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Time-rescaled quantum dynamics as a shortcut to adiabaticity
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The design of quantum control methods has been shown to greatly improve the performance of many evolving
quantum technologies. To this end, the usage of adiabatic dynamics to drive quantum systems is seriously limited
by the action of environment-induced noise and decoherence. In this spirit, fast quantum processes known as
shortcuts to adiabaticity have been developed as alternatives to adiabatic protocols with a myriad of potential
applications. Here, we develop a new state-independent mechanism to speed up the evolution of an arbitrary
quantum dynamical system by simply rescaling the time of a reference driving process, an approach which can
also work as a shortcut to adiabaticity. Our findings are illustrated for three systems, namely, the parametric
oscillator, the transport of a particle in a harmonic trap, and the spin-1/2 in a magnetic field.
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I. INTRODUCTION

The very act of controlling the dynamics of quantum
systems has continuously changed its status from being an
obscure dream in the first years of quantum theory to an
indispensable tool in many evolving research areas [1–10].
From a practical point of view, adiabatic quantum control
techniques, which by definition are slow processes, has been
shown to be particularly useful to drive and prepare states for
usage in quantum computation [11], as well as in atomic and
molecular physics [12,13]. The advantage of such techniques
relies on the controllability and robustness of the system
against certain types of experimental imperfections. However,
decoherence effects and nonadiabatic leakage are more promi-
nent in this case due to the long time evolution. To overcome
these drawbacks, fast processes which reproduce the results
of adiabatic ones have been proposed, the so-called “shortcuts
to adiabaticity” (STA) [14–16], and extensively applied to
control the quantum dynamics of single qubit in cold atoms
[17], trapped ions [18], nitrogen-vacancy centers [7], and
superconducting qubits [19].

The STA protocols also offer promising applications in the
emerging field of quantum thermodynamics. In this field, real
quantum heat engines are expected to operate in a finite time
cyclic process, a fact which, in general, gives rise to a tradeoff
between efficiency and power [20]. Then, one of the main
challenges in the area is the optimization of the efficiency
of microscopic thermal machines, while sacrificing the min-
imum of output power [21]. Therefore, the STA techniques
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come into play to reveal alternative finite time thermodynamic
transformations that mimic adiabatic processes. As a matter of
fact, the use of STA methods has curiously gone beyond the
scope of quantum technologies to find applications in optics
and classical systems [22]. With these motivations, many tech-
niques have been developed. For example, using dynamical
invariants [23], the fast-forward (FF) technique [24–26], the
inversion of scaling laws [27], and the counterdiabatic driving
(CD) [28–31].

Within this class of STA scenarios, CD, also known as
transitionless quantum driving, is the one that allows ap-
plications in a variety of quantum systems, as long as the
spectral structure is accessible [32–34]. In this technique, one
has initially a reference time-dependent Hamiltonian Ĥ0(t ),
with instantaneous eigenvalues {En(t )} and eigenkets {|nt 〉},
and from it constructs an auxiliary Hamiltonian Ĥ1(t ), such
that their collective effect, Ĥ (t ) = Ĥ0(t ) + Ĥ1(t ), drives the
system exactly through the manifold generated by Ĥ0(t ) in
a shorter time. Therefore, when Ĥ0(t ) generates an adiabatic
evolution, Ĥ (t ) represents an STA. It can be demonstrated that
Ĥ1(t ) = ih̄

∑
n(|∂t nt 〉 〈nt | − 〈nt |∂t nt 〉 |nt 〉 〈nt |), which shows

that calculating Ĥ (t ) demands the instantaneous eigenkets
|nt 〉. However, the task of obtaining these eigenkets is usually
very complicated, which has limited the usefulness of the
method [35].

In this work, we introduce a new state-independent scheme
to speed up an arbitrary quantum process, which is taken as
the reference protocol, by simply rescaling the time depen-
dence of the Hamiltonian. Similar to the CD case, when the
reference is adiabatic, the method works as a STA protocol.
After establishing the general theory, our findings are illus-
trated for three experimentally relevant systems, namely, the
parametric harmonic oscillator, the transport of a particle in a
harmonic trap, and the spin-1/2 in a magnetic field. Despite
not being transitionless as the CD method, the construction
of our fast protocol does not require knowledge about the
spectrum of the system.
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II. TIME-RESCALING METHOD

Consider a closed quantum system on which we desire to
perform a protocol according to a unitary time evolution oper-
ator Û (t, 0), acting between an initial time 0 and a final time
t f , with a time-dependent Hamiltonian Ĥ (t ). This operator
must satisfy the Schrödinger equation,

Ĥ (t )Û (t, 0) = ih̄
∂

∂t
Û (t, 0). (1)

The solution of Eq. (1) for the case in which the Hamiltonian
is time-dependent but the Ĥ ’s commute at different times,
subject to the initial condition Û (0, 0) = I, where I is the
identity operator, is [36]

Û (t f , 0) = exp

{
− i

h̄

∫ t f

0
Ĥ (t )dt

}
. (2)

Here, we call it the reference evolution operator. At this point,
if we rescale the time using the function t = f (τ ), then the
above equation can be rewritten as

Û (t f , 0) = exp

{
− i

h̄

∫ f −1(t f )

f −1(0)
Ĥ ( f (τ )) f ′(τ )dτ

}

= exp

{
− i

h̄

∫ f −1(t f )

f −1(0)
Ĥ(τ )dτ

}
, (3)

where Ĥ(τ ) = Ĥ[ f (τ )] f ′(τ ) is the time-rescaled (TR)
Hamiltonian, with f ′(τ ) and f −1(τ ) being the first derivative
and the inverse of f (τ ), respectively. Let us call the operator
of Eq. (3) the TR evolution operator. From Eqs. (2) and (3)
we observe that, when applied to an arbitrary initial state
|ψ (0)〉, the reference and TR evolutions produce exactly
the same final state, |ψ (t f )〉 = Û (t f , 0) |ψ (0)〉. However, this
equivalence is achieved only if the reference and TR Hamilto-
nians, Ĥ and Ĥ, are applied between the corresponding time
(integration) intervals. In the latter case, the desired action of
Ĥ materializes in the time interval between τ = f −1(0) and
τ = f −1(t f ).

Let us clarify in more detail the importance in the freedom
of writing the time evolution operator Û (t f , 0) of Eq. (2) in
the form shown in Eq. (3). As already indicated, in both
equations the resulting effect of Û (t f , 0) is precisely the same,
independent of the initial state |ψ (0)〉 on which they act.
On the one hand, when written in the first (reference) form,
the time evolution is generated by the Hamiltonian Ĥ acting
during a time interval �t = t f . On the other hand, this same
evolution can be alternatively generated by the Hamiltonian
Ĥ(τ ) = Ĥ [ f (τ )] f ′(τ ) acting during a time interval �τ =
f −1(t f ) − f −1(0). A fundamental point to be noticed is that
we have freedom of choosing the time-rescaling function
f (τ ), and this choice is what determines whether the alter-
native TR protocol is slower (�τ > �t) or faster (�τ < �t)
than the reference driving protocol. In the latter case, the TR
evolution would represent a shortcut to the final state. Yet,
some remarks must be made on the state of the system and
the reference time evolution. First, the initial and final states,
|ψ (t f )〉 and |ψ (0)〉, do not have to be eigenstates of the initial
and final Hamiltonians, respectively. That is to say that the TR
protocol is state-independent. Second, there are no constraints

on the dynamics of the reference protocol, e.g., whether it is
adiabatic or not.

As discussed in the Introduction, a case of potential interest
for quantum control technologies is when the reference evo-
lution produces an adiabatic transformation in the quantum
system from |ψ (0)〉 to |ψ (t f )〉, and we are able to create
an equivalent process which is faster. In the present context,
if there is a realizable TR protocol satisfying this demand,
it would represent a STA. Let us now focus on this case
by assuming that the reference process is adiabatic. In these
circumstances, the problem of devising a genuine STA is
reduced to finding an adequate time-rescaling function f (τ )
such that the initial and final Hamiltonians are equal to those
of the reference adiabatic process, and, of course, guarantee
that �τ < �t . It is easy to see that this task is accomplished
if the following four requirements are fulfilled: (i) the initial
times must be equal: f −1(0) = 0, (ii) the TR protocol must
be faster: f −1(t f ) < t f , (iii) the initial Hamiltonians must
be equal: Ĥ[ f −1(0)] = Ĥ (0), and (iv) the final Hamiltonians
must be equal: Ĥ[ f −1(t f )] = Ĥ (t f ). Assuming that there exist
such a TR Hamiltonian satisfying these four requirements, it
is important to observe that a STA also takes place even if
the Ĥ ’s do not commute at different times. In this case we
have

Û (t f , 0) = T̂ exp

{
− i

h̄

∫ t f

0
Ĥ (t )dt

}

= T̂ exp

{
− i

h̄

∫ f −1(t f )

f −1(0)
Ĥ(τ )dτ

}
, (4)

where T̂ denotes the time-ordering operator.
As can be observed, the problem of satisfying the STA re-

quirements lies in the choice of an appropriate time-rescaling
function f (τ ) to be used in Eq. (3) [or Eq. (4)]. The require-
ments (i) and (ii) are explicit, and finding a function which
satisfies both is trivial. However, properties (iii) and (iv) can
be both fulfilled if f ′[ f −1(0)] = f ′[ f −1(t f )] = 1. Thus, any
candidate function f (τ ) meeting these criteria can be used in
the expression of Eqs. (3) or (4) to turn it into a STA protocol,
as an alternative to the reference (adiabatic) evolution. For
example, the function

f (τ ) = aτ − t f

2πa
(a − 1) sin

(
2πa

t f
τ

)
, (5)

whose inverse function f −1(τ ) cannot be written exactly in
terms of standard functions, has the properties f −1(0) = 0,
f −1(t f ) = t f /a, f ′(0) = 1 and f ′(t f /a) = 1, which are exact
as can be easily verified. These elements qualify this function
as an appropriate time-rescaling function for any a > 1, which
we call the time contraction parameter. In other words, the
reference protocol given in Eq. (2) can be realized a times
faster, with exactly the same effect, applying the TR protocol
of Eq. (3) with f (τ ) given as in Eq. (5) [37]. Therefore, under
these conditions, the TR protocol gains the status of STA.
We want to call attention to the fact that f (τ ) of Eq. (5) is
not unique, so that one can look for many other functions
that satisfy the STA requirements. As another example, the
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FIG. 1. Parametric harmonic oscillator with ω(t ) being an in-
creasing function of time. For the control process to be considered as
adiabatic or a STA, the populations of particles in each energy level
must be the same both at the beginning and the end of the protocol.

polynomial function

f (τ ) = 2(a2 − a3)

t2
f

τ 3 + 3(a2 − a)

t f
τ 2 + τ (6)

is also valid as a time-rescaling function, again with a being
the time contraction parameter. In fact, we can easily verify
that f −1(0) = 0, f −1(t f ) = t f /a, f ′(0) = 1 and f ′(t f /a) = 1.

From a mathematical point of view, the time rescaling
method to generate shortcuts, as shown for example in Eq. (3),
can also be understood as a joint modification in the passage
of time dt → f ′(τ )dτ , the time dependence of the original
Hamiltonian Ĥ (t ) → Ĥ[ f (τ )], and the evolution time �t →
�τ . This is why we call it “time-rescaled quantum dynam-
ics.” However, we obviously cannot make time passes at a
different rate in practice. Then, the trick was to embody the
function f ′(τ ) into the Hamiltonian Ĥ (t ) → Ĥ [ f (τ )] f ′(τ ),
and recover the natural passage of time dt → dτ . In theory,
such a modification in the time dependence of the Hamilto-
nian is achievable for any controlled quantum dynamics. To
illustrate the present proposal, we address three problems of
fundamental and practical interest: the parametric oscillator,
the transport of a particle in a harmonic trap, and the spin-1/2
system in a magnetic field.

III. PARAMETRIC OSCILLATOR

The parametric oscillator is described by the one-
dimensional Hamiltonian,

Ĥ (t ) = p̂2

2m
+ 1

2
mω2(t )x̂2, (7)

where x̂ and p̂ are the position and momentum operators,
respectively. The parameter m is the mass of the oscillator,
and ω(t ) is a time-dependent angular frequency. Note that the
time dependence of Ĥ (t ) is due only to ω(t ), as seen in Fig. 1.
Let us consider that we perform a given protocol during a
time interval from t = 0 to t = t f , by varying the frequency
of the oscillator under a prescribed scheme, which is ruled by
the transformation in Eq. (2). Suppose now that we want to
shorten the time duration of the process to last from τ = 0
to τ = t f /a, producing the same final state, by using the TR
protocol. In this case, the reference Hamiltonian Ĥ must be
replaced by the TR Hamiltonian

Ĥ(τ ) = f ′(τ )
p̂2

2m
+ 1

2
mω̃2(τ )x̂2, (8)

with f (τ ) as given by Eq. (5), and the TR frequency obeying
ω̃2(τ ) = f ′(τ )ω2[ f (τ )]. The realization of ω̃(τ ) takes place
by simply changing the intensity and the time dependence of
the fields that generate the harmonic potential.

As an example, let us consider the case of a compression
stroke of a given quantum heat machine, in which the follow-
ing boundary conditions are necessary: ω(0) = ω0, ω(t f ) =
ω f > ω0, ω̇(0) = 0, and ω̇(t f ) = 0. The first two conditions
characterize the compression, and the last two conditions are
necessary for the potential to be static at the beginning and
the end of the stroke. With such requirements, we assume now
that the angular frequency of the reference process varies ac-
cording to the relation ω(t ) = ω0 + (ω f − ω0) sin2(πt/2t f ).
Therefore, the corresponding angular frequency in the TR
protocol becomes

ω̃(τ ) =
[

a − (a − 1) cos

(
2πa

t f
τ

)] 1
2
{
ω0 + (ω f − ω0) sin2

[
πa

2t f
τ −

(
a − 1

4a

)
sin

(
2πa

t f
τ

)]}
. (9)

Observe that ω(0) = ω̃(0) = ω0, and ω(t f ) = ω̃(t f /a) = ω f ,
as it should be. In Fig. 2 we display the behavior of the TR
angular frequency for some values of the contraction factor.

At the same time, depending on the quantum system we
deal with, the modulation of the kinetic energy term with
the function f ′(τ ) in Eq. (8) may come in different forms.
For example, if the trapped particle has a net electric charge
q, the momentum can be controlled with the application of
a time-dependent magnetic field B(τ ) to cause the transfor-
mation p̂ → p̂ − qA(τ ), where A(τ ) is the time-dependent
vector potential satisfying B(τ ) = ∇ × A(τ ). However, as we
shall see, for this momentum control to occur it is neces-
sary that the magnetic field be perpendicular to the trapping
direction x [38].

We now investigate with more detail the magnetic field
required to generate the appropriate manipulation of the

kinetic energy term. According to the TR protocol, Ĥ (t ) →
Ĥ [ f (τ )] f ′(τ ), the vector potential must satisfy the rela-
tion f ′(τ ) p̂2 = [ p̂ − qA(τ )]2, which yields A(τ ) = p̂/q{1 −
[ f ′(τ )]1/2}x̂, where x̂ is the unit vector pointing to the positive
x direction. Two important observations have to be made
concerning this vector potential. First, it is independent of the
coordinates x, y, and z. Second, due to gauge invariance, a
constant factor added to it at a given instant of time is not
physically relevant, but only the way it varies with time. Tak-
ing these two facts into consideration, the required potential
vector can reduce to the simple form A(τ ) = −B0[ f ′(τ )]1/2x̂,
where B0 is a positive constant. It can easily be verified
that the time-dependent magnetic field B(τ ) = B0[ f ′(τ )]1/2ẑ
leads to the vector potential A(τ ) = −B0y[ f ′(τ )]1/2x̂, whose
dependence on the coordinate y is irrelevant if the charged
particle is in fact confined to the x direction. In this form, the

013133-3



BERTÚLIO DE LIMA BERNARDO PHYSICAL REVIEW RESEARCH 2, 013133 (2020)

FIG. 2. Time dependence of the angular frequency of the para-
metric oscillator for some values of the contraction factor a. The a =
1 curve represents the reference protocol. In all cases we assumed
ω f = 6ω0.

field

B(τ ) = B0

[
a − (a − 1) cos

(
2πa

t f
τ

)] 1
2

ẑ (10)

satisfies the required conditions to properly tune the kinetic
energy. Observe that this field works independent of the
reference protocol, ω(t ), and B(0) = B(t f /a) = B0. Fig. 3
illustrates the time profile of the magnetic field for some
values of a.

Now, another important question arises: what is the phys-
ical implication of B0? To answer this question, we first con-
sider Eq. (5) for a = 1. In this case, the TR function reduces to
f (τ ) = τ , which implies no time rescaling, i.e., the reference
protocol. Therefore, if we now look at Eq. (10) with a = 1, we
see that this equation is valid if the reference protocol involves
the application of a constant magnetic field Bref = B0ẑ. That
is to say that, if we want that the magnetic field of Eq. (10)
really provides the kinetic energy manipulation according to
our TR approach, the reference protocol must be described
by both the time-dependent angular frequency, ω(t ), and the
application of Bref. It signifies that the momentum operator

FIG. 3. Illustration of the time dependence of the magnetic field
intensity applied to the parametric oscillator for some values of the
contraction factor a. The constant field in the a = 1 case represents
the reference protocol.

FIG. 4. Transport of a particle by moving a harmonic trap. For
the driving process to be labeled as adiabatic or a STA, the popula-
tions of particles in each energy level must be the same both at the
beginning and the end of the time evolution.

p̂ in Eq. (8) is actually given by p̂ = p̂′ − qAref, where p̂′ is
the momentum of the particle free from any external elec-
tromagnetic influence, and Aref is the vector potential due to
Bref. In this form, B0 is simply the magnitude of the constant
magnetic field applied in the reference protocol. In the case of
an adiabatic reference protocol, this magnitude must be set so
that quantum transitions are prevented.

IV. TRANSPORT OF A PARTICLE BY MOVING A
HARMONIC TRAP

We now consider the problem of accelerating the transport
of a particle by moving a harmonic trap, which has been previ-
ously considered by some authors with different approaches,
whose experimental realization is proven to be difficult [22].
However, some experiments have been realized transporting
ions in a Paul trap by few hundreds of micrometers, preserving
the encoded quantum information [39,40]. To address this
issue, we assume the time-dependent 1D Hamiltonian as given
by [41]

Ĥ (t ) = p̂2

2m
+ 1

2
mω2[x̂ − x0(t )]2, (11)

where x0(t ) is the “scalar transport function,” which localizes
the position of the minimum of the harmonic potential (see
Fig. 4). In experimental applications, it is convenient that the
trap starts and ends up at rest in the transport process, so
that the scalar function should meet the boundary conditions
x0(0) = 0, ẋ(0) = 0, x0(t f ) = d , and ẋ(t f ) = 0, where d is the
distance to be traveled by the trap.

Let us assume, for example, that the reference protocol
is described by the transport function x0(t ) = d sin2(πt/2t f ),
which meets the required boundary conditions. Then, accord-
ing to the TR method presented here, which says that Ĥ (t ) →
Ĥ [ f (τ )] f ′(τ ), the reference Hamiltonian Ĥ must be replaced
by the TR Hamiltonian

Ĥ(τ ) = f ′(τ )
p̂2

2m
+ 1

2
mω̃2[x̂ − x̃0(τ )]2, (12)

with f (τ ) given by the function in Eq. (5), so that the TR
angular frequency obeys ω̃2(τ ) = f ′(τ )ω2, i.e.,

ω̃(τ ) =
[

a − (a − 1) cos

(
2πa

t f
τ

)] 1
2

ω. (13)

Figure 5 shows the typical profile of ω̃(τ ). Note that ω̃(0) =
ω̃(t f /a) = ω.
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FIG. 5. Angular frequency of the harmonic trap as a function of
time for some values of the contraction factor a. The constant ω̃ curve
(a = 1) corresponds to the reference process, in which the trap does
not change in shape.

However, the TR transport function has the form

x̃0(τ ) = d sin2

[
πa

2t f
τ −

(
a − 1

4a

)
sin

(
2πa

t f
τ

)]
, (14)

whose typical profile is shown in Fig. 6 for some values of
a. Observe that x̃0(0) = 0 and x̃0(t f /a) = d , which are the
required boundary conditions for a proper TR fast process
(a > 0). In regards to the kinetic energy term in Eq. (12),
it is precisely the one found in Eq. (8) for the case of the
parametric oscillator. Thus, the application of a magnetic field
as described in Eq. (10) also works in the transport problem, as
long as the particle is charged. Also, the (reference) momen-
tum operator p̂ in Eq. (11) must be of the type p̂ = p̂′ − qAref,
as explained in the previous section. That is, a result of the
application of a reference magnetic field Bref = B0ẑ.

V. SPIN-1/2 SYSTEM IN A MAGNETIC FIELD

Now we turn to the study of a spin-1/2 particle in a time-
varying magnetic field B(t ). In this case, the Hamiltonian is
given by [36]

Ĥ (t ) = γ B(t ) · Ŝ, (15)

FIG. 6. Time dependence of the transport function of the har-
monic trap for some values of the contraction factor a. The reference
transport process is represented by the a = 1 curve. The parameter d
is the total distance traveled by the trap in the protocols.

where γ is the gyromagnetic ratio and Ŝ is the vector spin
operator of the particle, i.e., Ŝ = h̄/2(σ̂x, σ̂y, σ̂z ), involving the
Pauli matrices. Assuming that the Hamiltonian of Eq. (15)
generates the reference process, we have that the TR evolution
operator is given as in Eq. (4), with the time-rescaling function
according to Eq. (5). That is,

Û (t f , 0) = T̂ exp

{
− i

h̄

∫ t f

0
Ĥ (t )dt

}

= T̂ exp

{
− i

h̄

∫ t f /a

0
Ĥ(τ )dτ

}
, (16)

with

Ĥ(τ ) = γ

[
a − (a − 1)cos

(
2πa

t f
τ

)]

× B
[

aτ − t f

2πa
(a − 1) sin

(
2πa

t f
τ

)]
· Ŝ. (17)

As a simple demonstration, we now consider the familiar
case of a spin-1/2 particle in a constant magnetic field
oriented along the z axis, B(t ) = B0ẑ, as the reference
protocol. The Hamiltonian is given simply by Ĥ (t ) = Ĥ =

Ŝz, with 
 = γ B0. In this form, the evolution operator
becomes Û (t f , 0) = exp(−i
Ŝzt f /h̄). We will also assume
that at t = 0 the particle is in the state |ψ (0)〉 = |Sx,+〉 =
1/

√
2(|+〉 + |−〉), where Ŝz |±〉 = ±h̄/2 |±〉. Accordingly,

we have Û (t f , 0) = e−i
t f /2 |+〉 〈+| + ei
t f /2 |−〉 〈−|, which
provides that the state of the system after a time t f = π/


is |ψ (π/
)〉 = Û (π/
, 0) |ψ (0)〉 = −i/
√

2(|+〉 − |−〉) =
|Sx,−〉, up to a global phase factor −i. Overall, we observe
that �t = π/
 is the shortest time interval for which the
constant magnetic field B = B0ẑ causes a spin flip in the x
direction. The uncertainty in energy of the initial state |ψ (0)〉
can be found to be �E =

√
〈Ĥ2〉 − 〈Ĥ〉2 = h̄
/2. Hence,

this configuration satisfy the relation �t�E = h̄π/2, which
is the limit of the Mandelstam-Tamm bound [42], i.e., the
quantum speed limit [43].

Now we investigate the effect of the TR protocol obtained
from the reference process above. In this regard, for us to
achieve an identical spin flip with the same initial and final
Hamiltonians, in a shorter time interval, we should apply the
Hamiltonian

Ĥ(τ ) =
[

a − (a − 1) cos

(
2πa

t f
τ

)]

Ŝz (18)

between τ = 0 and τ = t f /a = π/
a, with the contraction
factor a > 1. Indeed, if we have again the initial state as
|ψ (0)〉 = |Sx,+〉, the TR evolution generated by Ĥ(τ ) pro-
duces

|ψ (π/
a)〉 = Û (π/
a, 0) |ψ (0)〉

= exp

{
− i

h̄

∫ π/
a

0
Ĥ(τ )dτ

}
|Sx,+〉

= exp

{
− iŜz

h̄
π

}
|Sx,+〉 = |Sx,−〉 , (19)

up to the same global phase factor −i of the original pro-
tocol. As desired, the TR protocol had the same effect of
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FIG. 7. Time dependence of the magnetic field intensity for some
values of the contraction factor a. We observe that the shorter the
time interval of the TR protocol, the higher the intensities involved.
As required in the STA criteria, all fields have the same intensity B0

of the reference (a = 1) protocol at the initial and final times.

the reference one, with the same final Hamiltonian. Similar
to the previous examples, the reference protocol with the
Hamiltonian Ĥ does not have to be necessarily adiabatic. In
such case, as already mentioned, the TR process generated
by Ĥ(τ ) satisfies all STA requirements. About the time en-
ergy uncertainty relation, we have now that �t�E = h̄π/2a.
This result is not a violation of the Mandelstam-Tamm limit
because this bound is not valid for driven dynamics, i.e.,
parametrically varying Hamiltonians [43,44]. For the sake
of comparison, in Fig. 7 we show the time dependence of
the magnetic fields for the reference and TR processes with
different values of a.

Additional important information can be obtained from the
curves shown in Fig. 7 with respect to the time rescaling
method. For example, the shorter the time demanded to realize
a given dynamics, the higher the intensity of the field required.
This characteristic is not exclusive to the present example,
or to a restrict class of quantum systems. In fact, the inte-
grals composing the argument of the exponential operators in

Eqs. (2) and (3),
∫ t f

0 Ĥ (t )dt and
∫ f −1(t f )

f −1(0) Ĥ(τ )dτ , respectively,
must be equal if we want that the reference and TR processes
produce the same resulting effect. However, these definite
integrals can be geometrically understood as the area under
the energy versus time curve, which means that a shorter
TR process demands more energy, i.e, the external fields
responsible for generating the dynamics must be more and
more intense. Therefore, in practice, the achievement of very
short TR processes is limited both by the intensity of the
fields employed, and the fidelity of its actual time evolu-
tion to the prescribed protocol within the desired short time
interval.

VI. COMPARATIVE ANALYSIS
WITH OTHER STA METHODS

At this stage, it is interesting to compare our TR quantum
dynamics proposal with other existing STA methods [22].
First, we notice that our preliminary idea of “accelerating” a
given quantum process is similar to that of the FF dynamics

[24,25]. However, in that proposal the objective is to derive
an alternative potential from a reference one in which the
wavefunction of the system have its dynamics accelerated at
some rate α, called magnification factor. The focus of that
method is mostly on the dynamics of spatial wavefunctions,
which faces a problem when the Hamiltonian has a kinetic
energy term, requiring a change in the mass of the particle.
Here, when solving the problem of the parametric oscillator,
we also faced a similar obstacle. Nevertheless, we showed
that this can be circumvented by manipulating the momentum
with an external time-dependent magnetic field, whereas the
FF approach deals with it by keeping the kinetic energy term
unchanged, modifying only the potential, unavoidably making
it nonlinear, and externally controlling the phase of the wave
function.

In general, both methods seem to be more difficult to
realize experimentally for continuous Hamiltonians, but the
present one has been shown to be rather simpler for discrete
ones. Moreover, another advantage in using the TR approach
is that, contrary to the FF method [45], it is state-independent,
as could be noticed in the examples above. This can also be
seen from the fact that in developing the TR protocol, we only
manipulated the evolution operator, leaving the initial ket state
unchanged [see the discussion after Eq. (3)]. For the sake of
comparison, we refer to the application of the FF protocol to
some of the cases studied here: the parametric oscillator [46],
and the spin-1/2 in a magnetic field [47]. In both situations,
the auxiliary FF potential that generates the STA evolution
depends on the initial state of the quantum system.

With respect to the CD method, as mentioned in the Intro-
duction, one of the difficulties is that one needs to know the
instantaneous eigenkets of the reference Hamiltonian Ĥ0(t ),
|nt 〉, a problem that is not found here. Another point is that
the auxiliary Hamiltonian Ĥ1(t ) are in many cases of interest
computable analytically, even for continuous spectra, but the
experimental realization is problematic [14]. Comparatively,
a further point which must be mentioned is that, contrary to
CD processes, our TR protocol is not transitionless. In fact,
if we observe Eqs. (2) and (3), we see that the reference
and TR evolution operators are only equivalent for those
specific limits of integration, i.e., they differ from each other
at intermediate times. It means that if the reference protocol is
adiabatic, i.e., the physical system remains in its instantaneous
eigenstate along the whole evolution, the corresponding TR
process will only provide this effect with certainty at the final
time.

VII. CONCLUSION

We have proposed a state-independent mechanism to speed
up the evolution of a quantum state by rescaling the time
dependence of a reference evolution protocol. In comparison
with the reference protocol, the time duration of the proposed
TR process can be shortened by an arbitrarily large contrac-
tion factor. Moreover, the initial and final Hamiltonians are
preserved, and no information about the spectrum of the sys-
tem is needed. For the case in which the reference protocol is
adiabatic, it is shown that the TR protocol works as a shortcut
to adiabaticity, which has been proven to have a number
of practical applications in the quantum control of several
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systems. To illustrate the present findings, we discussed our
approach under the perspective of the parametric oscillator,
the transport of a particle in a harmonic trap, and the spin-
1/2 particle in a magnetic field. Overall, we believe that the
present speed up operation has potential applications in many
quantum technologies as finite-time quantum thermodynam-
ics and many-body state engineering.
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