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Acoustokinetics: Crafting force landscapes from sound waves
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Factoring the pressure field of a harmonic sound wave into its amplitude and phase profiles provides the
foundation for an analytical framework for studying acoustic forces that not only provides insights into the
forces exerted by specified sound waves but also addresses the inverse problem of designing sound waves to
implement desired force landscapes. We illustrate the benefits of this acoustokinetic framework through case
studies of purely nonconservative force fields, standing waves, pseudostanding waves, and tractor beams.
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I. INTRODUCTION

Structured sound waves exert forces and torques that can
be harnessed to transport, sort, and organize insonated objects
[1–4]. Applications include noncontact processing of sensitive
[5,6] and hazardous [7] materials, flow focusing for materials
analysis and medical diagnostics [8], and automated remote
manipulation for research [9]. Rapidly growing interest in
harnessing acoustic forces has inspired a fundamental re-
assessment of the physics of wave-mediated forces. Recent
developments in the theory of acoustic forces [10–14] parallel
the analogous theory of optical forces [15,16]. Both offer
valuable and often surprising insights into the elementary
mechanisms of wave-matter interactions. The acoustokinetic
framework introduced here addresses the complementary in-
verse problem: identifying what wave will create a desired
force landscape.

The inverse problem for optical forces recently has been
rendered more tractable by expressing the electromagnetic
field in terms of its real-valued amplitudes and phases along
each Cartesian coordinate [17,18]. This approach is called
the theory of photokinetic effects and yields useful analytic
expressions for the performance of optical traps [19] including
design criteria for optical tractor beams [18]. Here, we show
that an analogous factorization of the pressure field in sound
waves is similarly useful for understanding and implementing
acoustic manipulation. We illustrate the utility of this acous-
tokinetic framework through case studies on nonconservative
acoustic force fields, standing and pseudostanding waves, and
acoustic tractor beams.

A. Light: Photokinetic analysis

We develop acoustokinetics by analogy to photokinetics
and therefore briefly review the theory of optical forces. A
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small particle immersed in an electromagnetic wave develops
an electric dipole moment proportional to the local field. This
induced dipole experiences a time-averaged Lorentz force in
gradients of the field that can be expressed as [16]

Fe(r) = 1

2
Re

⎧⎨
⎩αe

3∑
j=1

Ej (r)∇E∗
j (r)

⎫⎬
⎭, (1)

where Ej (r) is the jth Cartesian coordinate of the electric
field and αe is the particle’s complex dipole polarizability.
Expressing the components of the electric field in terms of
their real-valued amplitude and phase profiles,

Ej (r) = u j (r) eiϕ j (r), (2)

yields the surprisingly simple expression [17],

Fe(r) = 1
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e
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u2
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where α′
e and α′′

e are the real and imaginary parts of the
polarizability, respectively.

The first term on the right-hand side of Eq. (3) is the
manifestly conservative intensity-gradient force responsible
for single-beam optical traps such as optical tweezers [20].
The second describes a nonconservative force [21] that is
directed by phase gradients [22]. Phase-gradient forces tend to
drive trapped particles out of thermodynamic equilibrium with
their supporting media [22,23], mediate the transfer of light’s
orbital angular momentum [24–27], and have been used to
create light-driven micromachines such as pumps [28], mix-
ers [29], and optical tractor beams [30]. Even nonabsorbing
dielectric particles experience nonconservative optical forces
because of radiative contributions to the dipole polarizability
[31,32].

The dipole-order expression in Eq. (3) accurately de-
scribes the forces experienced by particles with radii, ap, that
are small enough to satisfy the Rayleigh criterion, kap <

1, where k is the wave number of light. In the Rayleigh
regime, the conservative intensity-gradient force generally
dominates the light-matter interaction because α′

e scales as
(kap)3, whereas α′′

e scales as (kap)6.

2643-1564/2020/2(1)/013172(9) 013172-1 Published by the American Physical Society

https://orcid.org/0000-0003-3484-5434
https://orcid.org/0000-0002-4382-5139
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013172&domain=pdf&date_stamp=2020-02-19
https://doi.org/10.1103/PhysRevResearch.2.013172
https://creativecommons.org/licenses/by/4.0/


MOHAMMED A. ABDELAZIZ AND DAVID G. GRIER PHYSICAL REVIEW RESEARCH 2, 013172 (2020)

B. Sound: Acoustic radiation forces

The analogous dipole-order acoustic radiation force expe-
rienced by a small particle in a harmonic sound field may be
expressed in terms of the pressure, p(r, t ), as [14]

F(r) = 1
2 Re{αa p∇p∗ + βak−2(∇p · ∇)∇p∗}, (4)

where the coefficients αa and βa play the role of dipole and
quadrupole polarizabilities, respectively. This expression is
analogous to Eq. (1) for optical forces and is obtained by
rearranging terms from Eq. (16) in Ref. [14]. It therefore also
is equivalent [14] to the angular spectrum decomposition of
F(r) [33] for kap < 1. Expressing F(r) in terms of multi-
pole polarizabilities clarifies the analogy with photokinetics.
Lengths in Eq. (4) are scaled by the wave number, k = ω/cm,
where ω is the sound’s frequency and cm is its speed in the
medium. Equation (4) applies to inviscid fluids, for which the
pressure satisfies the scalar wave equation

∇2 p = −k2 p. (5)

Our focus on traveling waves in inviscid media is in-
spired by our interest in developing modalities of long-ranged
noncontact manipulation. Long-range manipulation is facil-
itated by minimizing acoustic losses in the medium. This
can be achieved in air by working at frequencies below
50 kHz [3,34], for which the acoustic attenuation is less than
2 dB m−1 under standard conditions [35] and scales as ω2

for lower frequencies. The equivalent limiting frequency for
water is roughly 2 MHz [36]. Working at low frequencies also
minimizes the influence of acoustic streaming forces, which
ordinarily compete with acoustic radiation forces in viscous
media and in inviscid media bounded by confining surfaces
[37].

An object’s dipole and quadrupole polarizabilities gener-
ally depend on its size, shape, and composition as well as the
frequency of the sound and the properties of the fluid medium.
For simplicity and concreteness, we will specialize to the
case of a spherical scatterer of radius ap that is composed
of a material of density ρp and sound speed cp. Such an
object’s response to the sound field is characterized by the
polarizabilities [14]

αa = 4πa3
p

3ρmc2
m

f0

[
−1 + i

1

3
( f0 + f1)(kap)3

]
, (6a)

βa = 2πa3
p

ρmc2
m

f1

[
1 + i

1

6
f1(kap)3

]
, (6b)

where the monopole coupling coefficient,

f0 = 1 − ρmc2
m

ρpc2
p

, (7a)

depends on the compressibility mismatch between the particle
and the medium, and the dipole coupling coefficient,

f1 = 2
ρp − ρm

2ρp + ρm
, (7b)

gauges the density mismatch. These expressions also are ob-
tained by reorganizing coefficients from Eq. (16) of Ref. [14]
and are valid for kap < 1. They constitute the leading-order

FIG. 1. Schematic representation of a sphere of radius ap im-
mersed in an acoustic pressure field. Contours denote isosurfaces of
the pressure intensity. Colors represent the phase of the pressure field.
Generally speaking, intensity gradients direct conservative trapping
forces while phase gradients direct nonconservative driving forces.

contributions for both the real parts of the polarizabilities, α′
a

and β ′
a, and also the imaginary parts, α′′

a and β ′′
a .

II. ACOUSTOKINETIC FRAMEWORK

Drawing on the analogy with photokinetics, we express the
harmonic sound wave’s pressure field in terms of its amplitude
and phase profiles:

p(r, t ) = u(r) eiϕ(r) e−iωt . (8)

The first term on the right-hand side of Eq. (4) then yields

Fα (r) = 1
4α′

a ∇u2 + 1
2α′′

a u2∇ϕ, (9a)

which is directly analogous to Eq. (3) for the dipole-order
force exerted by light. These contributions to the acoustic
radiation force are depicted in Fig. 1. As in the optical case,
α′

a and α′′
a scale as (kap)3 and (kap)6 respectively, which

means that the conservative force generally dominates for
small particles.

The second term on the right-hand side of Eq. (4) arises
from the velocity-matching condition at the sphere’s boundary
and so has no analog in optical radiation forces. It vanishes for
density-matched particles (βα = 0), which therefore behave
exactly like dielectric particles in a light field, in agreement
with conclusions from previous studies [38]. When expressed
in terms of the amplitude and phase profiles, this term sepa-
rates naturally into a conservative contribution,

Fc
β (r) = 1

4β ′
a∇

(
u2 + 1

2 k−2∇2u2), (9b)

that augments the conservative intensity-gradient force from
Fα (r) and a nonconservative contribution,

Fnc
β (r) = 1

4β ′′
a k−2[(2k2u2 + ∇2u2 + 2u∇u · ∇)∇ϕ

− (u∇2ϕ + 2u∇ϕ · ∇)∇u], (9c)
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that is directed both by phase gradients and also by amplitude
gradients. The combination,

Fβ (r) = Fc
β (r) + Fnc

β (r), (9d)

captures the sphere’s leading-order coupling to the quadrupole
components of the incident field. A derivation of Eq. (9) from
Eq. (4) is presented in the Appendix.

Unlike the optical case, where quadrupolar forces generally
are weaker than dipole contributions, the two terms in Fβ (r)
can be comparable in magnitude to their counterparts in Fα (r)
because β ′

a scales as (kap)3 and β ′′
a scales as (kap)6. These

density-dependent terms therefore can be used to exert control
in ways that are not possible with light.

For very small particles satisfying kap � 1, the acoustic
force field is dominated by the conservative terms propor-
tional to α′

a and β ′
a. These terms are identical to the force

described by the classic Gor’kov potential [12], which is
widely used to describe acoustic trapping phenomena [3,39].
For larger particles, and for appropriately structured sound
fields, nonconservative contributions proportional to α′′

a and
β ′′

a can be significant, and even can be dominant [40,41]. Such
contributions are not accounted for by the Gor’kov potential.

The acoustokinetic framework described by Eq. (9) is the
principal contribution of this work. We now demonstrate its
value through case studies on realizable sound fields with
exceptional properties.

III. APPLICATIONS OF THE ACOUSTOKINETIC
FRAMEWORK

A. Designing purely nonconservative force fields

To illustrate how the acoustokinetic framework can address
the inverse problem of designing sound waves to implement
desired force landscapes, we use Eq. (9) to design harmonic
sound waves that exert purely nonconservative forces. This is
equivalent to requiring the conservative part of the acoustic
radiation force to vanish and thus requires us to look beyond
the Gor’kov potential. Equations (9a) and (9b) show that this
goal can be met if the particle is not density matched, β ′

a �= 0,
and if the pressure intensity satisfies the inhomogeneous
Helmholtz equation,

∇2u2 + 2

(
1 + α′

a

β ′
a

)
k2 u2 = C. (10)

The undetermined constant C distinguishes families of non-
conservative sound waves for the class of objects with com-
patible values of α′

a/β
′
a. Solutions to Eq. (10) must be

real-valued and must be paired with real-valued phase profiles
that complete the description of the pressure field and satisfy
the wave equation, Eq. (5).

One interesting set of purely nonconservative solutions has
the sinusoidal amplitude profile

u(r) = p0 cos(q(x − y)), (11a)

with spatial frequency

q = 1

2

√
1 + α′

a

β ′
a

k. (11b)

FIG. 2. Intensity of the “picket fence” field in the (x′, y′) plane.
For particularly selected parameters, the conservative force van-
ishes everywhere in this field, and the remaining force (indicated
by arrows) is purely nonconservative. With the choice of material
properties plotted (C2/C1 = 1/3), the direction of the force is also
spatially modulated. The sign of the force in the ŷ′ direction is also
its sign in the ẑ direction.

The associated phase profile,

ϕ(r) = kz cos γ + (x + y)

√
1

2
k2 sin2 γ − q2, (11c)

identifies this field as the superposition of two plane waves,
each oriented at angle γ relative to ẑ and at angle

θ = cos−1

(
−α′

a

β ′
a

)
(11d)

relative to one another in the (x, y) plane. Under these con-
ditions, the in-plane component of the radiation pressure
exactly cancels the conservative intensity-gradient force. The
remaining scattering force is sinusoidally modulated in the
transverse plane. The result is a “picket fence” of parallel
force lines, which is illustrated in Fig. 2 using the rotated
coordinates

x′ = x − y and (12a)

y′ = x + y (12b)

for clarity. In these coordinates, the net force,

F(r′) = 1
4 kp2

0 f (x′) F̂ , (13a)

is directed along

F̂ =
√

1

2
sin2 γ − q2

k2
ŷ′ + cos γ ẑ, (13b)

and has an amplitude that varies with the transverse coordinate
as

f (x′) = C1 + 2(C2 − C1) cos2(qx′). (13c)

The scale and depth of the force landscape’s modulation de-
pend on the object’s properties through C1 = β ′′

a (1 + α′
a/β

′
a)

and C2 = α′′
a + β ′′

a .
Picket fence modes for a given type of object are distin-

guished by the angle of inclination, γ . The range of possible
angles is limited by Eq. (11c) to

sin2 γ >
2q2

k2
. (14)
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With this constraint, picket fences can be created for objects
that satisfy

−1 <
α′

a

β ′
a

< sin2 γ . (15)

Under some conditions, including those depicted in Fig. 2, the
direction of the force can alternate within the fringe pattern. In
terms of the standard coupling coefficients, alternating picket
fences can be projected for objects satisfying

−3

4
<

f0

f1
< −1

2
. (16)

Droplets of xylene hexafluoride (ρp = 1370 kg m−1, cp =
880 m s−1) dispersed in butanol (ρm = 810 kg m−3, cm =
1240 m s−1), for example, have f0/ f1 = −0.55 and thus are
predicted to experience an alternating picket fence force field.
Although alternating picket fences are only possible for a
limited domain of material properties, picket fences in general
could have practical applications for sorting objects by density
or compressibility.

B. Conservative forces in standing waves

The acoustokinetic framework also is useful for analyzing
the force fields created by specified sound waves. Standing
waves, for example, can be decomposed into superpositions of
counterpropagating plane waves. The phase-dependent terms
in Fα (r) and Fβ (r) vanish in such superpositions, leaving a
manifestly conservative force landscape,

Fstanding(r) = 1
4∇[α′

au2 + β ′
ak−2(∇u)2]. (17)

Particles satisfying

α′
a − β ′

a > 0 (18)

are drawn toward antinodes of the pressure field, as illustrated
in Fig. 3. This condition is satisfied by compressible, low-
density particles such as bubbles in water. Particles with
complementary properties are drawn toward nodes.

C. Nonconservative forces in pseudostanding waves

Not all zero-momentum waves are standing waves. Some
have nontrivial phase profiles and so can exert nonconserva-
tive forces. The archetype for such pseudostanding waves is
a superposition of three plane waves with equal amplitude,
p0/3, and wave vectors

kn = −k

[
cos

(
n

2π

3

)
x̂ + sin

(
n

2π

3

)
ŷ

]
(19)

that satisfy
∑3

n=1 kn = 0 [42]. The pressure intensity for such
a three-wave superposition is plotted in Fig. 4(a) and displays
a sixfold rotational symmetry similar to that of the corre-
sponding sixfold standing wave in Fig. 3(b). The triangular
lattice of antinodes in Fig. 4(a), however, is meshed with a
dual hexagonal lattice of nodes, as indicated by dotted circles
in Fig. 4(a). Because nonconservative forces tend to be weaker
than conservative forces by a factor of (kap)3, we focus our
attention on regions where the sound field forms stable traps,
and expand about these points in polar coordinates, r = (r, θ )
for small displacements, kr < 1.

FIG. 3. Maps of the pressure intensity of (a) a one-dimensional
standing wave and (b) a sixfold standing wave. Particles are trapped
either at intensity maxima or minima, depending on their composi-
tion relative to the medium.

For the threefold pseudostanding wave, the conservative
contributions from Eqs. (9a) and (9b) simplify to

Fc(r) = 1
8 (2α′

a − β ′
a)∇u2. (20)

Particles satisfying

2α′
a − β ′

a > 0 (21)

therefore are drawn to pressure antinodes while complemen-
tary particles seek out nodes.

A node-seeking particle experiences amplitude and phase
profiles of the form

unode(r) ≈ 1

2
p0 kr and (22a)

ϕnode(r) ≈ ±θ − π

2
. (22b)

The conservative part of the associated force field exerts a
Hookean restoring force,

Fc
node(r) ≈ − 1

16 kp2
0(β ′

a − 2α′
a) kr r̂ (22c)

that keeps the particle localized near the node. The force field
also includes a nonconservative component,

Fnc
node(r) ≈ ± 1

8 kp2
0(α′′

a + β ′′
a ) kr θ̂ , (22d)

that is directed by the azimuthal phase gradient and causes the
displaced particle to orbit its node. The pseudostanding wave
therefore transfers orbital angular momentum to particles
moving near its nodes, with each node acting as a unit-charge
acoustic vortex [1]. The sign of the orbital angular momentum
alternates from site to site on the honeycomb lattice of nodes.
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FIG. 4. (a) Intensity and (b) phase maps of the threefold zero-
momentum wave. Dashed white circles indicate the intensity nodes
and phase singularities in the field and the dashed white square
indicates the region plotted in panel (b). Streamlines show the
direction of the phase gradient, along which nonconservative forces
act.

The array of alternating acoustic vortices in a pseudostanding
wave therefore carries no net angular momentum [43].

Nodes repel particles satisfying 2α′
a > β ′

a, which instead
seek out the triangular lattice of antinodes. Near an antinode,
the sound field’s amplitude and phase profiles are

uantinode(r) ≈ p0
[
1 − 1

4 (kr)2
]

and (23a)

ϕantinode(r) ≈ 1
24 (kr)3 cos 3θ. (23b)

For small displacements, the conservative terms from Fα (r)
and Fβ (r) exert a Hookean restoring force on an antinode-
seeking particle:

Fc
antinode(r) = − 1

8 kp2
0(2α′

a − β ′
a) kr r̂. (23c)

The nonconservative terms create a sextupole flow that tends
to drive the particle from one antinode to another:

Fnc
antinode(r) = F0 k2r2(cos 3θ r̂ − sin 3θ θ̂ ), (23d)

where F0 = kp2
0 (2α′′

a − β ′′
a )/32.

The conservative part of the pseudostanding wave’s force
field vanishes for materials satisfying 2α′

a = β ′
a, leaving a

purely nonconservative force field. This contrasts with the
force exerted by a standing wave, which is always conser-
vative. Realizing this condition in practice, however, would
require a precise balance of material properties.

More generally, systems satisfying 2α′′
a − β ′′

a > 2α′
a − β ′

a
will experience nonconservative forces that rival conservative
trapping forces. In the particular case of an air bubble of size
kap = 0.3 in water, for example, the nonconservative force

exceeds the conservative force for displacements greater than
kr ≈ 0.025 from the pressure antinodes. A pseudostanding
wave at amplitude p0 = 1 kPa and frequency f = ω/(2π ) =
2 MHz yields a nonconservative force on the order of 1 nN for
a displacement of kr = 0.1 and a conservative force of just
0.1 nN. The overall force field, being mostly nonconservative,
resembles the streamlines in Fig. 4.

These observations illustrate that nonconservative forces
can emerge along directions where the sound field carries no
net momentum. More generally, it shows that radiation pres-
sure can be directed independently of the direction of wave
propagation. This independence can be used to craft tractor
beams from propagation-invariant Bessel beams [18,30,44].

D. Bessel beams and tractor beams

Both the standing wave and the pseudostanding wave
require boundary conditions that completely enclose their tar-
gets. Long-range manipulation without physical confinement
is best achieved with propagation-invariant traveling waves.
The natural basis for such applications is the family of Bessel
beams [44–46], which are nondiffracting solutions to Eq. (5)
in cylindrical coordinates, r = (r, θ, z). The amplitude and
phase profiles for a Bessel beam propagating along ẑ are

uγ ,n(r) = p0 Jn(kr sin γ ) and (24)

ϕγ ,n(r) = kz cos γ + nθ, (25)

respectively, where Jn(·) is a Bessel function of the first kind
of order n. Bessel beams are distinguished by the convergence
angle γ that ranges from γ = 0 for conventional plane waves
to γ = π/2 for circular standing waves and the integer n that
imposes a helical pitch on the beam’s wavefronts.

The conservative part of a Bessel beam’s force field is
directed radially. Beams with n = 0 have maximum intensity
along the axis, r = 0. Those with n > 0 have zero intensity on
the axis. The radial component of the acoustic force is linear
in kr for |n| � 2 and scales as (kr)3, or higher, for |n| > 2.
Whether the force attracts the particle to the axis or repels
it depends on the particle’s properties. For simplicity, we
restrict our analysis to |n| � 2, in which case the conditions
for particles to be trapped on axis are

4α′
a + β ′

a (1 + 3 cos 2γ ) > 0, n = 0, (26a)

α′
a + β ′

a cos 2γ < 0, n = ±1, (26b)

β ′
a < 0, n = ±2. (26c)

As noted recently [47], the condition for stable trapping by
an n = 0 Bessel beam differs qualitatively from the analo-
gous condition in Eq. (18) for trapping at an antinode of a
standing wave. For example, dense objects with large values
of β ′

a are repelled by the antinodes of standing waves and
pseudostanding waves, but tend to be trapped by the central
antinode of a Bessel beam with γ < π/4. Similar reversals
arise for trapping at the central node of Bessel beams with
|n| > 0.

Having established the condition for stable transverse trap-
ping, we next analyze the axial force on a particle localized
at r = 0. Any beam satisfying F(r)|r=0 · ẑ < 0 can be said to
act as a tractor beam. It should be noted that optical Bessel
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beams do not act as tractor beams for small objects because
the dipole-order photokinetic force is always repulsive [18].

Axial forces in propagation-invariant Bessel beams are
inherently nonconservative. The relevant terms in Eq. (9) yield

F(r)|n=0
r=0

= 1

2

[
(α′′

a + β ′′
a ) u2 + β ′′

a

2k2
∇2u2

]
∇ϕ (27a)

= 1

2
p2

0k (α′′
a + β ′′

a cos2 γ ) cos γ ẑ. (27b)

Unlike optical Bessel beams, therefore, acoustic Bessel beams
can act as tractor beams for particles satisfying both the
trapping condition from Eq. (26a) and also

α′′
a + β ′′

a cos2 γ < 0. (28)

Expressed in terms of material properties, these conditions
simplify to

f0 <
3

8
(1 + 3 cos 2γ ) f1 and (29a)

(
f0

f1

)2

+ f0

f1
+ 3

4
cos2 γ < 0. (29b)

Figure 5 shows the domain of beam shapes and particle com-
positions for which the n = 0 Bessel beam acts as a tractor
beam. These include the optimal condition f0/ f1 = −1/2 that
was identified in the original discussion of acoustic tractor
beams [44].

Density-matched objects ( f1 = 0) can only be trapped
if they are compressible enough that f0 < 0. This means,
however, that F · ẑ > 0, from which we conclude that Bessel
beams are not tractor beams for such objects. This is reflected
in Fig. 5(b), which presents the axial pulling force as a func-
tion of the relative sound speed, cm/cp, and density, ρm/ρp

for a strongly converging Bessel beam with γ = 70◦. For this
convergence angle, the previously discussed system of xylene
hexafluoride droplets dispersed in butanol will experience a
tractor force in the Rayleigh regime.

The analogous treatment for n = 1 yields

F(r)|n=1
r=0

= β ′′
a

4k2
∇2u2 ∇ϕ (30a)

= 1

4
p2

0k β ′′
a cos γ sin2 γ ẑ. (30b)

Because β ′′
a > 0, such beams do act as tractor beams for any

choice of materials, at least not for objects trapped on the axis.
They instead drive trapped objects downstream.

The n = 2 beam can trap small objects on the axis, but
exerts no axial force at all,

F(r)|n=2
r=0

= 0. (31)

Such beams might serve as useful conduits for Rayleigh
particles that are moved back and forth along the axis by other
forces.

IV. DISCUSSION

The theory of acoustokinetic forces presented here ex-
presses the influence of a sound wave on a small object in

FIG. 5. Relative strength of the axial force, Fz ≡ F(r)|r=0 · ẑ,
acting on an object that is trapped along the axis of an n = 0 Bessel
beam. A value of 0 indicates that the object is not trapped on axis.
(a) Dense objects with f1 > 0 are pulled upstream by the Bessel
beam under conditions enclosed by the white curve and are repelled
under complementary conditions enclosed by the red curve. These
conditions are reversed for buoyant objects with f1 < 0. Density-
matched objects are always repelled. The Bessel beam acts like a
tractor beam for all other objects along the interface between the
red- and white-bordered regions. (b) The axial pulling force as a
function of material parameters for the specific case γ = 70◦. The
black point indicates parameters for droplets of the industrial solvent
xylene hexafluoride in butanol. Inset: the region near this system.

terms of the amplitude and phase profiles of the pressure field.
The resulting analytical framework, which is summarized
in Eq. (9), offers a complementary perspective on acoustic
forces to the standard development, which explicitly refers to
the velocity field. Acoustokinetic expressions are particularly
useful for designing acoustic force fields because they inher-
ently account for coupling between the pressure and velocity
fields and specify amplitude and phase profiles that can be
controlled with transmissive, reflective, or emissive elements.

The acoustokinetic approach yields expressions that
closely resemble results for optical forces in the Rayleigh
limit. Exploring the differences and similarities between
acoustokinetic and photokinetic forces offers insights into
how sound fields couple to material properties to generate
useful and interesting force landscapes. The most important
difference is that the particle’s polarizability includes contri-
butions from the incident wave’s monopole component. This
means that the force arising from the sound field’s dipole
component includes terms at the same order of magnitude
as leading quadrupole contributions. Such mixing does not
arise in optical forces. It vanishes for objects that are density
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matched with the medium, yielding expressions for acoustic
forces that are exactly analogous to their optical counterparts.

The acoustokinetic framework naturally accounts for the
conservative nature of the force field exerted by standing
waves and differentiates it from the influence of pseudo-
standing waves that also carry no net momentum yet still
exert nonconservative forces. When applied to acoustic Bessel
beams, the acoustokinetic framework provides clear guidance
on the limits for axial trapping and the conditions under which
a zeroth-order Bessel beam can act as a tractor beam. This
result contrasts with the equivalent analysis of optical Bessel
beams, which do not act as tractor beams in the Rayleigh
regime.

These examples illustrate the value of the acoustokinetic
framework for analyzing acoustic force fields. More generally,
the expressions from Eq. (9) can be solved either numerically,
or in some cases analytically, for the phase and amplitude
profiles that correspond to a specified force field acting on
a particle of a given size, compressibility, and density. As
in the optical case, the framework can be extended beyond
the dipole approximation. For objects substantially smaller
than the wavelength of sound, however, the dipole-order
terms are simple enough to yield analytical expressions. This
framework also can be extended to handle interactions among
insonated objects, an effect usually referred to as secondary
Bjerknes forces.
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APPENDIX: DERIVATION OF EQ. (9)

The central idea of the acoustokinetic framework is to
factor the incident pressure field p(r) into its real-valued
amplitude u(r) and phase ϕ(r):

p(r) = u(r) eiϕ(r). (A1)

Expressed in these terms, the Helmholtz wave equation,
Eq. (10), separates into two coupled differential equations that
constrain the amplitude and phase profiles,

∇2u + k2u − u(∇ϕ)2 = 0, (A2a)

u∇2ϕ + 2∇u · ∇ϕ = 0. (A2b)

These constraints transform the expression for the time-
averaged acoustic force in Eq. (4) into the acoustokinetic
expressions in Eq. (9).

The right-hand side of Eq. (4) is readily expanded into the
sum of four terms,

F(r) = 1
2 [α′

a Re{p∇p∗} − α′′
a Im{p∇p∗} (A3a)

+ k−2β ′
a Re{(∇p · ∇)∇p∗} (A3b)

−k−2β ′′
a Im{(∇p · ∇)∇p∗}], (A3c)

each of will be expressed in terms of u(r) and ϕ(r). Substitut-
ing Eq. (A1) into Eq. (A3a) and noting that

p∇p∗ = 1
2∇u2 − iu2∇ϕ (A4)

leads directly to Eq. (9a). The first term on the right-hand
side of Eq. (A4) is the gradient of an analytic function and
therefore corresponds to a manifestly conservative force. We
demonstrate that the second term corresponds to a purely
nonconservative force by showing that it is divergence free:

∇ · (u2∇ϕ) = ∇(u2) · ∇ϕ + u2∇2ϕ

= 2u∇u · ∇ϕ + u2∇2ϕ

= 0, (A5)

with the last line following from Eq. (A2b).
The expressions in Eqs. (A3b) and (A3c) depend on the

real and imaginary parts of (∇p · ∇)∇p∗. The real part is
conveniently transformed using the vector identity,

∇(A · B) = (A · ∇)B + (B · ∇)A

+ A × (∇ × B) + B × (∇ × A). (A6)

Setting A = ∇p and B = ∇p∗ causes the curls on the right-
hand side of Eq. (A6) to vanish identically. The two remaining
terms yield

Re{(∇p · ∇)∇p∗} = 1
2∇(∇p · ∇p∗) (A7)

= 1
2∇[(∇u)2 + u2(∇ϕ)2]. (A8)

Combining this with Eq. (A2a) and the identity ∇2(u2) =
2u∇2u + 2(∇u)2 yields Eq. (9b).

Equation (9c) similarly follows from the identity

∇ × (A × B) = A(∇ · B) − B(∇ · A)

+ (B · ∇)A − (A · ∇)B. (A9)

Setting A = ∇p and B = ∇p∗, we obtain

Im{(∇p · ∇)∇p∗} = −Im{∇2 p∇p∗} + i

2
∇ × (∇p × ∇p∗).

(A10)

We use the Helmholtz equation to eliminate the Laplacian
operator on the right-hand side so that

Im{∇2 p∇p∗} = k2Im{p∇p∗} (A11)

= −k2u2∇ϕ, (A12)
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with Eq. (A12) following from Eq. (A4). As before, this
term is divergence free and therefore corresponds to a purely
nonconservative force.

The second term on the right-hand side of Eq. (A10) is
the curl of a function and thus also corresponds to a noncon-
servative force. It may be expressed in terms of the wave’s
amplitude and phase profiles as

i

2
∇ × (∇p × ∇p∗)

= ∇ × [u(∇u × ∇ϕ)]

= u∇ × (∇u × ∇ϕ) + ∇u × (∇u × ∇ϕ). (A13)

The first term on the right-hand side of Eq. (A13) can be
rewritten as

u∇ × (∇u × ∇ϕ) = u(∇2ϕ + ∇ϕ · ∇)∇u

− u(∇2u + ∇u · ∇)∇ϕ, (A14)

while the second can be expressed as

∇u × (∇u × ∇ϕ) = (∇u · ∇ϕ)∇u − (∇u · ∇u)∇ϕ.

(A15)

Using Eq. (A2b) to eliminate ∇u · ∇ϕ and combining all
remaining terms yields Eq. (9c).
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