
PHYSICAL REVIEW RESEARCH 2, 013157 (2020)
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We introduce a procedure based on quantum expectation values of measurement observables to characterize
quantum coherence. Our measure allows one to quantify coherence without having to perform tomography of the
quantum state and can be directly calculated from measurement expectation values. This definition of coherence
allows the decomposition into contributions corresponding to the nonclassical correlations between the subsys-
tems and localized on each subsystem. The method can also be applied to cases where the full set of measurement
operators is unavailable. An estimator using the truncated measurement operators can be used to obtain lower
bound to the genuine value of coherence. We illustrate the method for several bipartite systems and show the
singular behavior of the coherence measure in a spin-1 chain, characteristic of a quantum phase transition.
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I. INTRODUCTION

Coherence is one of the fundamental concepts of quantum
mechanics and has been studied extensively in the context of
phase space distributions [1] and correlation functions [2,3].
Despite its long history, it was not quantified in a formal
sense until recently using the tools of quantum information
theory [4]. These ideas have led to many new developments
regarding quantum measurement [5–8], the distribution of
coherence in multipartite systems [9], and its application for
characterizing states [10–19]. In particular, there has been a
lot of attention to the development of the resource theory of
coherence [20–25].

One of the promising applications of the theory of quan-
tum coherence is in characterizing the nature of complex
many-body systems. While many variations exist for suitable
measures to quantify coherence, such as the l1-norm, rela-
tive entropy [4], and the Jensen-Shannon divergence [9], all
methods require complete knowledge of the density matrix of
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the system. While this is not difficult for systems involving
a few qubits, the computational cost of calculating coherence
in systems with large Hilbert spaces becomes prohibitive to
make it a useful tool for characterizing the coherence. The
situation is made worse when it is desirable to find the distri-
bution of coherence, finding the contributions that lie on local
subsystems and collectively between them. Evaluating these
contributions can involve evaluating the minimum of complex
optimization problems [9], which make them difficult to use
in a practical sense.

In this paper, we introduce a method of quantifying the
quantum coherence and its distribution in a bipartite system
using expectation values of physical observables. The primary
advantage of this approach is that it does not explicitly require
tomographic reconstruction of a density matrix, which may
be difficult or computationally expensive. The expectation
values of a set of observables can be directly used to calculate
the coherence. We also show that it is possible to estimate
the coherence in high-dimensional systems, by considering a
truncated set of measurement observables. In Refs. [25,26]
a resource theory of coherence based on quantum measure-
ments was defined, where the set of incoherent states are
defined by a coherence-destroying measurement. The aims
of these works are different to the results of this paper in
the sense that one experimentally still requires tomographic
reconstruction of the state to evaluate the coherence in these
past works.
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Our approach in characterizing coherence with observ-
ables extends the toolbox for characterizing the features of
a quantum state. Similar approaches have been made in the
past regarding various aspects of quantum information theory.
In bipartite systems, by choosing the observables to be the
form of a correlation function, it allows one to find the
contribution of the coherence due to nonclassical correlations
and the amount localized on each subsystem [9,14,27–33].
The contribution due to correlations is found to be of a form
that is the difference of two covariance matrices [34–41].
The same set of measurements that are used to construct
the coherence measure can also be used to construct the
covariance matrix, which has been used as an effective way
of detecting entanglement [34–43].

II. OBSERVABLE BASED MEASURE OF COHERENCE

Consider an arbitrary quantum state ρ in a D-dimensional
Hilbert space with an orthonormal set of basis vectors {|k〉 :
k ∈ [1, D]}. We start by writing the density matrix in terms of
expectation values of a set of orthonormal observables.

�kk′ (ρ) = eiπ/4〈Mkk′ 〉ρ + e−iπ/4〈Mk′k〉ρ√
2eiπsgn(k′−k)/4

, (1)

where Mkk′ are a set of observables which form an or-
thonormal operator basis Tr(M j j′Mkk′ ) = δ j j′δkk′ . A stan-
dard choice of observable operators is [41]

Mkk′ =
⎧⎨
⎩

|k〉〈k| k′ = k
(|k〉〈k′| + |k′〉〈k|)/√2 k′ > k
(i|k〉〈k′| − i|k′〉〈k|)/√2 k′ < k

. (2)

One can verify that the observable matrix coincides with
the original density matrix �(ρ) = ρ for the case that the
measurement operators are taken to be (2).

To measure the quantum coherence in the system, we must
compare the state ρ to its decohered version ρd , which is
obtained by setting of all off-diagonal terms to zero in a
chosen basis. Using the observable matrix, we can construct a
coherence measure according to

C(ρ) = ‖�(ρ) − �(ρd )‖1, (3)

where ‖ · ‖1 is the Schatten 1-norm (or trace norm). We
opt for the Schatten 1-norm since it is an invariant quantity
under unitary transformations of the state C(ρ) = C(U †ρU )
and orthogonal transformations over the standard operators
Mkk′ (see Appendix A). We note this is not the same as
recent discussions regarding basis independent coherence
[31,44,45]. Our measure is explicitly basis dependent, defined
by the decohered matrix ρd . The invariance of the Schatten
1-norm will allow us to use an arbitrary set of measurement
observables.

Showing that (3) is a valid coherence measure can be
straightforwardly proved using the alternative framework of
Ref. [46]. The criteria proposed by Yu, Tong, and co-workers
state that a valid coherence measure must satisfy: (C1′)
C(ρ) � 0 and C(ρ) = 0 iff ρ ∈ I, where I is the set of
all incoherent states; (C2′) C(ρ) � C(�(ρ)), where � is
an incoherent operation; (C3′) C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) +
p2C(ρ2) where ρ1 and ρ2 are in independent subspaces and
p1 + p2 = 1 are probabilities. These have been shown to be

equivalent to the conditions in the original work of Ref. [4].
We show in Appendix B that all the conditions are satisfied for
our coherence measure. In short, (C1′) is satisfied due to the
uniqueness of the observables �(ρ) for a given quantum state,
(C2′) follows from the contractivity of the Schatten 1-norm
[47], (C3′) follows from the fact that the Schatten 1-norm
of a block diagonal matrix is simply the sum of the norms
of the block diagonals. As a further check, we have verified
that the original coherence measure conditions of Ref. [4] are
satisfied.

The form of the coherence (3) is still not in a convenient
form since it uses a specific choice of measurement operators
Mkk′ , which may not coincide with what is available (from
an experiment, for example). Suppose the set of N available
observables (Hermitian operators) are O = {Sl : l ∈ [1, N]}
and are orthonormal Tr(SlSl ′ ) = δll ′ . We first assume that the
number of operators is complete, such that N = D2. Using the
fact that one can expand the standard operators Mkk′ in terms
of the operators Sl according to Mkk′ = ∑

l V (l )
kk′ Sl , where

V (l )
kk′ = Tr(SlMkk′ ), we can rewrite the observable matrix

elements as

�kk′ (ρ) =
∑
l∈O

(
eiπ/4V (l )

kk′ + e−iπ/4V (l )
k′k√

2eiπsgn(k′−k)/4

)
〈Sl〉ρ. (4)

Substituting the definitions of V (l )
kk′ , we arrive at the expression

C(ρ) =
∥∥∥∥∥
∑
l∈O

Sl
(〈Sl〉ρ − 〈Sl〉ρd

)∥∥∥∥∥
1

. (5)

This is the main expression for the coherence that we will use.
Thus the matrix to be evaluated is a linear combination of the
measurement operators themselves, weighted by the expec-
tation values of the state to be measured and its decohered
counterpart. All these are directly accessible from experiment,
hence (5) constitutes a convenient way of calculating the
coherence.

III. DECOMPOSING COHERENCE

Now consider that the total system can be subdivided into
two parts, which we label by A and B, with dimension DA

and DB respectively. As a particular choice of measurement
observables, let us take {Sll ′ = Al ⊗ Bl ′ : l ∈ [1, NA], l ′ ∈
[1, NB]}, where Al ,Bl ′ are operators on A, B respectively. The
total number of operators is N = NANB, where N = D2

AD2
B for

a complete operator basis. The total coherence in this case is
calculated in the same way as (3) with (5) summing over all
indices l, l ′.

Now consider the product state

πρ ≡ ρA ⊗ ρB, (6)

which is obtained by finding the tensor product of the reduced
density matrices. Since this state has no correlations at all
between A and B, any coherence that is present must be
entirely due to local contributions. We thus define the local
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coherence [31] to be

CL(ρ) ≡ C(πρ ) = ∥∥�(πρ ) − �
(
πd

ρ

)∥∥
1

=
∥∥∥∥∥
∑

ll ′
Sll ′

(〈Sll ′ 〉πρ
− 〈Sll ′ 〉πd

ρ

)∥∥∥∥∥
1

(7)

where πd
ρ = ρd

A ⊗ ρd
B = πρd and ρd

A,B are the decohered re-
duced density matrices.

We would now like to remove this contribution from the
total coherence, hence we propose the quantity

δ(ρ) = ∥∥�(ρ) − �(ρd ) − �(πρ ) + �
(
πd

ρ

)∥∥
1. (8)

This quantity can be written in an illuminating way by defin-
ing the covariance matrix [34–43]

γll ′ (ρ) = 〈Al ⊗ Bl ′ 〉ρ − 〈Al〉ρ〈Bl ′ 〉ρ. (9)

Equation (8) can then be written

δ(ρ) =
∥∥∥∥∥
∑

ll ′
Sll ′ (γll ′ (ρ) − γll ′ (ρ

d ))

∥∥∥∥∥
1

, (10)

which is the difference between the original and decohered
covariance matrices. A covariance matrix characterizes the
correlations between the two subsystems, including both
quantum and classical contributions. The decohered state ρd

contains no off-diagonal terms, hence is a completely clas-
sical state in terms of the correlations with respect to the
basis choice of the decohered one. This means that γ (ρd )
only contains classical correlations, while γ (ρ) contains both
quantum and classical parts. We can therefore interpret (10)
as a quantity which is related to the quantum correlations
between the subsystems A and B, and hence, we name δ(ρ)
the “global correlations.” It should be emphasized that the
global correlations here are basis-dependent in the sense
that the classical correlations in a particular basis are being
subtracted. Since the basis choice is fixed and not optimized
such as in quantum discord, we do not expect to get equivalent
results using (10) alone [48].

It is tempting to define (10) as a type of coherence as
it has been done in numerous past works [9–15]. However,
δ(ρ) does not properly satisfy the coherence properties (see
Appendix B), hence it is not strictly appropriate to call it a
type of coherence. The local coherence (7) on the other hand
has the same form as (3), hence is a coherence measure. Using
the triangle inequality of any matrix norm, the three quantities
can be related as

C(ρ) � CL(ρ) + δ(ρ). (11)

This relation allows us to decompose the coherence into
its local contribution and parts originating from the global
correlations between the subsystems.

In certain limiting cases the decomposition (11) is guaran-
teed to give an equality relation. For example, for a product
state possessing no correlations ρ = ρA ⊗ ρB, one can easily
verify that δ(ρ) = 0 and C(ρ) = CL(ρ). In the opposite limit
of a maximally entangled bipartite state ρ = |�E 〉〈�E | with
|�E 〉 = ∑

m |m〉|m〉/√DA, where DA = DB, the reduced den-
sity matrices are ρA,B = I/DA, and are diagonal. Hence, the
local coherence CL(ρ) = 0 and total coherence C(ρ) = δ(ρ).

IV. INCOMPLETE SETS OF OPERATORS

Up to the this point we have assumed that the set of oper-
ators {Sl} forms a full operator basis. An important question
is what the effect of relaxing this requirement is, such that the
number of observables does not have the complete informa-
tion contained in the density matrix N < D2. This is relevant
in the context of high dimensional systems, where it is difficult
to perform full tomography of the quantum system. When
such a truncation is performed, it is natural to expect that not
all the coherence in the system is captured by the coherence
measure, since certain measurement operators that character-
ize the coherence may be missing. Nevertheless, we demand
that the truncation should be performed in a controlled way,
such that the estimated value of the coherence does not
have a spurious dependence on the truncation. Specifically
we demand that the truncated coherence satisfies Ctr(ρ) �
C(ρ), such that the estimated value never overestimates the
genuine value of coherence. Unfortunately, simply truncating
the number of operators in (5) violates this inequality due to
the properties of Schatten 1-norm. We note that instances of
the violation are rather rare and the magnitude of the violation
is small. Hence if one is satisfied with an approximate lower
bound, the Schatten 1-norm may be suitable in some cases.
However, using the Frobenius norm for the truncated measure
satisfies the inequality, hence we define

Ctr(ρ) =
∥∥∥∥∥∥
∑
l∈Otr

Sl
(〈Sl〉ρ − 〈Sl〉ρd

)∥∥∥∥∥∥
2

, (12)

where Otr is the set of truncated operators. This can be shown
using the fact that ‖ · ‖2 � ‖ · ‖1 for any matrix, and the
orthogonality of matrix in (12) with the discarded terms (see
Appendix C). The same argument can be repeated for CL and
δ, where (7) and (10) run over the truncated set of operators
and the Frobenius norm is used instead. Defined in this way
we have truncated estimators which satisfy Ctr

L (ρ) � CL(ρ)
and δtr(ρ) � δ(ρ).

V. EXAMPLES

A. Qubit and qutrit bipartite systems

We now calculate several examples to show the theory in
action. We consider a density matrix of the form

ρ = (1 − μ)|�S〉〈�S| + μ|�E 〉〈�E |, (13)

where |�S〉 and |�E 〉 are separable and entangled states. The
mixing parameter μ ∈ [0, 1] changes the character of the state
from a separable state to an entangled state. Figure 1(a) shows
the case for two qubits, with |�S〉 = |+〉|+〉, and |�E 〉 =
(|0〉|0〉 + |1〉|1〉)/

√
2. As expected the local coherence CL is

a maximum for μ = 0, and the global correlation contribution
δ is a maximum for μ = 1. The total coherence is found to
have a larger value for the |+〉|+〉 state, rather than the Bell
state. This is in agreement to expectation since in the {|0〉, |1〉}
basis, the |+〉|+〉 state has all off-diagonal elements occupied,
in contrast to the Bell state which has only specific coherent
elements.

We now compare the effects of truncating the opera-
tor basis for the measurements. In this case we consider
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FIG. 1. The coherence C of various bipartite quantum states
including their contributions from the local coherence CL and
global correlation δ. The states and measurement operators are:
(a) |�S〉 = |+〉|+〉 and |�E 〉 = (|0〉|0〉 + |1〉|1〉)/

√
2 in (13)

with Pauli matrices Al ,Bl ′ ∈ {I, σ x, σ y, σ z}/√2. (b) |�S〉 = (|0〉 +
|1〉 + |2〉)(|0〉 + |1〉 + |2〉)/3, |�E 〉 = (|0〉|0〉 + |1〉|1〉 + |2〉|2〉)/

√
3

in (13). Coherence measured with Gell-Mann matrices
Al ,Bl ′ ∈ GSU(3) = {√2/3I, λ(1), . . . , λ(8)}/√2 (solid lines),
truncated spin basis Al ,Bl ′ ∈ Ln=2 (dashed lines) where
Ln = {√n(2 + n)/3I, Sx, Sy, Sz}/√n(1 + n)(2 + n)/3 are the
orthonormal spin-n/2 operator set. (c) Total coherence of spin
squeezed state evolved under Markovian dephasing with rate � = 1
for n qubit spin ensembles. Coherence measured with Gell-Mann
matrices Al ,Bl ′ ∈ GSU(n) (solid lines) and truncated operators
Al ,Bl ′ ∈ Ln (dashed lines). (d) Total coherence of the ground state
of the generalized AKLT model between two sites separated by r
sites. Coherence measured using Al ,Bl ′ ∈ GSU(3). For the truncated
operators Al ,Bl ′ ∈ Ln=2, using estimators coherences are lower for
g � 0 but zero for g � 0.

two qutrits with |�S〉 = (|0〉 + |1〉 + |2〉)(|0〉 + |1〉 + |2〉)/3,
|�E 〉 = (|0〉|0〉 + |1〉|1〉 + |2〉|2〉)/

√
3. We compare two ap-

proaches of keeping the full SU(3) Gell-Mann basis including
the identity to give N = 81 and a truncated set where only
three SU(2) spin-1 matrices and identity are kept to give
N = 16. The two cases are shown in Fig. 1(b). We see that the
two cases give qualitatively the same behavior, with again the
local coherence obeying a trade-off behavior with the global
correlation. From the choice of the measurement operators
we can see that the overall qualitative nature of the quantum
coherence does not change in the system, and the truncated
expressions for the coherence are lower than the genuine val-
ues. The quantitative difference arises due to the fact that the
smaller set of operators does not capture the entire coherence
in system, and the Frobenius norm is used. It is natural to
expect that a smaller set of operators does not completely
capture the coherence in the system, but selectively quantifies
various types of coherence.

B. Spin squeezed state

We also show some examples of higher dimensional sys-
tems which are promising from a practical perspective where
complete tomography is difficult. We consider a two-axis spin
squeezed state between two spin ensembles, generated by the

Hamiltonian

H = S−
A S−

B + S+
A S+

B , (14)

where S±
A,B = ∑n

j=1 σ±
j are total spin operators of an en-

semble of n qubits, and A, B label the two ensembles. This
Hamiltonian is applied to the state |Sz = n〉|Sz = n〉 in the
presence of Markovian Sz dephasing with rate � evolving with
a Lindbladian master equation during the evolution of (14)
producing a mixed state (see Appendix D). In the limit of large
n, the Hamiltonian (14) is equivalent to a two-mode squeezing
interaction state under the Holstein-Primakoff transformation
[36]. Figure 1(c) shows the total coherence for the cases of
n = 4, 8 with and without a full operator basis. In this case
the local coherence CL = 0 for all time and δ = C since
the reduced density matrix is always completely diagonal.
The truncated operator basis is still effective at capturing the
coherence in the system which is lower than the coherence
using the full operator basis as expected. Using the truncated
operator basis gives a great reduction in computational over-
head, and we plot the n = 8 case (along with n = 4) which
shows the expected reduction in timescale for reaching the
maximal coherence, scaling with ∼1/

√
n.

C. Generalized AKLT model

We next consider the generalized Affleck-Kennedy-Lieb-
Tasaki (AKLT) model with periodic boundary conditions
[49–51], with the Hamiltonian

H =
M∑

j=1

(1 + 2g2)�S j · �S j+1 + (�S j · �S j+1)2 + 2(1 − g)

× [
2(1 + g)

(
Sz

j

)2 − (1 − g)
(
Sz

jS
z
j+1

)2

− g
{�S j · �S j+1, Sz

jS
z
j+1

}]
,

where the �S j are spin-1 operators (n = 2) on site j. This
Hamiltonian is the AKLT model for g = 1, and a critical point
is present at g = 0 (see Appendix E). This model has a ground
state that takes the form of a matrix product state, and all spin
correlation can be written down in the thermodynamic limit
exactly [51]. Using the reduced density matrix between site
1 and site r, we calculate the quantum coherence using both
the full SU(3) Gell-Mann basis forming a 9×9 observable
matrix, and the reduced SU(2) spin-1 operators forming a 4×4
observable matrix [see Fig. 1(d)]. We find again that the local
coherence is zero and δ = C for all g. At g = 0, both the full
and truncated basis set exhibits nonanalytic behavior which
signals the presence of a quantum phase transition, for any
value of r. The truncated basis, using Schatten 1-norm, has
identical results to the full basis for g � 0 whereas Frobenius
norm gives lower amount of coherence, but is zero for g � 0
using both norms. The reason for this can be understood
as from the nature of the transition in this model where
XY ferromagnetism exists for g > 0 and all XY-like spin
correlators are zero for g � 0. Since the Sz-Sz correlations do
not contribute to the coherence, our SU(2) coherence is zero
for g � 0. Thus our reduced basis contains correlations that
are common to a ferromagnetic order parameter, resulting in
the same type of behavior.
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VI. CONCLUSIONS

In this paper, we have derived expressions to quantify the
coherence and its contribution due to local coherence and
global correlations in a quantum system based on expectation
values of observables. For the case that an informationally
complete measurement is made, the full coherence of the
system is recovered. For an incomplete set of measurements,
the evaluated coherence forms an approximate lower bound to
the value using a complete set of measurements. The approx-
imation only comes about due to the use of Schatten 1-norm
which is shown to obey the full properties of a coherence. For
the Frobenius norm, the bound is exactly satisfied, although
no longer obeys all the axioms of coherence, which is less
desirable. Our observable approach allows one to directly use
measurement results in a simple way to estimate the coherence
in a straightforward and efficient way. This is especially
suitable for high dimensional systems such as condensed
matter physics [13–15,52–54] and many-body atomic systems
[55–57] where complete tomography of the quantum state
would be highly resource intensive.
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APPENDIX A: INVARIANCE OF THE COHERENCE
UNDER GLOBAL UNITARY TRANSFORMATIONS

In this section, we show that the definition of coherence

C(ρ) = ‖�(ρ) − �(ρd )‖1 (A1)

is invariant under unitary transformations for the Schatten
p-norms.

The observables under a unitary transformation ρ→U †ρU
transform as

�kk′ (ρ) = eiπ/4Tr(Mkk′ρ) + e−iπ/4Tr(Mk′kρ)√
2eiπsgn(k′−k)/4

→ eiπ/4Tr(Mkk′U †ρU ) + e−iπ/4Tr(Mk′kU †ρU )√
2eiπsgn(k′−k)/4

= eiπ/4Tr(UMkk′U †ρ) + e−iπ/4Tr(UMk′kU †ρ)√
2eiπsgn(k′−k)/4

=
∑

ll ′

eiπ/4Okl Ok′l ′ 〈Mll ′ 〉 + e−iπ/4OklOk′l ′ 〈Ml ′l〉√
2eiπsgn(k′−k)/4

=
∑

ll ′
Okl�ll ′ (ρ)OT

l ′k′ , (A2)

where O is an orthogonal matrix. Covariance matrices trans-
form in the same way under a unitary transformation [39]. The
coherence is invariant under such transformations since

C(U †ρU ) = ‖O�(ρ)OT − O�(ρd )OT ‖1

= ‖�(ρ) − �(ρd )‖1 = C(ρ), (A3)

where we used the fact that the Schatten p-norm is invariant
under orthogonal transformations.

APPENDIX B: VALIDITY AS A COHERENCE MEASURE

1. Coherence conditions by Yu et al.

In this section we show that our definition of coherence
(A1) is a valid coherence measure, under properties (C1′),
(C2′), and (C3′) in Ref. [46]. In the notation of Ref. [46],
(C1′)=(C1), (C2′)=(C2), and (C3′)=(C3).

a. Property (C1′)

Property (C1′) states that a coherence measure should
satisfy C(ρ) = 0 if and only if ρ ∈ I, and C(ρ) � 0. This
property follows from the fact that the full set of observables
�(ρ) constitutes a complete description of the density matrix,
since {Mkk′ } forms a complete operator basis. The fact that
�(ρ) constitutes a complete description of the density matrix
can be easily verified for the explicit choice of the observables
{Mkk′ }. We can explicitly evaluate

〈Mkk′ 〉 =
⎧⎨
⎩

ρkk k′ = k√
2Re(ρkk′ ) k′ > k√
2Im(ρkk′ ) k′ < k

, (B1)

where ρkk′ = 〈k|ρ|k′〉. Substitution into Eq. (1) of the main
text then gives

�(ρ) = ρ. (B2)

For perfect measurements, the observable matrix is the density
matrix itself, hence contains all information of the quantum
state.

The property (C1′) follows directly from the property of
any matrix norm that ‖A‖ = 0 if and only if A = 0. Using
(B2) with (A1), the coherence is zero if and only if ρ = ρd .
Since ρd constitutes the set of incoherent states I, this shows
C(ρ) = 0 if and only if ρ ∈ I. The fact that C(ρ) � 0 follows
from the properties of any matrix norm.

b. Property (C2′)

Property (C2′) states that under an incoherent completely
positive and trace preserving (ICPTP) operation �, the co-
herence is nonincreasing C(ρ) � C(�(ρ)). This is identical
to property (C2a) in Ref. [4]. First note that for perfect
measurements, we have (B2), and hence under the ICPTP map
the coherence is

C(�(ρ)) = ‖�(ρ) − ρd‖1. (B3)

In Ref. [47], it has been shown that the Schatten 1-norm is
contracting under CPTP maps. Since (B3) follows this form,
(C2′) is satisfied.
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c. Property (C3′)

Property (C3′) states that a coherence measure must satisfy

C(p1ρ1 ⊕ p2ρ2) = p1C(ρ1) + p2C(ρ2), (B4)

where ρ1 and ρ2 are density matrices in different subspaces
and p1 + p2 = 1 are probabilities. Writing these matrices
explicitly, we have

ρ1 =
(

σ1 0
0 0

)
,

ρ2 =
(

0 0
0 σ2

)
, (B5)

ρ = p1ρ1 ⊕ p2ρ2 =
(

p1σ1 0
0 p2σ1

)
,

where σ1 and σ1 are the submatrices for the density matrices
in the two spaces and are density matrices themselves.

The matrix elements of the observable matrix for each of
these states are also block diagonal, using the expression (B2).

�(ρ1) =
(

�(σ1) 0
0 0

)
,

�(ρ2) =
(

0 0
0 �(σ2)

)
, (B6)

�(ρ) =
(

p1�(σ1) 0
0 p2�(σ2)

)
.

Here we have taken the measurement basis such that the
subspace structure is preserved, i.e., any basis that admixes
states within the same subspace.

Evaluating the coherence according to (A1), we have for
the right-hand side of (B4)

C(ρ1) = ∥∥�(σ1) − �
(
σ d

1

)∥∥
1,

C(ρ2) = ∥∥�(σ2) − �
(
σ d

2

)∥∥
1, (B7)

since the matrix norm only depends upon the nonzero sub-
matrices. Here we have defined the dephased submatrices
σ d

1 , σ d
2 which only contain the diagonal components of σ1, σ2

respectively. The left-hand side of (B4) is

C(ρ) = ∥∥p1�(σ1) − p1�
(
σ d

1

)∥∥
1 + ∥∥p2�(σ2) − p2�

(
σ d

2

)∥∥
1

= p1

∥∥�(σ1) − �
(
σ d

1

)∥∥
1 + p2

∥∥�(σ2) − �
(
σ d

2

)∥∥
1.

(B8)

In the first line, we used the fact that the trace norm of
a block diagonal matrix is the sum of the trace norms of
the submatrices. In the second line, we used the absolutely
homogenous property of matrix norms. Substitution of (B7)
and (B8) into (B4) verifies property (C3′).

2. Coherence conditions by Baumgratz et al.

In this section, we show that our definition of coherence
(A1) is a valid coherence measure, under properties (C1),
(C2b), and (C3) in Ref. [4].

a. Property (C1)

Property (C1) in Ref. [4] is identical to property (C1′)
in Ref. [46]. This is verified from the same arguments as
Sec. B 1 a.

b. Property (C2b)

Property (C2b) states that the average coherence should
decrease after performing an ICPTP map

C(ρ) �
∑

n

qnC(σn), (B9)

where the state after measurement is

σn = 1

qn
KnρK†

n , (B10)

and the probability of this outcome is

qn = Tr(KnρK†
n ), (B11)

where Kn is the Kraus operator for an ICPTP map.
Consider the basis {|l〉} to be the basis that defines the

incoherent states, such that a general decohered state is written

ρd =
∑

l

ρll |l〉〈l|. (B12)

The general form of the Kraus operator for an ICPTP map can
be written

Kn =
∑

l

cn
l |Pn(l )〉〈l|, (B13)

where Pn(l ) is a permutation function which permutes the l ∈
[1, D] labels. The cn

l are complex coefficients. To satisfy the
requirement that

∑
n K†

n Kn = I , the coefficients must satisfy∑
n

∣∣cn
l

∣∣2 = 1. (B14)

The structure of (B13) ensures that it is an ICPTP map.
Applying it to the state ρd , we obtain

Knρ
d K†

n =
∑

l

∣∣cn
l

∣∣2
ρll |Pn(l )〉〈Pn(l )|, (B15)

which is another diagonal state and is contained in I.
Starting with the right-hand side of (B9), we have in our

case ∑
n

qnC(σn) =
∑

n

qn

∥∥�(σn) − �
(
σ d

n

)∥∥
1. (B16)

Substituting the definitions it follows that

�kk′ (σn) = 1

qn

∑
ll ′

ρll ′c
n
l cn

l ′
∗〈Pn(l ′)|k〉〈k′|Pn(l )〉

= 1

qn
ρP−1

n (k′ )P−1
n (k)c

n
P−1

n (k′ )

(
cn

P−1
n (k)

)∗
, (B17)

where we used the fact that 〈Pn(l )|Pn(l ′)〉 = δll ′ and

qn =
∑

l

∣∣cn
l

∣∣2
ρll . (B18)
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Meanwhile, the state σ d
n is the decohered counterpart of σn

which is

σ d
n =

∑
l

|l〉〈l|〈l|σn|l〉

= 1

qn

∑
l

∣∣cn
l

∣∣2
ρll |Pn(l )〉〈Pn(l )|. (B19)

Evaluating the observable matrix for the decohered state, we
thus obtain

�kk′
(
σ d

n

) = δkk′

qn
ρP−1

n (k)P−1
n (k)

∣∣cn
P−1

n (k)

∣∣2
, (B20)

which takes the same form as (B17) but with just diagonal
terms in the expectation value. Thus the difference can be
written as

qn
(
�kk′ (σn) − �kk′

(
σ d

n

))
= (1 − δkk′ )ρP−1

n (k′ )P−1
n (k)c

n
P−1

n (k′ )

(
cn

P−1
n (k)

)∗
. (B21)

Let us now define the matrices with elements

ρ
(n)
kk′ = cn

k

(
cn

k′
)∗

ρkk′ , (B22)

R(n)
kk′ = (1 − δkk′ )ρ (n)

kk′ . (B23)

Substituting (B21) into the matrix norm according to (B21),
we obtain ∑

n

qnC(σn) =
∑

n

‖R(n)‖1. (B24)

Here we have used the fact that for a matrix norm, the ordering
of the matrix elements is arbitrary and gives the same value
under a permutation k → Pn(k). Using similar steps, we find
that the left-hand side of (B9) can be evaluated to be

C(ρ) = ‖R‖1, (B25)

where the matrix R has elements

Rkk′ = (1 − δkk′ )ρkk′ . (B26)

Thus showing property (C2b) amounts to showing that

‖R‖1 �
∑

n

‖R(n)‖1. (B27)

We now show that this is obeyed for several cases as shown
below.

c. Proof of (C2b) property for X states

In order to prove the correctness of (B27) for the Schatten
1-norm we need to write it explicitly in terms of eigenvalues
of R(n) and R. For X states, the density matrices have a
very convenient form consisting exclusively of anti-diagonal,
making it possible to define eigenvalues for any number of
qubits. For system of q qubits assuming q is an even number,
we have ∣∣λ(n)

l

∣∣ = ∣∣λ(n)
q−l

∣∣ =
√

R(n)
l,q−l R

(n)
q−l,l . (B28)

In case of odd q, there is an extra eigenvalue equal to the
element located at R(n)

center which is the center element of matrix
R(n). We can ignore this case, since from definition (B23)
we know that the diagonal elements are all 0’s, and thus

for odd dimensional n×n matrix, center element ((n + 1)/2,

(n + 1)/2) eventually becomes 0.
As before, we have a set of n-independent eigenvalues λl

which are dependent on R instead of R(n). In the definition
of Schatten 1-norm, under the absolute value half of those
eigenvalues become degenerate creating a constant factor on
both sides of (B27), thus we can use first half of them and
rewrite (B27) for X states as∑

n

∑
l� q

2

∣∣λ(n)
l

∣∣ �
∑
l� q

2

|λl |. (B29)

Substituting from definition (B28)∑
n

∑
l� q

2

∣∣∣√R(n)
l,q−l R

(n)
q−l,l

∣∣∣ �
∑
l� q

2

∣∣∣√Rl,q−l Rq−l,l

∣∣∣. (B30)

We can evaluate from the definitions that√
Rl,q−l Rq−l,l = δl,q−l |ρq−l,l | (B31)√
R(n)

l,q−l R
(n)
q−l,l = δl,q−l

∣∣ρ (n)
q−l,l

∣∣ (B32)

= δl,q−l

∣∣c(n)
q−l c

∗(n)
l ρq−l,l

∣∣. (B33)

Continuing from (B30), we use the idempotent property to
simplify nested absolute values, leading us to simpler form∑

n

∑
l� q

2

∣∣c(n)
q−l c

∗(n)
l ρq−l,l

∣∣ �
∑
l� q

2

|ρq−l,l |. (B34)

We can take advantage of the fact that |ρq−l,l | has no n
dependence to rearrange the sums on the left-hand side

∑
l� q

2

|ρq−l,l |
(∑

n

∣∣c(n)
q−l c

∗(n)
l

∣∣) �
∑
l� q

2

|ρq−l,l |. (B35)

At this point, we can see that (B35) is true as long as
coefficients ∑

n

∣∣c(n)
q−l c

∗(n)
l

∣∣ � 1. (B36)

Applying Cauchy-Schwarz inequality to (B36), we find

∑
n

∣∣c(n)
q−l c

(n)
l

∣∣ �
(∑

n

∣∣c(n)
q−l

∣∣2

) 1
2
(∑

n

∣∣c(n)
l

∣∣2

) 1
2

. (B37)

From (B14) we can see that both factors in the product on
the right-hand side of (B37) are equal to 1 and thus (B36) is
verified which proves (B35) and it implies (B9) for X states.

d. Numerical verification of (C2b) property for general ρ

For ρ that is not of the form of an X state form we run
numerical tests to verify (B27). A single test instance consists
of matrix R and set of matrices R(n) constructed according to
the definitions (B23) and (B26). For each such test instance
we used the QuTip library in Python to generate random
density matrices ρ and sets of random kets for the complex
coefficients c(n)

l . We tried a total of 1 million random instances
for the parameters as shown in Table I and found no violations.
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TABLE I. Parameters chosen for the numerical verification of the
inequality (B27) for the Schatten 1-norm. For each parameter set, 105

instances were randomly generated and no violations were found.

Dimension D Number of Kn

2 2
2 4
4 2
4 4
8 2
8 4
16 2
16 4
32 2
32 4

e. Example: Satisfaction of (C2b) for a specific ICPTP map

We show that (C2b) is satisfied for the example as that
given in Sec. VII of the Supplementary Material in Ref. [4]
for the Schatten 1-norm, which was a counterexample for the
Frobenius norm. The Kraus operators are taken to be

K1 =
⎛
⎝0 1 0

0 0 0
0 0 α

⎞
⎠, K2 =

⎛
⎝1 0 0

0 0 β

0 0 0

⎞
⎠, (B38)

where α, β ∈ C and |α|2 + |β|2 = 1. The state that we take is

ρ = μ|ψ1〉〈ψ1| + (1 − μ)|ψ2〉〈ψ2|, (B39)

where |ψ1〉 = [010]T and |ψ2〉 = [101]T /
√

2. We find
C(ρ) = 1 − μ and

∑
n qnC(σn) = (1 − μ)|β|. This satisfies

(C2b) for all μ, α, β.

f. Property (C3)

Property (C3) states that the coherence should decrease
with mixing of quantum states, in comparison to the average
of the original coherences

C

(∑
n

pnρn

)
�

∑
n

pnC(ρn), (B40)

where pn are arbitrary mixing probabilities and ρn are an
arbitrary set of density matrices.

Starting from the left-hand side of (B40), we have in our
case

C

(∑
n

pnρn

)
=

∥∥∥∥∥�

(∑
n

pnρn

)
− �

(∑
n

pnρ
d
n

)∥∥∥∥∥
1

. (B41)

The observables are linear in the expectation values hence

C

(∑
n

pnρn

)
=

∥∥∥∥∥
∑

n

pn
(
�(ρn) − �

(
ρd

n

))∥∥∥∥∥
1

�
∑

n

pn

∥∥�(ρn) − �
(
ρd

n

)∥∥
1

=
∑

n

pnC(ρn), (B42)

where we used the subadditivity of the matrix norm.

3. Violation of coherence property for the covariance matrix

The global correlation δ(ρ) as defined in the main text in
general does not satisfy the properties for a coherence. An
exception to this is when the global correlation has the full
contribution to the total coherence. Here we show an explicit
example of a violation of property (C3).

We consider a similar example as given in Fig. 1(a) of
the main text for the global correlation δ(ρ), under mixing
of the states |�S〉 and |�E 〉 with mixing parameter μ. We
evaluate C(

∑
n pnρn) = 1 − (1 − μ)2 and

∑
n pnC(ρn) = μ.

Here, the property (C3) is violated at any value of μ ∈ (0, 1).
We attribute the failure of δ(ρ) as a coherence measure due to
the quadratic term in the definition of the covariance matrix.
The quadratic probability terms are not canceled when the
coherences are averaged. We note that property (C3) is also
found to be violated for the covariance matrix when using the
l1 norm.

APPENDIX C: INCOMPLETE SETS OF OPERATORS

1. Estimator based on Frobenius norm

In this section we show that we may construct an estimator
for the coherence using a truncated set of operators that
is upper bounded by the genuine value of the coherence.
Consider the expression for the coherence given in Eq. (5)
of the main text. The full expression for the coherence can be
written

C(ρ) = ‖P + Q‖1, (C1)

where

P =
∑
l∈Otr

Sl
(〈Sl〉ρ − 〈Sl〉ρd

)
(C2)

Q =
∑
l∈Ōtr

Sl
(〈Sl〉ρ − 〈Sl〉ρd

)
(C3)

and Otr are the set of terms that are kept in the truncation
and Ōtr are the remaining terms. The coherence using the
truncated operator set is defined using the Frobenius norm,
as discussed in the main text

Ctr(ρ) = ‖P‖2. (C4)

We wish to show that Ctr(ρ) � C(ρ), or equivalently,

‖P‖2 � ‖P + Q‖1. (C5)

First note that from the general properties of matrix norms

‖P + Q‖2 � ‖P + Q‖1. (C6)

The left-hand side can be simplified in our case since

‖P + Q‖2 =
√

Tr(P† + Q†)(P + Q)

=
√

Tr(P†P + P†Q + Q†P + Q†Q)

=
√

Tr(P†P + Q†Q) (C7)

where we used the fact that the set of operators {Sl} are
orthonormal, such that

Tr(P†Q) = Tr(Q†P) = 0. (C8)
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TABLE II. Violation frequency and level of violation of the
inequality (C5) for the Schatten 1-norm. The mean violation is
the average of the quantity ‖P‖1/‖P + Q‖1 − 1 over the violated
instances.

Matrix dimension Frequency of violation Mean violation

2 0% 0%
3 2.2% 3.6%
4 0.3% 1.7%
5 0.05% 1.8%

Then

‖P‖2
2 = Tr(P†P) � Tr(P†P + Q†Q) = ‖P + Q‖2

2 (C9)

since Q†Q is a positive semidefinite operator. Combining (C6)
and (C9) shows (C5).

2. Estimator based on Schatten 1-norm

A simpler procedure for the truncated estimator would be

‖P‖1 � ‖P + Q‖1 (false) (C10)

Unfortunately, for the Schatten 1-norm, (C10) does not always
hold. We have numerically generated random matrices to test
the frequency and level of violation of the inequality (C10),
the results are shown in Table II. Violations are found for any
matrix dimension larger than 2. However, we note that the
violation of the inequality occurs infrequently and the level of
violation is typically relatively small at the level ∼2%. Thus
although not exact, the inequality (C10) is observed to a good
approximation.

We also note that using ‖P‖1 as the truncated estimator
never falsely gives a nonzero value of coherence. To show this,
observe that

C(ρ) = ‖P + Q‖1 = 0 (C11)

either if (i) P = −Q, P �= 0, and Q �= 0; or (ii) P = Q = 0.
However, since P and Q are orthogonal matrices Tr(PQ) = 0
by construction, case (i) is impossible. Hence the only time
that the coherence is zero is case (ii), where P = 0. If P = 0,
then ‖P‖1 = 0, and the truncated estimator gives zero coher-
ence.

Thus in applications where only an estimate of the coher-
ence is required, the truncation based on the Schatten 1-norm
may be used. The same argument can be made for the other
coherence quantities δ,CL.

APPENDIX D: SPIN SQUEEZED STATE

The dephased spin squeezed state is calculated using the
master equation

dρ

dt
= − i

h̄
[H, ρ] − �

2
L[Sz, ρ], (D1)

where

H = S+
A S+

B + S−
A S−

B (D2)

is two-axis spin squeezing Hamiltonian between two ensem-
bles, and

L[O, ρ] ≡ ρO†O + O†Oρ − 2OρO† (D3)

is the Lindblad superoperator. The spin operators are Sz =∑n
j=1 σ z

j , S± = ∑n
j=1 σ±

j . The initial state is the completely
Sz polarized state

|Sz = n〉|Sz = n〉. (D4)

Since the master equation is symmetric under particle in-
terchange, we can work in the symmetric subspace which
reduces the Hilbert space dimension from 4n to (n + 1)2.

APPENDIX E: COHERENCE IN THE
GENERALIZED AKLT CHAIN

We calculate the coherence of the generalized Affleck-
Kennedy-Lieb-Tasaki chain [49,50] as defined in Eq. (13) of
the main text. This corresponds to the Hamiltonian as given in
Eq. (14) of Ref. [51] with the parameters a = b = c = 1 and
σ = −1.

The reduced density matrix of two spins located at sites 1
and r is [51]

ρ(1, r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 0 0 0 0 0 0
0 |g|γ 0 μ 0 0 0 0 0
0 0 β 0 δ 0 0 0 0
0 μ 0 |g|γ 0 0 0 0 0
0 0 δ 0 γ 0 δ 0 0
0 0 0 0 0 |g|γ 0 μ 0
0 0 0 0 δ 0 β 0 0
0 0 0 0 0 μ 0 |g|γ 0
0 0 0 0 0 0 0 0 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(E1)

where the parameters in the matrix are

α = g2
(
λr−2

1 − λr−2
2

)
λr

1

, β = g2
(
λr−2

1 + λr−2
2

)
λr

1

,

γ = 1

�2
1

, δ = −g

(
g

�1

)r

, μ = −|g|
(

g

�1

)r

,

λ1 = 1 + 2g, λ2 = 1 − 2g, �1 = 1 + 2|g|. (E2)

The decohered density matrix ρd is obtained by setting all
off-diagonal terms to zero.

The full SU(3) Gell-Mann operator basis corresponds to

A0 =
√

1/3I =
√

1/3(|0〉〈0| + |1〉〈1| + |2〉〈2|),
A1 =

√
1/2λ1 =

√
3/2(|0〉〈1| + |1〉〈0|),

A2 =
√

1/2λ2 =
√

3/2(−i|0〉〈1| + i|1〉〈0|),
A3 =

√
1/2λ3 =

√
3/2(|0〉〈0| − |1〉〈1|),

A4 =
√

1/2λ4 =
√

3/2(|0〉〈2| + |2〉〈0|),
A5 =

√
1/2λ5 =

√
3/2(−i|0〉〈2| + i|2〉〈0|),

A6 =
√

1/2λ6 =
√

3/2(|1〉〈2| + |1〉〈2|),
A7 =

√
1/2λ7 =

√
3/2(−i|1〉〈2| + i|1〉〈2|),

A8 =
√

1/2λ8 =
√

1/2(|0〉〈0| + |1〉〈1| − 2|2〉〈2|), (E3)

and similarly for Bl . These are orthonormal operators
Tr(AkAl ) = δkl . Calculating the quantum coherence using the
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full SU(3) Gell-Mann operator basis we obtain the results

C(ρ) = 2(2 +
√

2)

∣∣∣∣ g

(1 + 2|g|)r

∣∣∣∣,
CL(ρ) = 0, (E4)

δ(ρ) = C(ρ).

For the SU(2) spin-1 operator basis, we use the observables

A0 =
√

1/3I,

A1 =
√

1/8S j
x = (λ1 + λ6)/2,

A2 =
√

1/8S j
y = (λ2 + λ7)/2,

A3 =
√

1/8S j
z = −

√
1/8(λ3 +

√
3λ8). (E5)

Calculating the quantum coherence using the SU(2) spin-1
operator basis with estimator, we obtain the results

C(ρ) =
√

2

∣∣∣∣ g + |g|
(1 + 2|g|)r

∣∣∣∣,
CL(ρ) = 0, (E6)

δ(ρ) = C(ρ).

For the truncated SU(2) spin-1 operator basis, g � 0 gives
precisely the same result as the full Gell-Mann operator basis
for Schatten 1-norm, and lower amount of coherence using
Frobenius norm whereas for g � 0 the coherence collapses to
zero in both cases.

[1] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[2] E. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[3] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, UK, 1999).
[4] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).
[5] L.-H. Shao, Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 91, 042120

(2015).
[6] S. Rana, P. Parashar, and M. Lewenstein, Phys. Rev. A 93,

012110 (2016).
[7] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N.

Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502 (2016).
[8] D. Girolami, Phys. Rev. Lett. 113, 170401 (2014).
[9] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T.

Byrnes, Phys. Rev. Lett. 116, 150504 (2016).
[10] Q. Zheng, J. Xu, Y. Yao, and Y. Li, Phys. Rev. A 94, 052314

(2016).
[11] A. Mani and V. Karimipour, Phys. Rev. A 92, 032331 (2015).
[12] A. Streltsov, E. Chitambar, S. Rana, M. N. Bera, A. Winter, and

M. Lewenstein, Phys. Rev. Lett. 116, 240405 (2016).
[13] A. L. Malvezzi, G. Karpat, B. Çakmak, F. F. Fanchini,

T. Debarba, and R. O. Vianna, Phys. Rev. B 93, 184428
(2016).

[14] C. Radhakrishnan, I. Ermakov, and T. Byrnes, Phys. Rev. A 96,
012341 (2017).

[15] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T.
Byrnes, Sci. Rep. 7, 13865 (2017).

[16] D.-J. Zhang, C. L. Liu, X.-D. Yu, and D. M. Tong, Phys. Rev.
Lett. 120, 170501 (2018).

[17] C. Carmeli, T. Heinosaari, S. Maniscalco, J. Schultz, and A.
Toigo, New J. Phys. 20, 063038 (2018).

[18] L. Lami, B. Regula, and G. Adesso, Phys. Rev. Lett. 122,
150402 (2019).

[19] L. Lami, IEEE Trans. Inf. Theory (2019),
doi:10.1109/TIT.2019.2945798.

[20] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
[21] B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral, Phys. Rev.

X 6, 041028 (2016).
[22] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).
[23] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,

041003 (2017).

[24] J. I. De Vicente and A. Streltsov, J. Phys. A: Math. Theor. 50,
045301 (2016).

[25] J. Aberg, arXiv:quant-ph/0612146.
[26] F. Bischof, H. Kampermann, and D. Bruß, Phys. Rev. Lett. 123,

110402 (2019).
[27] K. C. Tan, H. Kwon, C.-Y. Park, and H. Jeong, Phys. Rev. A 94,

022329 (2016).
[28] K. C. Tan and H. Jeong, Phys. Rev. Lett. 121, 220401 (2018).
[29] T. Ma, M.-J. Zhao, H.-J. Zhang, S.-M. Fei, and G.-L. Long,

Phys. Rev. A 95, 042328 (2017).
[30] T. Kraft and M. Piani, J. Phys. A: Math. Theor. 51, 414013

(2018).
[31] C. Radhakrishnan, Z. Ding, F. Shi, J. Du, and T. Byrnes, Ann.

Phys. 409, 167906 (2019).
[32] K. Bu, L. Li, S.-M. Fei, and J. Wu, arXiv:1712.09167.
[33] C. Radhakrishnan, P.-W. Chen, S. Jambulingam, T. Byrnes, and

M. M. Ali, Sci. Rep. 9, 2363 (2019).
[34] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.

Lett. 84, 2722 (2000).
[35] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
[36] S. Braunstein and P. Van Loock, Rev. Mod. Phys. 77, 513

(2005).
[37] X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi,

Phys. Rep. 448, 1 (2007).
[38] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Phys. Rev.

Lett. 99, 130504 (2007).
[39] O. Gittsovich, O. Gühne, P. Hyllus, and J. Eisert, Phys. Rev. A

78, 052319 (2008).
[40] G. Tóth and O. Gühne, Appl. Phys. B 98, 617 (2010).
[41] O. Gittsovich and O. Gühne, Phys. Rev. A 81, 032333 (2010).
[42] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
[43] V. Tripathi, C. Radhakrishnan, and T. Byrnes,

arXiv:1806.03832.
[44] Z.-H. Ma, J. Cui, Z. Cao, S.-M. Fei, V. Vedral, T.

Byrnes, and C. Radhakrishnan, Europhys. Lett. 125, 50005
(2019).

[45] W.-C. Wang, M.-F. Fang, and M. Yu, arXiv:1701.05110.
[46] X.-D. Yu, D.-J. Zhang, G. F. Xu, and D. M. Tong, Phys. Rev. A

94, 060302(R) (2016).
[47] D. Perez-Garcia, M. M. Wolf, D. Petz, and M. B. Ruskai,

J. Math. Phys. 47, 083506 (2006).

013157-10

https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.91.042120
https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevA.93.012110
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevA.94.052314
https://doi.org/10.1103/PhysRevA.94.052314
https://doi.org/10.1103/PhysRevA.94.052314
https://doi.org/10.1103/PhysRevA.94.052314
https://doi.org/10.1103/PhysRevA.92.032331
https://doi.org/10.1103/PhysRevA.92.032331
https://doi.org/10.1103/PhysRevA.92.032331
https://doi.org/10.1103/PhysRevA.92.032331
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevA.96.012341
https://doi.org/10.1103/PhysRevA.96.012341
https://doi.org/10.1103/PhysRevA.96.012341
https://doi.org/10.1103/PhysRevA.96.012341
https://doi.org/10.1038/s41598-017-13871-6
https://doi.org/10.1038/s41598-017-13871-6
https://doi.org/10.1038/s41598-017-13871-6
https://doi.org/10.1038/s41598-017-13871-6
https://doi.org/10.1103/PhysRevLett.120.170501
https://doi.org/10.1103/PhysRevLett.120.170501
https://doi.org/10.1103/PhysRevLett.120.170501
https://doi.org/10.1103/PhysRevLett.120.170501
https://doi.org/10.1088/1367-2630/aacbea
https://doi.org/10.1088/1367-2630/aacbea
https://doi.org/10.1088/1367-2630/aacbea
https://doi.org/10.1088/1367-2630/aacbea
https://doi.org/10.1103/PhysRevLett.122.150402
https://doi.org/10.1103/PhysRevLett.122.150402
https://doi.org/10.1103/PhysRevLett.122.150402
https://doi.org/10.1103/PhysRevLett.122.150402
https://doi.org/10.1109/TIT.2019.2945798
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
http://arxiv.org/abs/arXiv:quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevLett.123.110402
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevA.94.022329
https://doi.org/10.1103/PhysRevLett.121.220401
https://doi.org/10.1103/PhysRevLett.121.220401
https://doi.org/10.1103/PhysRevLett.121.220401
https://doi.org/10.1103/PhysRevLett.121.220401
https://doi.org/10.1103/PhysRevA.95.042328
https://doi.org/10.1103/PhysRevA.95.042328
https://doi.org/10.1103/PhysRevA.95.042328
https://doi.org/10.1103/PhysRevA.95.042328
https://doi.org/10.1088/1751-8121/aab8ad
https://doi.org/10.1088/1751-8121/aab8ad
https://doi.org/10.1088/1751-8121/aab8ad
https://doi.org/10.1088/1751-8121/aab8ad
https://doi.org/10.1016/j.aop.2019.04.020
https://doi.org/10.1016/j.aop.2019.04.020
https://doi.org/10.1016/j.aop.2019.04.020
https://doi.org/10.1016/j.aop.2019.04.020
http://arxiv.org/abs/arXiv:1712.09167
https://doi.org/10.1038/s41598-019-39027-2
https://doi.org/10.1038/s41598-019-39027-2
https://doi.org/10.1038/s41598-019-39027-2
https://doi.org/10.1038/s41598-019-39027-2
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/PhysRevLett.84.2726
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1016/j.physrep.2007.04.005
https://doi.org/10.1103/PhysRevLett.99.130504
https://doi.org/10.1103/PhysRevLett.99.130504
https://doi.org/10.1103/PhysRevLett.99.130504
https://doi.org/10.1103/PhysRevLett.99.130504
https://doi.org/10.1103/PhysRevA.78.052319
https://doi.org/10.1103/PhysRevA.78.052319
https://doi.org/10.1103/PhysRevA.78.052319
https://doi.org/10.1103/PhysRevA.78.052319
https://doi.org/10.1007/s00340-009-3839-7
https://doi.org/10.1007/s00340-009-3839-7
https://doi.org/10.1007/s00340-009-3839-7
https://doi.org/10.1007/s00340-009-3839-7
https://doi.org/10.1103/PhysRevA.81.032333
https://doi.org/10.1103/PhysRevA.81.032333
https://doi.org/10.1103/PhysRevA.81.032333
https://doi.org/10.1103/PhysRevA.81.032333
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
http://arxiv.org/abs/arXiv:1806.03832
https://doi.org/10.1209/0295-5075/125/50005
https://doi.org/10.1209/0295-5075/125/50005
https://doi.org/10.1209/0295-5075/125/50005
https://doi.org/10.1209/0295-5075/125/50005
http://arxiv.org/abs/arXiv:1701.05110
https://doi.org/10.1103/PhysRevA.94.060302
https://doi.org/10.1103/PhysRevA.94.060302
https://doi.org/10.1103/PhysRevA.94.060302
https://doi.org/10.1103/PhysRevA.94.060302
https://doi.org/10.1063/1.2218675
https://doi.org/10.1063/1.2218675
https://doi.org/10.1063/1.2218675
https://doi.org/10.1063/1.2218675


CHARACTERIZING COHERENCE WITH QUANTUM … PHYSICAL REVIEW RESEARCH 2, 013157 (2020)

[48] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901
(2001).

[49] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, in Condensed
Matter Physics and Exactly Soluble Models (Springer, Berlin,
Heidelberg, 2004), pp. 249–252.

[50] A. Klümper, A. Schadschneider, and J. Zittartz, Europhys. Lett.
24, 293 (1993).

[51] S. Alipour, V. Karimipour, and L. Memarzadeh, Phys. Rev. A
75, 052322 (2007).

[52] T. Byrnes, N. Y. Kim, and Y. Yamamoto, Nat. Phys. 10, 803
(2014).

[53] T. Byrnes, G. V. Kolmakov, R. Y. Kezerashvili, and Y.
Yamamoto, Phys. Rev. B 90, 125314 (2014).

[54] N. Ishida, T. Byrnes, F. Nori, and Y. Yamamoto, Sci. Rep. 3,
1180 (2013).

[55] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P.
Treutlein, and N. Sangouard, Science 352, 441 (2016).

[56] T. Byrnes, D. Rosseau, M. Khosla, A. Pyrkov, A. Thomasen,
T. Mukai, S. Koyama, A. Abdelrahman, and E. Ilo-Okeke,
Opt. Commun. 337, 102 (2015).

[57] E. O. Ilo-Okeke and T. Byrnes, Phys. Rev. Lett. 112, 233602
(2014).

013157-11

https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1103/PhysRevA.75.052322
https://doi.org/10.1103/PhysRevA.75.052322
https://doi.org/10.1103/PhysRevA.75.052322
https://doi.org/10.1103/PhysRevA.75.052322
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1103/PhysRevB.90.125314
https://doi.org/10.1103/PhysRevB.90.125314
https://doi.org/10.1103/PhysRevB.90.125314
https://doi.org/10.1103/PhysRevB.90.125314
https://doi.org/10.1038/srep01180
https://doi.org/10.1038/srep01180
https://doi.org/10.1038/srep01180
https://doi.org/10.1038/srep01180
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1016/j.optcom.2014.08.017
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602
https://doi.org/10.1103/PhysRevLett.112.233602

