IAT
K k SIA—€'A
HA,A’ = ——21 1D E ek ter)lAze l, (6)
€,e/==+1

and remaining terms, denoted by “tails” that break the con-
servation of K; see Appendix E. The “tails” vanish when
N — o0o. Thus the Hamiltonian H¥ acting on the relative
position eigenstates is essential for the formation of dimers
and must explain their vanishing decay rates on infinite chains.

Our key insight is that the eigenstates of HX can be
uniquely mapped to the even-parity eigenstates of a Hamil-
tonian Hif with matrix elements

K _ i i(kip+e ) a—-a'|
(Hdef)A,A/ - _ZFID Z el IDTE? 5 (7)
e=%1
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FIG. 4. (a) The confinement of excitation pairs is equivalent to
localization of an excitation around a missing site. (b) Decay rates
(in units of I'jp) of the state localized around the central missing
site, for kipd/m = 0.25,0.3,0.35. (c) Decay rates of the localized
state as a function of the position of the missing site in a chain with
60 emitters and kjpd/m = 0.25, 0.3. Also shown are profiles of the
localized states of emitter chains coupled to a free quantized field
in 3D, with (d) transverse and (e) parallel polarization, for d = 0.35
and 0.45 times the resonant wavelength X,. The decay rates are given
in units of the single-emitter spontaneous emission rate yp.

where A/d, A’/d attain both positive and negative values
{£1,£2,...}. As shown in Appendix F, for an eigenstate
[¥) of HX (with eigenvalue A), there is a corresponding
even-parity eigenstate |14ef) (unnormalized) of ’erf with the
eigenvalue A/2 that satisfies (A|Yqes) = (A]Y¥) for indices
A > 0.

The above mapping implies that the dimer state is equiv-
alent to an eigenstate of the Hamiltonian H%,., describing
a single excitation localized around a defect (unoccupied
site) at A =0, as illustrated in Fig. 4(a). Actually for the
case of K =0, HXZO is just the defect version of Eq. (1).
The localized defect modes have analytical solutions elab-
orated in Appendix G. On an infinite chain, the localized
eigenstate of HXTO can be written as o< )", €*1|A) with
qid = —ilncos(kipd). This is in agreement with the spatial
factor Eq. (3) found for the type-I dimers. The eigenvalue of
Hff;o for the localized state is I'p cot(k;pd), exactly half of
that of the type-I dimer wy, as predicted by the confinement-
localization mapping. The case of K = m /d (type-II dimers)
is equivalent to the case of K =0 (Appendix H), up to

alternating sign flips and the replacement of d — 2d. This
equivalence explains the resemblance between Egs. (3) and
(4), and between the eigenvalues wy and wyy.

The excitation of an emitter blocks further excitation and
the dimer state is stable because each excitation serves as a
defect supporting the localization of the other one. For finite
chains, as shown in Fig. 4(b) the localized state around a
defect has a decay rate suppressed exponentially in the emitter
number N, and if the defect is not at the chain center, the
decay rate is determined by the length of the shorter subchain;
see Fig. 4(c). This dependence is much faster than the N3
scaling on chains free from defects [15—18] and it comes about
because the localized state is a superposition of a left and a
right excited subchain. Their destructive interference results
in the extreme subradiance, seen also in Refs. [26-28].

The finite-size effects shown in Figs. 2 and 3 are due to
the “tails” of Eq. (5). Since the states |K; A) have finite width
of A, the “tails” are restricted to a short section of length A
at each end, but their complicated expression (Appendix E)
prevents analytical solution. We may, however, infer that
the dimers become seriously affected at the chain ends, and
hence an interplay between the length of the chain and the
bond length of the dimer may be responsible for the periodic
oscillations seen in Fig. 3(b) and the fringe texture seen in
Fig. 2. The strong dependence of the decay rates on the emitter
separation d might be equivalent to the observation, see
Ref. [21], of special emitter distances leading to extraordinary
(single excitation) subradiant states.

V. EXTENSIONS BEYOND 1D WAVEGUIDE

The mapping between confinement and localization can
be extended by linearity to Hamiltonians written as Heg =
f du(kip)Hes(kip), where du(kip) is an integral measure
over the variable k;p and H(kp) refers to Eq. (1). This for
example covers 1D emitter chains coupled with 3D free space
modes where u(kp) is given in Ref. [18]. Also here, localized
subradiant states will exist, and we show their excitation am-
plitude in Figs. 4(d) and 4(e) (see phase profiles in Appendix
I), for emitters polarized both transverse and parallel to the
chain. In contrast to the 1D waveguide, these localized states
have finite decay rates in the infinite-chain limit. Due to the
mapping, we can conclude that subradiant excitation dimers
exist and that they have intrinsic finite decay rates also in the
limit of infinite chains.

VI. CONCLUSIONS AND DISCUSSIONS

In this article, we have introduced subradiant excited
dimers of emitter chains coupled to a 1D waveguide. We
showed that such (type-II) dimers can be more subradiant
than even the longest-lived one-excitation states of the system.
Their decay rates show unusual dependence, including non-
monotonic wiggles, as a function of N when k|pd is slightly
larger than 7 /6. We identify the intrinsic emitter saturation
and the resulting emergence of mutual defect modes as the
cause of the long-lived dimer states, and we use a rigorous
mapping between confinement and localization to obtain their
physical properties. This mapping is valid under general con-
ditions and gives access to the properties of similar states of
emitter chains decaying into 3D free space field modes.
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FIG. 5. The eigenvalues of the two-excitation sector Heg with
N =50 and k;pd = 0.27r. Five branches of subradiant states are
identified. Three of them are the fermionic states, of which the most
subradiant ones are marked by green solid circles. The other two are
the dimers. The most subradiant type-I and type-II are marked by red
dotted circles.

We propose to verify the predictions experimentally, and to
address single-excited states around defects, e.g., by exciting
emitters around a missing or suitably perturbed site, and wait-
ing for excitation amplitudes on orthogonal excitation modes
to decay. To verify the dimer subradiant states, one would
excite a system uniformly, but one may exploit interactions
to facilitate correlated excitation of dimers within certain
distance ranges [47], and thus maximize the overlap with
the long-lived states identified in this article. Other efficient
ways to couple the bound states or localized states may be
mediated by ancillary emitters distributed off the 1D lattice
sites [41,48]. Finally, we imagine that our method to formally
map doubly excited states on localized states around defects
may become a useful ingredient in other lattice models and
contribute to the analysis of other quasiparticle confinement
phenomena; cf. recent findings in Ising spin chains with long-
range interactions [49].

Note added. Recently, the behavior of the strongly subradi-
ant states for lattices around k;pd = 7 /6 has been explained
in terms of a diverging effective mass of the bound pairs [50].
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APPENDIX A: DISTRIBUTIONS OF THE EIGENVALUES
IN THE TWO-EXCITATION SECTOR

The fermionic states and the dimers constitute all the
subradiant states in the two-excitation sector. This is verified
by Fig. 5, where we show all the eigenvalues of H.g for a
chain of N = 50 emitters coupled to a 1D waveguide with
kipd = 0.2m. In Fig. 5 five branches of subradiant states
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FIG. 6. The dotted (solid) lines show the deviation between the
real part of the eigenvalues (for finite chains) and the asymptotic
eigenvalues wyqr), as a function of k;p for the type-I (type-1I) dimers
for different values of N.

can be clearly identified. For the three branches of fermionic
states, their asymptotic eigenvalues can be obtained from the
Supplemental Material (Sec. A) of Ref. [18]. The asymptotic
eigenvalues of the dimers are given in the main text and will
be derived below in Appendix B.

APPENDIX B: ASYMPTOTIC EIGENVALUES
OF THE DIMERS

In the limit of infinite chains, the most subradiant states
have vanishing decay rates so that the corresponding eigenval-
ues are real. Analytical expressions of the asymptotic values
can be obtained both from HX [Eq. (6) of the main text] and
from HX,; (see Appendix F).

For the type-I dimers, applying H on |g) = Y ,_, €1%|A)
yields

H'lg) = wglg) — iTip (& lkip) — h|—kip)),  (B1)

where the coefficients are
r k €
o= T2 3 cot (#d) (B2a)
e==+1
0 e'@—kin)d eiatkip)d _ ,i(g+kip)Nd

8 = T gamd T [ Zgaria» (B2D)
ei(q-‘rkm)Nd

n = (B2¢)

q 1 — ei(q+k1r))d '

Suppose that g has a positive imaginary part and N is suffi-
ciently large so that "¢ =~ 0. This implies that /) = 0 and if

we can find a value of ¢ so that gg = 0, the corresponding |gq)
is an eigenstate of °. For large N, this leads to the equation

ik d 1 — ¢i@tkin)d
Kipd __ __

N R S (B3)
The solution is gd = —ilncos(k;pd). Substituting this into
Eq. (B2a) yields the real eigenvalue w; = 2I'jp cot(kipd). In
Fig. 6, we plot the deviations of energy levels of the dimers

from their N — oo asymptotic values.
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FIG. 7. Decay rates of the most subradiant type-I dimer states.
(a) Decay rates versus emitter number for values of k;pd /7 from 0.1
to 0.4 (every 0.05) and 0.1676. The dashed line is a guide to the eye
for the N=2 scaling. (b) Decay rates versus k;p for fixed N.

Counterparts of the type-II dimers can be obtained in the
same way. One can also obtain them by using the equivalence
between the two types of dimers as presented in Appendix H.

APPENDIX C: DECAY RATES OF THE TYPE-I DIMERS

The decay rates of the most subradiant type-I dimer states
versus emitter number N and kp are plotted in Fig. 7. Com-
pared with the results for the type-II states, shown in the main
text, the curves are free from dips and wiggles.

APPENDIX D: ROBUSTNESS AGAINST
SPATIAL DISORDER

In this section, we examine the influence of disorder of
the spatial positions of the emitters. It is conceivable that
for weak disorder, the eigenstates are only slightly perturbed,
while for more significant disorder, the system may display
new physics, such as Anderson localization effects.

We restrict ourselves here to the situation of weak disorder.
Then the position of each emitter is assumed to be shifted
randomly by a distance uniformly distributed in a small inter-
val [—4, 8]d. We show the decay rates of the most subradiant
type-1I dimer as a function of kjpd in Fig. 8 for a number
of random realizations of the disorder. Our simulations show
that the dip near k;pd = 7 /6 is robust against the disorder,

10—1 i //,
10731
Y e N =50
107 6=0.01
0.1 0.2 0.3 0.4

2 107
e
S .
o . s
= 1073
g \
3 N -
N . \i= N =50
£ 107 | 6=0.001
9 0.1 0.2 0.3 0.4
©

102 ///'

10741 ‘\\\ //,/’/

106 \“. o

! N =100
1078 | 6=0.001
0.1 0.2 0.3 0.4

kipd/m

FIG. 8. Effects of spatial disorder on the decay rates of the most
subradiant type-1I dimers, for different values of N and § displayed
in the figures. In each panel, the blue dashed line corresponds to the
case without disorder, and other lines show results for 10 samplings
of disordered chains.

and that disorder can even lead to further suppression of the
decay rates.

APPENDIX E: FULL EXPRESSION OF TERMS OMITTED
IN EQUATION (5) OF THE MAIN TEXT

The omitted “tails” are expressed as

iTip Gitkio+5)A 1

(tails) = Do (0;+le)R|G>

iCip gk
+ e T (o, lG), (B

where |G) is the state where no emitters are excited, o; =
Zm eipam J,L, and the foot indices R and L restrict the summa-
tion over sites to the intervals (zy — A, zy] and [z1, 21 + A),
respectively. For dimer states dominated by small values of A,
the “tail” terms are well restricted to the ends of the chain.
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APPENDIX F: MAPPING FROM #X TO HX,

The one-to-one correspondence between the eigenstates of
HX and the even eigenstates of H(Ifef can be understood from
the following simple observation.

From Eq. (6) of the main text, we see that the summation
over € = %1 in HX can be formally represented by writing
(H¥)an = AZ’A, + A} 5> Where
(F1)

+ i i(k B a—(+)A’
AA,A’ — _EFID Z gltkhinFeA-(B)A]

e=*1
While these quantities are introduced for application to the
case of A, A’ > 0, they formally obey the symmetry AJAF. N =
A, _ - and hence the action of HX on a general state obeys
the following set of equations,

D H A (A )

A'>0

=Y AL LAY+ DAL A )

A'>0 A'>0

= D AL A A [Yaer) + Y AL A (— N [Wraer).-

A'>0 A'<0

(F2)

In the last line we introduce the even states, |/qf), defined
for both positive and negative A, and satisfying (A|y) =
(A|Yger) for A > 0, and we observe that the last expressions
can be combined in a single sum ZA/#) 2(H([fl<ef)AvA/ (AN |VYaet),
where

(Maer) a.a0 = 348 a0 (F3)
APPENDIX G: DEFECT-INDUCED LOCALIZED
SUBRADIANT STATES

We denote the effective Hamiltonian of a chain with the
mth emitter missing by H_,, 4.r. This defect separates the
chain into a left and a right subchain, where Bloch one-
excitation states, |g.) and |gg), are defined as

lqrw) = Y €4 |m). (G1)
meL(R)
Then we have
1 iTip
H_,, getlqr) = qu|QL> - T(gL,qlle;L>
+ Bylkipir) — hrgl—kipir)),  (G2a)
1 il'p
H_p qetlqr) = quWR) + T(hR,q|_le;R)
— 6,41 — kip,L) — grglkip:r)),  (G2b)
where the coefficients are given as
e'@—kip)z £i(@—kip)@n+d)
8La = T g hmd® 8R4 = T g (O3
i@+ oil@Hap)ey-+d)
hrg = 1 — eilgrhkin)d’ hrq = 1 — eilgthkin)d® (G3b)
ela—kio)z _ pi(g—kip)zn
bo= ——garon (G3c)

i@ tkip)@ntd) _ pilgt+kip)(zy+d)

0, = (G3d)

1 — eilgtkin)d

The expression of w, is identical to that of Eq. (B2a).
We expect that the eigenvalues will be expressed by w, for
some specific values of g with contributions to the eigenstates
from the degenerate states |tg;) and |£gg). Indeed, one
verifies by inspection that a superposition, ¢z [¥) 1 + crl¥y)r,
of [Yg)r & 8r,—4lqL) — 8L.ql—qr) and [Yg)r X hr —glqr) —
hg.ql—qr), leads to cancellation of the |kp,.) and |+kip;r)
terms in Eq. (G2) and that the coefficients c¢; and cg can be
found if the determinant of the following matrix vanishes:

Qthﬁq - G,th’q

8L,th,7q - gL,fth,q
8r.glRr—q — &R —qhRr ¢

,quL,—q - :B—qu,q ) ’ (G4)

This condition is further evaluated to be
o2ikind

1 )
§ e—léqd(N—l) _ §
2
e==+ Aéq A‘/A“f e=+

eteqd(N—l)

1 — eZikIDd

— § : eisqd(N—2m+1)
- b
AqA_q e=+

(G5)

where

Ay = 2 _ ella—kip)d _ ,~i(g—kip)d

It is expected that the solution for ¢ has a positive imaginary
part, hence ¢/4V¢ & 0. Then Eq. (G5) can be evaluated to
Ay olikind
Ay
= (1 = & D[ (cos kipd)* ™™™ + (cos kipd)*™ V1.
(G6)

When the missing site is far from the chain ends so that the
right-hand side of the above equation can be ignored, we have

hvd = A_ /A, (G7)
with the solution gid = —ilncos(k;pd). Similarly for the
case corresponding to the type-II states, we obtain gpd =
0.57 — 0.5iIn cos(2kpd). Substituting these expressions into
w, yields the asymptotic eigenvalues.

Terms on the right-hand side of Eq. (G6) are suppressed
exponentially in the length min Ny z of the shorter subchain
(left or right side of the missing site). The coupling at the end
provides a correction, ¢ = g + 8, with

5= 2_—; cot? (kipd )(cos kipd )™ Ve (G8)

Substituting this into the expression for w, yields an exponen-
tially suppressed decay rate of the localized state as a function
of min Nyg.

The localized states are exponentially suppressed at the
chain ends and the eigenstates are approximately given in the
form of |gr.r) + |—qr1.L) as we present in the main text.
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APPENDIX H: PROPERTIES OF #A7™? FOR
THE TYPE-II DIMERS

We have

. 1
(Hde/fd)

. i TVA—A
=—i-T'p E el(kmd-‘ré A=A I’
e==%1

(HI)

AN

where the indices A and A’ have been transformed to dimen-
sionless integers for convenience of notation.

If A and A’ have opposite parity, i.e., one is even and the
other is odd, |A — A’| will be odd and consequently

eFIATAT L pmiBIANT — (H2)

It means that (’ng/fd) a.n = 0, 1.e., the odd and even A are not

coupled. Thus we can write
wjd _ qm/d n/d
7_[def - Hdef; odd + H

def; even’

(H3)
where the odd and even terms commute.

The subchain consisting of all odd sites A = +1, 43, ...
does not couple to the defect at A = 0 and provides no local-
ized solutions. It is therefore sufficient to consider ng/tfeven,
acting on the even sites A = 2,44, .... By substituting
A=2&(E==%1,+2,..)into ¢ we find

def; even?

1 ; ’
7/d — § : (2kipd—+em)|E—&'|
(%def;even)g,é’ - lZFID et "
e==1

1 » ’ ’
- iEFIDe'Z’“D”"f*f (—1)E¢

_ i%FIDeiZkIDdE*E’\(_I)S‘LS/_ (H4)

Using a local phase transformation, |£) — (—1)5]£), the
above expression can be transformed to

(,Hn/d

i1 2kipd|§—¢'|
def;even)g,g’ - _lirlDel v ’ (HS)

0.467, 0.17 021y, 0.05,
i=0.35 i=0.45 i=0‘35 i=0.45
j'0 0 20 /10
15 0 15 -15 0 15 60 0 60 -60 0 60
n n
0 0
-1 -1~ - -
15 0 15 -15 0 15 60 0 60 -60 0 60

FIG. 9. Bottom panels: Phase profiles of the localized states
discussed in the main text.

which is equivalent to the Hamiltonian for the type-1 (K = 0)
dimers with the scaled parameter 2k pd.

To summarize, the localization of Hg;d(kmd), which
corresponds to the type-II dimers, is equivalent to that of

ngf(2kmd ), which belongs to the type-I dimers.

APPENDIX I: PHASE PROFILES OF
THE LOCALIZED STATES

For the 1D waveguide case, the phase of the localized state
is uniform for 0 < kjpd < 7 /2, and flips by & per site if
/2 < kipd < m. For coupling to the 3D free space vacuum
field, the amplitude and phase profiles are not as regular as
in the 1D waveguide case. In Fig. 9 we show the phase
profiles of the localized states illustrated in Figs. 4(d) and
4(e) of the main text (the amplitude profiles are replicated for
convenience).

In the figure, the emitter number is not specified, because
profiles of the localized states are almost the same, as long as
their widths are adequately shorter than the chain lengths.
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