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The Bethe-Salpeter equation (BSE) is the standard computational method for optical excitations in solids,
including excitonic effects. In this paper we explore ways to reduce the computational cost of the BSE by
simplifying the dielectrically screened Coulomb interaction: Instead of calculating the dielectric function from
first principles, we replace it by a momentum-dependent model dielectric function or just by a single parameter.
Combined with a semilocal exchange-correlation kernel, this defines an alternative class of hybrid functionals
for solids within generalized time-dependent density-functional theory. We perform a systematic assessment of
these simplified approaches and find that they yield optical absorption spectra and exciton binding energies of
semiconductors and wide-gap insulators in close agreement with the standard BSE and with experiment. We also
present applications to the perovskite material CsPbBr3 as an example of a more complex system.
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I. INTRODUCTION

Excitonic effects play a critical role in the optical prop-
erties of electronic materials used in light-emitting devices,
photovoltaics, and photocatalysts. The standard method to
describe the excitons—coupled and correlated electron-hole
quasiparticles (QPs)—is through a Green’s-function-based
approach known as the Bethe-Salpeter equation (BSE) [1–3].
For extended systems, the BSE is the most accurate method
to calculate optical properties [4–6], but this accuracy tends to
come with a rather high computational cost.

Excitons originate from the Coulomb interactions within
the electron-hole pairs that are created during optical excita-
tion processes. Coulomb interactions in electronic materials
have classical and nonclassical contributions, also known as
direct (or Hartree) and exchange-correlation (xc); for exci-
tons, screened Coulomb exchange (where the screening can
be viewed as a form of correlation) is the key mechanism
of electron-hole interaction, whereas the Hartree interaction
gives rise to so-called local-field effects, which are less in-
fluential. The BSE accounts for all of these effects from first
principles.

The main computational effort within the BSE is spent on
the screened Coulomb exchange interactions, which require
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constructing the inverse dielectric function using the random-
phase approximation (RPA) [7–9]. Although dynamical ef-
fects are usually neglected, it is still costly to perform RPA
calculations to get fully converged dielectric functions εRPA,
since many unoccupied bands and a relatively dense k-grid
sampling are typically needed.

Over the past decades, remarkable progress has been made
in simplifying the RPA calculations or developing model
dielectric functions [10–13]. By substituting εRPA with such
model dielectric functions, not only the optical properties
but also the quasiparticle band structure (within the GW
approximation) can be reasonably estimated for a wide range
of materials [11,14–17].

An alternative approach to the optical excitation problem is
time-dependent density-functional theory (TDDFT) [18–20].
Using xc kernels with a proper long range, TDDFT can
successfully describe excitonic effects and produce reasonable
optical spectra for solids [21–28].

A very widely used generalization of (TD)DFT [29–31]
is based on hybrid functionals, where a fraction of nonlo-
cal (Hartree-Fock) exchange is combined with semilocal ex-
change and correlation [32–36]. In ground-state DFT, hybrid
xc functionals have gained increased popularity for calcu-
lating electronic band structures, since they offer a practical
solution to DFT’s band-gap problem [37–49]. There also are
a few applications of hybrid xc functionals to describe excita-
tions in periodic solids [50–53]. In particular, the so-called
optimally tuned range-separated hybrids produce excellent
results for organic molecular crystals [54,55]. Recently, Wing
and co-workers [56,57] showed that range-separated hybrids
with an empirical parameter agree well with GW BSE results
for several materials.
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In a similar context, a screened exact exchange (SXX)
approach was recently proposed by Yang et al. [58]. The
SXX can be viewed as a simplified BSE approach, where
the dielectric function is replaced by a uniform screening
parameter γ , but it can also be seen as a special type of hybrid
functional where the semilocal xc part is not included. In the
original work [58], γ was determined nonempirically as the
inverse of the dielectric constant. This approximation only
requires RPA calculations at q = 0, leading to a significant
computational speedup. Moreover, γ can also be obtained
using dielectric constants from experiment.

The purpose of this paper is a systematic assessment of
simplified BSE schemes, including BSE based on model
dielectric functions, SXX, and a proposed hybrid functional
which combines SXX with a fraction of local exchange
and correlation. The primary goal is to find a nonempirical
approach which can be used to calculate excitonic effects
in complex materials for which the standard BSE is unaf-
fordable, but with similar (or perhaps even better) accuracy
compared to experiment.

We will mainly focus on calculating exciton binding ener-
gies and optical spectra in simple semiconducting and insu-
lating materials, with particular emphasis on practical aspects
such as convergence with respect to the number of reciprocal
lattice vectors, and robustness under small variations of the
dielectric screening. To demonstrate the capability of the sim-
plified BSE schemes, we also present a detailed study of the
cubic perovskite material CsPbBr3. The performance of the
simplified BSE schemes turns out to be excellent throughout;
the hybrid functional is found to work particularly well for the
wide-gap insulators LiF and solid Ar.

The paper is organized as follows. In Sec. II we present
the theoretical background of the BSE formalism and its
simplifications and discuss some computational details. In
Sec. III we present results for a variety of common insulators
and semiconductors, as well as for CsPbBr3, and we assess
the performance of the simplified BSE schemes. Section IV
contains our conclusions and a general outlook. Various addi-
tional technical details are given in the Appendix.

II. THEORY AND METHODOLOGY

A. Simplifying the dielectric screening in the BSE

The BSE can be expressed as a matrix equation [59](
A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(−1 0
0 1

)(
Xn

Yn

)
, (1)

where A and B are defined in quasiparticle transition space
(including excitations and deexcitations), (Xn, Yn) are the
nth eigenvectors, and ωn is the nth excitation energy. The
deexcitation effects are usually negligible in the BSE with
momentum transfer q = 0 [28,60]. Therefore, we here adopt
the Tamm-Dancoff approximation, which means B is set to
zero [27,60]. Then Eq. (1) can be simplified as[

(Ec,k − Ev,k′ )δvv′δcc′δkk′ + KBSE
cvk,c′v′k′

]
Yn = ωnYn. (2)

Here v denotes occupied valence bands, c denotes unoccu-
pied conduction bands, and the Ek are single-(quasi)particle
energies. Equation (2) features the coupling matrix KBSE =
Kd + Kx, which is also called the BSE kernel. The first part

of KBSE is the direct interaction

Kd = 2

Vcell

∑
G �=0

4π

|G|2 〈ck| eiG·r |vk〉 〈v′k′| e−iG·r|c′k′〉, (3)

which will remain the same for all the methods in the present
work. The second part is the exchange kernel

Kx(q, ω) = 2

Vcell

∑
G,G′

WG,G′ (q, ω)δq,k−k′

× 〈ck|ei(q+G)r |c′k′〉 〈v′k′| e−i(q+G′ )r|vk〉, (4)

which is much more expensive to calculate than Kd. The
main computational cost comes from the construction of the
screened Coulomb interaction WG,G′ (q), given by

WG,G′ (q, ω) = − 4πε−1
G,G′ (q, ω)

|q + G||q + G′| . (5)

The inverse dielectric function ε−1
G,G′ (q, ω) is obtained from

first principles via

ε−1
G,G′ (q, ω) = δG,G′ + 4π

|q + G|2 χRPA
G,G′ (q, ω), (6)

where χRPA
G,G′ (q, ω) is the density-density response function in

the random-phase approximation.
For most practical BSE calculations, a widely used treat-

ment is to ignore the frequency dependence of the dielectric
function and use ε−1

G,G′ (q, ω = 0) [4,5,61]. However, the ω-
dependent dynamic effects of the dielectric screening may
have a non-negligible influence on the electron dynamics
[62,63], which can be estimated by methods such as gener-
alized plasmon-pole models [64–66]. In the present work we
use the static approximation throughout and refer to this as the
standard BSE approach or simply as the BSE.

Even if the static approximation is made, the RPA calcula-
tion for the dielectric function is still one of the most resource-
demanding steps for the whole process of first-principles BSE
calculations, because it requires a summation over the q grid
in the reduced Brillouin zone, in addition to a double sum
over the reciprocal wave vectors G and G′. Furthermore, many
unoccupied bands must be included in χRPA to obtain a fully
converged dielectric function.

Alternatively, one can replace the RPA dielectric function
by a model dielectric function or just a simple parameter, both
of them diagonal in G, G′:

ε−1
G,G′ (q, 0) −→

{
ε(q)−1δG,G′ (m-BSE)

γ δG,G′ (SXX).
(7)

Here m-BSE stands for the BSE with a model dielectric func-
tion and SXX stands for screened exact exchange, following
Ref. [58] (if γ = 1, the method reduces to time-dependent
Hartree-Fock, hence the name SXX). We also considered
the head-only SXX (h-SXX), where we set ε−1

G,G′ (q, 0) =
γ δG,G′δG,0.

Here we adopt the model dielectric function by Cappellini
et al. [13],

ε(q) = 1 +
{

1

ε(0) − 1
+ α

(
q

qTF

)2

+ h̄2q4

4m2ω2
p

}−1

, (8)
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where q = |q + G|, α = 1.563 is an empirical parameter, and
qTF and ωp are the Thomas-Fermi wave vector and the plasma
frequency, respectively, obtained with the average electron
density of the system. Finally, ε(q) requires the dielectric con-
stant ε(0) as input, which can be either taken from experiment
or calculated as the head of the RPA inverse dielectric function
ε(0) = 1/(εRPA)−1

0,0(q = 0), using Eq. (6).
In Ref. [58] it was proposed that the screening parameter γ

in SXX be determined from a first-principles RPA calculation:

γ = (εRPA)−1
0,0(q = 0) = 1/ε(0). (9)

In fact, the role of ε−1
0,0 could be regarded as an overall account

of the Coulomb screening effects for the optical excitation
when q → 0. Furthermore, the ε(0) or γ in the m-BSE and
SXX can also be treated as empirically adjustable parameters.
Such flexibility could be helpful when the RPA dielectric
function alone is not sufficiently accurate for excitonic effects,
for instance, due to the presence of lattice screening effects
[67]. We use the definition of the screening parameter in
Eq. (9) for m-BSE, SXX, and the hybrid functional kernel
throughout, unless explicitly stated otherwise.

The main advantage of m-BSE and SXX is avoiding the
full RPA calculation of the momentum-dependent dielectric
function. Another advantage is that the off-diagonal terms of
WG,G′ are eliminated. As we will see below, the off-diagonal
terms of the dielectric function are not important for the opti-
cal response in semiconductors, but in insulators with strong
short-range interactions, the effect of the off-diagonal terms
[local-field effects (LFEs)] can be non-negligible. Overall, it
will turn out that the simplified schemes developed here agree
closely with the BSE while leading to a significant reduction
of computational cost (as detailed in Appendix D).

B. From the simplified BSE to generalized TDDFT:
A hybrid functional for excitons in solids

In ground-state DFT, the central idea of hybrid functionals
is to write the xc energy functional as [32–36]

Ehybrid
xc = aE exact

x + (1 − a)E sl
x + E sl

c , (10)

where E exact
x is the exact Fock exchange energy functional

and E sl
x,c are approximate semilocal exchange and correlation

functionals, respectively. The parameter a (often chosen as
a ≈ 0.25) mixes exact exchange with semilocal exchange.

While hybrid functionals have found widespread applica-
tion for periodic solids due mainly to their excellent per-
formance for calculating band gaps [37–49], there have so
far been relatively few applications of hybrid functionals
for optical spectra in semiconductors and insulators [50–57].
Here we propose a nonempirical hybrid approach specifically
designed to produce excitonic properties in close agreement
with the BSE. The idea is to combine the long-range SXX
with an approximate treatment of xc local-field effects via the
adiabatic LDA (ALDA), in the following way: In the BSE
equation (2) we replace the screened exchange part of the BSE
kernel Kx with the hybrid kernel

Khybrid
xc = KSXX + (1 − γ )KALDA

xc , (11)

where

KSXX(q) = − 2

Vcell

∑
G

δq,k−k′
4πγ

|q + G|2

×〈ck|ei(q+G)r |c′k′〉 〈v′k′| e−i(q+G)r|vk〉 (12)

and

KALDA
xc (q) = 2

Vcell
lim
q→0

∑
G,G′

f ALDA
xc,GG′ (q)

×〈ck|ei(q+G)r |vk〉 〈v′k′| e−i(q+G′ )r|c′k′〉. (13)

Here f ALDA
xc,GG′ (q) is the local frequency-independent xc kernel

in the ALDA [20].
The construction of our hybrid kernel (11) differs

from standard generalized (TD)DFT hybrid expressions [see
Eq. (10)] in that we reduce the entire local xc part by a factor
1 − γ , whereas in Ehybrid

xc only the exchange part is reduced
and not the correlation part. The reason for this is that the
screening in SXX is in essence a correlation effect, so we
must reduce all of KALDA

xc (not just the exchange part) in order
to avoid overcounting of correlation. While this is of course
just a simple approximation, it nevertheless captures essential
aspects of the behavior of screened electron dynamics in
solids and, as we will see below, Khybrid

xc leads to good results.

C. Computational details

To calculate Kohn-Sham band structures, we used the LDA
functional in the QUANTUM ESPRESSO package [68], employ-
ing a plane-wave basis along with optimized norm-conserving
Vanderbilt pseudopotentials [69]. The electronic band gaps
were then corrected to the experimental value by applying
scissors operators [70,71]. Experimental lattice parameters
were used for all materials.

With the so-obtained Kohn-Sham band structures, we used
the YAMBO code [72] to perform our calculations for optical
excitations. We used a 28 × 28 × 28 	-centered k-point mesh
for GaAs and Si. The k grids for the other materials are 24 ×
24 × 24 for z-GaN and CdS, 24 × 24 × 12 for w-GaN and
AlN, and 16 × 16 × 16 for LiF and Ar. The RPA dielectric
functions were calculated with at least 60 conduction bands
and 200 G vectors. To build the BSE and ALDA kernels,
we used three valence bands and three conduction bands for
GaAs and Ar. The corresponding numbers of valence and
conduction bands for the other materials are four valence and
four conduction bands for z-GaN, Si, w-GaN, and AlN and
five valence and five conduction bands for CdS and LiF (with
the 1s electrons of Li included in the pseudopotential).

We used Haydock iteration to solve the BSE-type equa-
tions, instead of directly diagonalizing the huge BSE matrix.
To identify the position of excitons in the spectra, a smaller
broadening of 0.002 eV is used; to calculate optical spectra, a
much larger broadening of 0.1 eV is used. It is well known that
large numbers of k points are required to obtain converged
spectra [73,74]. We adopted the random integration method
and inversion solver in YAMBO [72,75]. In this scheme, the
optical spectra of z-GaN are calculated with a double k grid,
which includes a 12 × 12 × 12 	-centered uniform k-point
mesh and 20 000 random interpolated k points.
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TABLE I. Exciton binding energies for various elemental and
binary materials, comparing calculated and experimental results. All
energies are in meV, except for LiF and Ar (eV). The experimental
data are from Refs. [76–86].

Approach GaAs Si CdS z-GaN w-GaN AlN LiF Ar

BSE 24 42 59 103 110 181 2.05 1.83
m-BSE 24 43 59 103 108 185 2.17 1.78
SXX 24 41 58 101 106 177 1.93 1.75
h-SXX 25 43 58 101 106 176 1.77 1.70
Hybrid 24 41 59 102 107 180 2.00 1.80
Expt. 4 14 28 26 20 75 1.6 1.9

III. RESULTS AND DISCUSSION

A. Elemental and binary materials

We assess the performance of m-BSE, SXX, and the hybrid
kernel for Si and for several common binary compounds,
namely, the semiconductors GaAs, GaN with zinc-blende and
wurtzite structure (z-GaN and w-GaN, respectively), AlN, and
CdS, and the wide-gap insulators LiF and Ar. The strength
of the excitonic effects in these materials covers a wide
range, with the exciton binding energy Eb varying over three
orders of magnitude. Furthermore, CdS was chosen to give an
example for systems containing transition metals.

1. Exciton binding energies

Table I shows Eb for the materials mentioned above, cal-
culated with various approaches and compared to experiment.
The results are also graphically illustrated in Fig. 1.

Compared to experiment, the standard BSE tends to sys-
tematically overbind the excitons. There are several reasons
for this: mainly the k-point sampling, but also underestimation
of dielectric screening for some materials and exclusion of dy-
namic effects for both band structures and optical properties.
We present the evolution of Eb depending on the number of
k points in Appendix A, which shows the same convergence
behavior for all methods under study. According to Ref. [4],

FIG. 1. Exciton binding energies Eb calculated with different
variants of BSE and SXX for GaAs, Si, z-GaN, w-GaN, CdS, AlN,
LiF, and Ar, compared with experimental values.

for the excitons in GaAs one would have to increase the
k-point grid density to 108 k points in the Brillouin zone to
reach the limits of numerical precision, which is obviously
unaffordable.

However, our goal is not to reproduce the experimen-
tal Eb to the maximal level of attainable precision, but to
demonstrate that the simplified BSE approaches are good
approximations for the full BSE. In other words, we here
compare theory with theory, taking the full BSE at a given
(affordable) level of numerical precision as the benchmark for
the other, more approximate, methods.

For all semiconductors considered, we find that the Eb

calculated with m-BSE, SXX, and the hybrid functional are
remarkably close to the BSE results (to within a couple of
meV for GaAs, Si, CdS, and GaN and to within 10 meV for
AlN), which demonstrates the usefulness of these approaches.

The Eb calculated with h-SXX are practically identical
to those obtained with SXX, except for LiF and Ar. This
indicates that the influence of the LFEs on the excitons is
negligible in most covalent semiconductors, and only the
long-range electron-hole interaction is relevant. By contrast,
in ionic insulators such as LiF and wide-gap materials such as
solid Ar, the Frenkel-type excitons are tightly bound around
the ions. Although the long-range excitonic interactions are
still dominant, the diagonal short-range interaction and LFEs
play a much more important role than for semiconductors. In
the following, we focus on LiF; the behavior in Ar is similar.

We found that Eb of LiF calculated with m-BSE (2.17 eV)
is larger than that of the BSE (2.05 eV). This overestimation
by m-BSE can be mainly attributed to the neglect of the
off-diagonal G, G′ terms of the dielectric function. To confirm
this, we considered a diagonal BSE (d-BSE) by setting G =
G′ in Eq. (5), which also results in a larger Eb (2.25 eV)
compared to the BSE.

On the other hand, the diagonal terms in the dielectric func-
tion are even more critical. Compared with the m-BSE, SXX
reduces Eb by 0.24 eV. A main reason for this is that SXX does
not consider the decay of the dielectric function depending on
q, and thus the diagonal short-range electron-hole interactions
in LiF are overscreened. Nevertheless, our results shows that
one can still use m-BSE and SXX to calculate Eb in insulators
with moderate deviations from the full BSE.

According to the discussion above, the LFEs play a sig-
nificant role for ionic insulators. In our hybrid functional,
the LFEs are included via the ALDA kernel. For LiF (see
Table I), Eb calculated with the hybrid functional is 2.00 eV,
which deviates by only 0.05 eV from Eb by the BSE; by
comparison, Eb by m-BSE deviates by 0.12 eV from the BSE.
The hybrid functional corrects not only the diagonal short-
range interaction but also the off-diagonal LFE. Therefore,
one can expected our hybrid functional to generally perform
well for excitons in insulators.

2. Convergence with the number of G vectors

The computational cost of the BSE and its simplified
versions depends not only on the complexity of the kernel Kx,
i.e., whether the full inverse dielectric matrix ε−1

GG′ is required,
only the diagonal elements of it, or just a simple model such as
ε(q) or γ , but also on the number of reciprocal lattice vectors
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FIG. 2. The G-vector-dependent convergence behavior of Eb in
d-BSE, BSE, m-BSE, and SXX, for z-GaN and LiF.

NG which are needed to achieve converged results. Thus, even
if a method is formally simpler than the BSE, a large NG could
make it computationally unfavorable.

To test the convergence with respect to NG, we take z-GaN
and LiF as representative examples for semiconductors and
insulators with direct band gaps and well-separated excitonic
peaks in the optical spectrum. We consider Eb to be converged
if it changes by less than 0.5 and 5 meV for z-GaN and LiF,
respectively. The dependence of Eb on NG is plotted in Fig. 2
for the two materials. In addition to the BSE, m-BSE, and
SXX, we also considered d-BSE (only diagonal elements in
the BSE kernel). We did not test the NG dependence for the
hybrid kernel, since its screened exchange part is the same
as SXX and its ALDA part is treated in the same way as the
direct kernel [see Eqs. (3) and (13)].

For z-GaN, all four methods show a quick convergence,
and we find that 51 G vectors are enough. For LiF, on the other
hand, 169 G vectors are needed. The different convergence of
z-GaN and LiF is mainly due to the stronger bound excitonic
effects in LiF, which makes the short-range interactions more
critical. This can be clearly seen by comparing m-BSE and
d-BSE in LiF: The differences seen in Fig. 2(b) result from the
differences between the model and RPA dielectric functions
(see Appendix C for more details).

It is also interesting that the finally converged Eb (NG =
169) using d-BSE differs from the initial Eb (NG = 0) by
at least 120 meV, but the corresponding difference for the
BSE is less than 90 meV [see Fig. 2(b)]. A similar but less
pronounced tendency is found in z-GaN. This can clearly
be attributed to the effects of the off-diagonal terms in the
dielectric screening.

TABLE II. SXX, m-BSE, and hybrid exciton binding energies
Eb, with inverse dielectric constants (εRPA )−1

0,0 varied within a 10%
range, for z-GaN (in meV) and LiF (in eV).

z-GaN LiF
Approach +10% (εRPA )−1

0,0 −10% +10% (εRPA )−1
0,0 −10%

SXX 92 101 112 1.63 1.93 2.34
m-BSE 93 103 114 1.87 2.17 2.57
hybrid 92 102 113 1.68 2.00 2.42

Regardless of the details above, we find for both small-
and large-gap materials that the number of G vectors needed
for convergence is similar for the BSE, m-BSE, SXX, and the
hybrid kernel.

3. Variation of the screening parameter

The screened Coulomb interaction W in Eq. (5) is de-
termined by the RPA dielectric function, which requires the
Kohn-Sham band structure as input. Moreover, εRPA

0,0 is usually
used to obtain the macroscopic dielectric constant as εM ≈
1/(εRPA)−1

0,0. As mentioned before, one can also manually
adjust ε(0) or γ in m-BSE, SXX, and in the hybrid functional,
in the spirit of an empirical calculation.

The accuracy of 1/(εRPA)−1
0,0 relies on the Kohn-Sham band

structure, and therefore on the DFT approximation used; on
top of this, convergence with the number of k points and
unoccupied bands may sometimes be difficult to achieve for
reasons of computational cost. This raises the question of how
sensitive the calculated excitonic effects are to variations of
the dielectric constant. From prior experience [27,87] it is
known that 1/(εRPA)−1

0,0 can differ from εM by about 10%.
In the following, we will perform tests to see how Eb is
influenced by fluctuations of the dielectric screening.

In Table II we list the calculated Eb via m-BSE, SXX,
and the hybrid functional with 1/ε(0) = γ = (εRPA)−1

0,0 and
(εRPA)−1

0,0 ± 10% for z-GaN and LiF. In the case of z-GaN,
+10% and −10% (εRPA)−1

0,0 lead to 90% and 112% Eb, respec-
tively. This suggests that for small-gap materials the exciton
binding energy changes linearly under variation of (εRPA)−1

0,0
in the 10% range for all three methods considered.

This linearity no longer quite holds for LiF, and there
appears to be a greater sensitivity of the excitonic effects to
variations of the screening parameters. With a 10% increase
of (εRPA)−1

0,0, Eb decreases by 0.3 eV (i.e., by about 15%)
for all three methods. Under a 10% decrease of (εRPA)−1

0,0,
Eb reacts more strongly and increases by 0.4 eV. We found
the hybrid functional a little more sensitive (see Table II).
Due to the negative sign of KSXX in Eq. (12), the screened
part of the ALDA (−γ KALDA

xc ) actually amplifies the response
of KSXX to the variation of γ . However, since KALDA

xc con-
tributes much less to the dominant long-range interaction, the
hybrid functional shows a sensitivity similar to SXX for both
z-GaN and LiF.

We note that in Eq. (8), the parameter ε(0) is defined as
the dielectric constant. However, the dielectric constant from
the RPA (εRPA

0,0 ) differs a little from 1/(εRPA)−1
0,0. It should

be obtained by strictly computing the inverse of the matrix
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(εRPA)−1
G,G′ in Eq. (6) and then taking the head of the new

matrix as

εRPA
0,0 = [

(εRPA)−1
G,G′

]−1
q=G=G′=0, (14)

where the LFEs are included in the dielectric constant. Using
Eq. (14), we obtained εRPA

0,0 = 5.8 for z-GaN, which is 10%
larger than 1/(εRPA)−1

0,0 = 5.3. According to Table II, Eb will
be 114 meV if ε(0) = εRPA

0,0 = 5.8 for m-BSE. Although one
should use ε(0) = εRPA

0,0 for calculating the dielectric function
in Eq. (8), the results by m-BSE with 1/(εRPA)−1

0,0 applied
are in close agreement with those by the BSE. The reason is
that by substituting 1/(εRPA)−1

0,0 for ε(0) in Eq. (8), one will
get ε−1(q = 0) = (εRPA)−1

0,0. Our m-BSE calculations there-
fore reproduce the BSE results. The physical interpretation
is to obtain the ε−1(q) for dielectric screening for WG,G′ ;
the LFEs (off-diagonal terms) actually have to be consid-
ered again as the opposite process of Eq. (14). Therefore,
ε(0) = 1/(εRPA)−1

0,0 makes more sense and offers closer re-
sults to the BSE when estimating the dielectric screening for
excitons.

4. Optical spectra

Besides the exciton binding energy, it is important to
evaluate the overall shape of the optical spectrum. The spectra
of z-GaN, obtained with a 163 	-centered uniform k-point
mesh using the m-BSE, SXX, hybrid functional, and BSE,
are shown in Fig. 3(a). The BSE and m-BSE result in very
similar spectra except for some minor differences in the
higher-energy range after 5 eV. Compared to the BSE, SXX
and the hybrid functional reproduce all the main peaks, but
with an overall smaller oscillator strength.

However, the 163 k-point mesh is not dense enough. The
optical spectra calculated with the double k-grid method are
plotted in Fig. 3(b). The calculated curves are much more
smooth than those in Fig. 3(a) and are closer to experiment.
The SXX spectrum matches the experiment best among all
the methods, but this may be fortuitous and might not be the
case in other materials. In fact, the main source of error in
the BSE spectra is that we completely excluded dynamical
effects by using a scissors operator for the QP energies and
setting ω = 0 in the BSE dielectric screening. The dynamical
effects due to the self-energy influence both the (single)
QP renormalization and the excitonic interaction [62]. If the
QP energies are obtained by the GW method, we are able
to reproduce the experimental spectrum much better (see
Appendix B).

For LiF, we only use a 163 k-point mesh, which is already
sufficient for obtaining a reasonable shape of the spectrum.
As shown in Fig. 4, the BSE predicts a lower excitation
energy than the experiment for the first exciton, in agreement
with prior studies [4,5,89]. The first excitonic peak using
SXX differs from the BSE in position and height. Due to
the stronger screening in SXX, the calculated peak slightly
moves towards the experimental peak, along with a smaller
oscillator strength. The m-BSE shifts the exciton to an even
lower energy, but reproduces the height of the BSE peak. As
expected, the hybrid functional agrees best with the BSE.

FIG. 3. Optical spectra for z-GaN, calculated by the BSE, m-
BSE, SXX, and the hybrid functional with (a) uniform (163) k grid
and (b) double k grid (123 + 20 000 random). The dashed line shows
the experimental band gap. For all spectra, a 0.1-eV broadening was
applied. The experimental data are taken from Ref. [77].

B. Application in cubic CsPbBr3

The reduced computational cost makes m-BSE and SXX
attractive for studying excitons in more complex systems.
Here we take one of the simplest perovskites, cubic CsPbBr3,
as an example of a material where the spin-orbit cou-
pling (SOC) must be included. To calculate the Kohn-Sham
band structure, we use a 6 × 6 × 6 	-centered uniform k-
point mesh, along with the Perdew-Burke-Ernzerhof (PBE)

FIG. 4. Optical spectra for LiF, calculated by the BSE, m-BSE,
SXX, and the hybrid kernel with a 163 k grid. The dashed line shows
the experimental band gap. For all spectra, a 0.1-eV broadening was
applied. The experimental data are taken from Ref. [88].
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FIG. 5. (a) BSE optical spectra of CsPbBr3 with and without
SOC. (b) Comparison of the BSE (solid line), SXX and m-BSE with
εRPA (dashed lines), and SXX and m-BSE with ε = 30 (dash-dotted
lines). For all the spectra, SOC was included and a 0.1-eV broadening
was applied. The experimental data are taken from Ref. [93]. The
vertical dashed lines show the experimental electronic band gap.

functional [90]. We obtain a Kohn-Sham band gap of 0.54 eV,
in agreement with previous calculations [91]. We then apply
a scissors shift of 1.82 eV to generate a QP band gap which
reproduces the experimental gap [92]. To keep the degeneracy,
we use eight valence bands and eight conduction bands to
build the BSE kernels. The Bethe-Salpeter-type equation is
then solved by the inversion solver in YAMBO with 7500
random interpolated k points. We do not use the hybrid
functional for CsPbBr3, because an implementation of SOC
in the adiabatic PBE kernel is not available in YAMBO.

It is well known that the strong SOC from Pb significantly
affects the electronic and optical properties of lead halide
perovskites. In Fig. 5(a) we plot the optical spectra of CsPbBr3

calculated with and without SOC. There is a huge difference
between two spectra, especially in the range of visible light
(less than 3.1 eV). The SOC significantly splits the valence
and conduction bands near the Fermi level [94], which reduces
the oscillator strength at lower energies. Our results confirm
the importance of SOC for optical properties of CsPbBr3 on
the level of many-body theory. In the following, the SOC is
included throughout.

Here we use the experimental data from Ref. [93], which
is widely accepted in the literature [95,96], but there are other
experiments which produce a much sharper peak at the same
position [97–99]. However, the computed perovskite structure
is quite sensitive, and the cubic phase we use in this work
is actually a high-temperature phase. Thermal vibrations are

likely to induce additional broadening effects on the spectrum,
which is not included in our calculations.

The calculated excitonic binding energies are 32, 28, and
27 meV by the BSE, m-BSE, and SXX, respectively. These
values lie within the range (2–62 meV) quoted in the exper-
imental and theoretical literature [95,96,100,101]. It should
be pointed out that these calculated values are obtained with
1/(εRPA)−1

0,0 = 5.96. On the other hand, the experimental di-
electric constant of CsPbBr3 is reported to be in a wide range
from 5 up to 40, though orthorhombic phase samples are
used in some works [97,98,102]. To account for this, we also
calculated Eb with ε(0) = 1/γ = 9, 16, and 30 via m-BSE
and SXX. With ε(0) = 1/γ = 9, we find Eb = 3 meV for
both m-BSE and SXX, which agrees with the experimental
measurements of Ref. [100]. However, there is no excitation
located below the electronic band gap with the other two
higher screening parameters of 16 and 30. This implies that
excitonic effects in CsPbBr3 are well described using static
electronic dielectric constants with both m-BSE and SXX,
though the lattice screening is also critical to the dielectric
response when measured by different experiments. Our re-
sults show that the excitons have a stronger dependence on
electronic screening [103].

In Fig. 5(b) we compare the BSE, m-BSE, and SXX optical
spectra with experiment. As shown in the figure, the m-BSE
and SXX spectra, which were calculated from first principles
using 1/(εRPA)−1

0,0 = 5.96, are similar to the BSE in the range
of visible light. All three methods successfully reproduce the
excitonic peak just above the band gap, though the calculated
peaks are much more pronounced than the experimental one.
We mention that the single-particle optical spectrum (see
Ref. [94]) smoothly increases without any obvious excitonic
peak.

There are two main differences between the SXX and BSE
spectra. The absorption strength by SXX is not as strong as
with the BSE, which we already observed in z-GaN. The other
difference is the spectrum for excitation energy above 3.5 eV.
The imaginary part of the BSE dielectric function decreases
beyond 4 eV, which is not observed in the experiment. On the
other hand, the SXX spectrum comes to a sharp drop around
4.9 eV, which is in agreement with the experiment.

One potential reason for the behavior of the BSE is the
effect of free electrons on the dielectric function, which can
be simply expressed as ε(q, nc) = ε∞(1 + q2

TF
q2 ), where the

Thomas-Fermi wave vector is qTF ∝ √
nc. Here nc is the

concentration of free electrons in the system. However, nc

may be seriously underestimated by our model, since we did
not consider free electrons arising from defects or donors in
the experimental sample. The high free-electron concentration
is known to play a critical role in the optical properties in
CH3NH3PbBr3 perovskites [104]. Since a higher nc leads to
a larger ε(q, nc), we get (εRPA)−1(q) � ε−1(q, nc), which is
similar to the relationship between the dielectric screening
of the BSE and SXX, where (εRPA)−1

G,G′ (q) � γ = ε−1,RPA
0,0 .

Hence, we find the SXX optical spectrum to be closer to
experiment.

Since the experimental dielectric constant varies over
a rather wide range from 5 up to 40 [97,98,102], we
also plotted the optical spectra calculated with ε(0) =
1/γ = 30 in Fig. 5(b). Compared with 1/(εRPA)−1

0,0 = 5.96,
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dielectric screening becomes much stronger with ε(0) =
1/γ = 30, bringing two significant changes for both m-BSE
and SXX. Not only is the first peak significantly blueshifted,
but also the optical absorption strength becomes lower. The
continuum spectrum beyond 3.0 eV provides a better match
with the experiment when ε(0) = 1/γ = 30. Further im-
provement could be achieved by carefully choosing ε(0) and
tuning α in Eq. (8) [17], as well as including the free-electron
effects. In addition, the optical spectrum is expected to be
improved by considering the dynamic effects with a QP band
structure as we mentioned for z-GaN.

Finally, we have assessed the computational cost of our
approaches for the case of the perovskite. In Appendix D we
compare the CPU times used by the BSE and SXX and find
that SXX and m-BSE lead to quite a significant speedup of up
to two orders of magnitude, depending on the details of the
calculation.

IV. SUMMARY

The central goal of this paper was to find simplifications
of the Bethe-Salpeter equation for calculating optical spectra
of insulators and semiconductors, with a particular emphasis
on capturing spectral properties, including excitons, close to
the optical gap. The main focus was on reducing the computa-
tional effort that goes into constructing the screened Coulomb
interaction, which is the centerpiece of the BSE approach. In
the BSE, the frequency- and wave-vector-dependent dielectric
function (formally a matrix in the space of reciprocal lattice
vectors) must be computed from first principles using the
RPA. We found that the dielectric function can be replaced by
simple models, or even a single screening parameter, without
significant loss of accuracy. The gain in computational speed
achieved in this way can be considerable.

We combined the simplified BSE kernel (referred to as
screened exact exchange) with a local xc kernel, which consti-
tutes a simple hybrid functional in the context of generalized
TDDFT. We then performed a detailed numerical assessment
of our simplified BSE schemes and the hybrid approach for
several elemental and binary materials, including the wide-
gap insulators LiF and Ar. We also studied a perovskite
material as an example of a more complex system. We found
that all methods produce exciton binding energies and optical
spectra in close agreement with the full BSE.

In DFT, hybrid functionals are becoming increasingly pop-
ular in materials science since they provide an efficient way
to approximate the quasiparticle band structure, which leads
to much improved band gaps. In TDDFT for solids, hybrid
functionals are now also beginning to be used [50–56], and
there are many indications that hybrids may be the most
promising approach to describe excitons from first principles.

In this paper we showed that hybrid functionals directly
follow from a suitably simplified BSE. Our construction is
a very simple one, where the admixture of screened exact
exchange and semilocal exchange and correlation is governed
by a single parameter γ . This parameter can be calculated
using the RPA, which makes the hybrid approach completely
nonempirical; but it can also be taken from experiment, or
fitted to reproduce reference data. Clearly, more sophisticated
constructions such as multiparameter or local hybrids are

possible, and the recent history of DFT shows that such
efforts, combined with systematic assessments using materials
databases or test sets, can be extremely fruitful.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
1810922. The computation for this work was performed
on the high performance computing infrastructure provided
by Research Computing Support Services at the University
of Missouri-Columbia. J.Y. acknowledges support from the
National Natural Science Foundation of China (Grant No.
21688102), the National Key Research & Development Pro-
gram of China (Grant No. 2016YFA0200604), and Anhui
Initiative in Quantum Information Technologies (Grant No.
AHY090400). We thank Matteo Gatti and Sahar Sharifzadeh
for valuable comments.

APPENDIX A: DEPENDENCE OF EXCITON BINDING
ENERGY ON k-POINT SAMPLING

We use the QUANTUM ESPRESSO code [68] for the electronic
band structures and the YAMBO code [72] for the electronic
excitation spectra. In both codes we use uniform k-point
sampling. Here we give an example of the dependence of the
exciton binding energy on the number of k points, for the
case of z-GaN. The calculations are done with the full BSE,
m-BSE, and SXX.

Figure 6 shows the exciton binding energy Eb plotted as a
function of the number of k points Nk for grid sizes ranging
from 16 × 16 × 16 up to 30 × 30 × 30. For all the tested
methods (the BSE, m-BSE, and SXX), Eb shows a quite
similar behavior depending on the k-point sampling density:
Eb decreases monotonically from around 150 meV for 163 k
points down to 80 meV for 303 k points. The experimental
value is 26 meV (see Table I). From the data shown in Fig. 6 it
is clear that Eb is not yet fully converged, which would require
a considerably larger number of k points and would bring the
calculation closer to the experimental value.

A similar convergence analysis (for the quasiparticle gap)
was also recently carried out for two-dimensional materials by
Rasmussen et al. [105]. We also note that Rohlfing and Louie
[4] point out that a converged Eb for GaAs would need around

FIG. 6. Exciton binding energy of z-GaN, as a function of the
number of k points, for the BSE, m-BSE, and SXX.
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108 k points; however, much fewer k points are sufficient if
they are distributed in such a way that there is a high enough
sampling density close to the zone center.

APPENDIX B: QUASIPARTICLE CORRECTIONS
TO THE OPTICAL SPECTRUM OF z-GaN

Figure 3 shows the optical spectra of z-GaN. The BSE cal-
culation deviates from the experimental optical spectrum and
one may suspect that this is because we use LDA+scissors
electronic band structures. To test the influence of the elec-
tronic band structure, we perform a single-shot G0W0 calcu-
lation to obtain quasiparticle corrections to the Kohn-Sham
band structure. The dynamic effects on the quasiparticles are
estimated by the generalized plasmon-pole model [65]. The
calculations in this section are done with a 123 + 20 000 k-
point double grid, which is the same as that for the optical
spectra of z-GaN shown in Fig. 3(b).

In Fig. 7(a) we show the energy levels at the 	 point for
z-GaN, comparing LDA, LDA+scissors, and G0W0. As can
be seen, the G0W0 calculation produces an electronic band gap
of 3.47 eV, which is very close to the experimental value of
3.48 eV. By construction, the LDA+scissors gap is the same
as the experimental one. However, the higher conduction band
levels and lower valence band levels are further shifted within
G0W0 compared to LDA+scissors.

As shown in Fig. 7(b), the G0W0 band structure leads
to a BSE optical spectrum that is much closer to experi-
ment. The G0W0+m-BSE produces a spectrum very similar
to G0W0+BSE, in agreement with Fig. 3(b). It also shows that

FIG. 7. (a) Energy levels at the 	 point for z-GaN, calculated
using the LDA, LDA+scissors, and G0W0. (b) Optical spectra for
z-GaN, calculated using the BSE with the LDA+scissors and G0W0

band structures. The optical spectra using m-BSE, SXX, and the
hybrid functional on top of G0W0 are also shown.

FIG. 8. The q-dependent dielectric function of LiF calculated
from first principles using the RPA as the diagonal of εG,G′ (q) and
calculated using the model by Cappellini et al. [13].

SXX with G0W0 underestimates the spectral strength, which
is hardly surprising since SXX, by construction, tends to
overestimate the screening. As expected, the hybrid functional
kernel with G0W0 improves the results of SXX, resulting in a
spectrum of similar quality to the G0W0+ m-BSE spectrum.

We also calculated the exciton binding energy Eb using the
G0W0 band structure and found a value of 110 meV, which is
only 5 meV larger than Eb by using the LDA+scissors band
structure (105 meV, using the same double k-point grid). This
suggests that using a quasiparticle band structure makes less
of a difference when looking at excitonic effects close to the
band edge.

APPENDIX C: DIELECTRIC FUNCTION
OF LiF

Table I compares exciton binding energies Eb calculated
with different approaches (the BSE, m-BSE, SXX, h-SXX,
and hybrid). It is found that all methods produce very similar
results, except for the wide-gap insulators LiF and (to a
somewhat lesser extent) Ar.

In the case of LiF, local-field effects play a significant
role in the exciton binding, especially the diagonal element of
ε−1

G,G′ (q). We compared a version of the BSE where only the
diagonal elements of the full ε−1

G,G′ (q) are included (d-BSE)
with m-BSE, which uses the (diagonal) model dielectric func-
tion by Cappellini et al. [13] [see Eq. (8)].

The two momentum-dependent dielectric functions are
compared for LiF in Fig. 8. It can be seen that the model ε(q)
lies slightly above the RPA dielectric function, which explains
the fact that Eb calculated with m-BSE (2.17 eV) is found to
be lower than that calculated with d-BSE (2.25 eV), due to the
slightly stronger screening.

APPENDIX D: COMPUTATIONAL SPEEDUP
OF THE SIMPLIFIED BSE

In the main text we pointed out that the principal motiva-
tion for simplifying the BSE is to speed up the calculation. To
estimate the speedup, we have performed a comparison of the
CPU times between SXX and BSE for calculating the exciton
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FIG. 9. Total CPU time for calculating the exciton binding en-
ergy of CsPbBr3 using SXX and BSE.

binding energy of CsPbBr3. The computational details are the
same as those given in Sec. III B. Here we vary the k-grid size
from 43 to 103.

For larger systems, the main bottleneck of doing BSE-
type calculations lies in the memory requirements. Therefore,
we have carried out our calculations (using version 4.3.2 of
YAMBO) with a configuration that is optimized towards using
the least amount of memory, instead of the most CPU efficient
one. The same configuration is used for the SXX calculations.
The results are shown in Figs. 9 and 10.

Figure 9 gives the CPU time for the total calculation, which
includes building the kernel Kx(q, ) [Eq. (4)] and solving the
Tamm-Dancoff equation (2) to obtain Eb. Clearly, SXX be-
comes vastly more efficient with increasing grid size (almost

FIG. 10. Same as Fig. 9 but only the CPU time spent after
calculating the screened Coulomb interaction.

two orders of magnitude for 103). The acceleration in SXX
mainly comes from not having to calculate the full inverse
dielectric function (εRPA)−1

G,G′ (q), but instead only doing a
single-point RPA calculation to obtain the RPA dielectric
constant ε(0) = 1/(εRPA)−1

0,0(0).
This is confirmed in Fig. 10, which illustrates the re-

maining computational cost after building the kernel Kx(q).
The SXX acceleration now comes from having δG,G′ in the
screened Coulomb interaction. Clearly, this is only a fraction
of the total CPU time shown in Fig. 9.

Therefore, we conclude that the RPA calculation of the
full dielectric function is the most costly part for a doing a
BSE calculation in a complex system like CsPbBr3, and our
simplifications (m-BSE, SXX, and hybrid) take full advantage
of this.

[1] W. Hanke and L. J. Sham, Many-particle effects in the optical
spectrum of a semiconductor, Phys. Rev. B 21, 4656 (1980).

[2] M. Rohlfing and S. G. Louie, Electron-hole excitations and
optical spectra from first principles, Phys. Rev. B 62, 4927
(2000).

[3] G. Onida, L. Reining, and A. Rubio, Electronic excitations:
density-functional versus many-body Green’s-function ap-
proaches, Rev. Mod. Phys. 74, 601 (2002).

[4] M. Rohlfing and S. G. Louie, Electron-Hole Excitations in
Semiconductors and Insulators, Phys. Rev. Lett. 81, 2312
(1998).

[5] L. X. Benedict, E. L. Shirley, and R. B. Bohn, Optical Ab-
sorption of Insulators and the Electron-Hole Interaction: An
Ab Initio Calculation, Phys. Rev. Lett. 80, 4514 (1998).

[6] X. Leng, F. Jin, M. Wei, and Y. Ma, GW method and
Bethe-Salpeter equation for calculating electronic excitations,
WIREs Comput. Mol. Sci. 6, 532 (2016).

[7] S. L. Adler, Quantum theory of the dielectric constant in real
solids, Phys. Rev. 126, 413 (1962).

[8] N. Wiser, Dielectric constant with local field effects included,
Phys. Rev. 129, 62 (1963).

[9] R. Del Sole and R. Girlanda, Optical properties of semicon-
ductors within the independent-quasiparticle approximation,
Phys. Rev. B 48, 11789 (1993).

[10] D. R. Penn, Wave-number-dependent dielectric function of
semiconductors, Phys. Rev. 128, 2093 (1962).

[11] Z. H. Levine and S. G. Louie, New model dielectric function
and exchange-correlation potential for semiconductors and
insulators, Phys. Rev. B 25, 6310 (1982).

[12] M. S. Hybertsen and S. G. Louie, Model dielectric matrices for
quasiparticle self-energy calculations, Phys. Rev. B 37, 2733
(1988).

[13] G. Cappellini, R. Del Sole, L. Reining, and F. Bechstedt,
Model dielectric function for semiconductors, Phys. Rev. B
47, 9892 (1993).

[14] F. Bechstedt, R. D. Sole, G. Cappellini, and L. Reining,
An efficient method for calculating quasiparticle energies in
semiconductors, Solid State Commun. 84, 765 (1992).

[15] M. Palummo, R. D. Sole, L. Reining, F. Bechstedt, and G.
Cappellini, Screening models and simplified GW approaches:
Si and GaN as test cases, Solid State Commun. 95, 393 (1995).

[16] M. L. Trolle, T. G. Pedersen, and V. Véniard, Model dielectric
function for 2D semiconductors including substrate screening,
Sci. Rep. 7, 39844 (2017).

[17] J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu,
L. Gao, Q. Dong et al., Efficient and stable emission of warm-
white light from lead-free halide double perovskites, Nature
(London) 563, 541 (2018).

013091-10

https://doi.org/10.1103/PhysRevB.21.4656
https://doi.org/10.1103/PhysRevB.21.4656
https://doi.org/10.1103/PhysRevB.21.4656
https://doi.org/10.1103/PhysRevB.21.4656
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1002/wcms.1265
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1103/PhysRevB.48.11789
https://doi.org/10.1103/PhysRevB.48.11789
https://doi.org/10.1103/PhysRevB.48.11789
https://doi.org/10.1103/PhysRevB.48.11789
https://doi.org/10.1103/PhysRev.128.2093
https://doi.org/10.1103/PhysRev.128.2093
https://doi.org/10.1103/PhysRev.128.2093
https://doi.org/10.1103/PhysRev.128.2093
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.25.6310
https://doi.org/10.1103/PhysRevB.37.2733
https://doi.org/10.1103/PhysRevB.37.2733
https://doi.org/10.1103/PhysRevB.37.2733
https://doi.org/10.1103/PhysRevB.37.2733
https://doi.org/10.1103/PhysRevB.47.9892
https://doi.org/10.1103/PhysRevB.47.9892
https://doi.org/10.1103/PhysRevB.47.9892
https://doi.org/10.1103/PhysRevB.47.9892
https://doi.org/10.1016/0038-1098(92)90476-P
https://doi.org/10.1016/0038-1098(92)90476-P
https://doi.org/10.1016/0038-1098(92)90476-P
https://doi.org/10.1016/0038-1098(92)90476-P
https://doi.org/10.1016/0038-1098(95)00199-9
https://doi.org/10.1016/0038-1098(95)00199-9
https://doi.org/10.1016/0038-1098(95)00199-9
https://doi.org/10.1016/0038-1098(95)00199-9
https://doi.org/10.1038/srep39844
https://doi.org/10.1038/srep39844
https://doi.org/10.1038/srep39844
https://doi.org/10.1038/srep39844
https://doi.org/10.1038/s41586-018-0691-0
https://doi.org/10.1038/s41586-018-0691-0
https://doi.org/10.1038/s41586-018-0691-0
https://doi.org/10.1038/s41586-018-0691-0


LOW-COST ALTERNATIVES TO THE BETHE-SALPETER … PHYSICAL REVIEW RESEARCH 2, 013091 (2020)

[18] E. Runge and E. K. U. Gross, Density-Functional Theory for
Time-Dependent Systems, Phys. Rev. Lett. 52, 997 (1984).

[19] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Excitation
Energies from Time-Dependent Density-Functional Theory,
Phys. Rev. Lett. 76, 1212 (1996).

[20] C. A. Ullrich, Time-Dependent Density-Functional Theory:
Concepts and Applications (Oxford University Press, Oxford,
2012).

[21] R. Del Sole, G. Adragna, V. Olevano, and L. Reining,
Long-range behavior and frequency dependence of exchange-
correlation kernels in solids, Phys. Rev. B 67, 045207
(2003).

[22] S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C.
Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby,
Long-range contribution to the exchange-correlation kernel of
time-dependent density functional theory, Phys. Rev. B 69,
155112 (2004).

[23] S. Sharma, J. K. Dewhurst, A. Sanna, and E. K. U. Gross,
Bootstrap Approximation for the Exchange-Correlation Ker-
nel of Time-Dependent Density-Functional Theory, Phys. Rev.
Lett. 107, 186401 (2011).

[24] S. Sharma, J. K. Dewhurst, and E. K. U. Gross, in First
Principles Approaches to Spectroscopic Properties of Com-
plex Materials, edited by C. D. Valentin, S. Botti, and M.
Cococcioni, Topics in Current Chemistry Vol. 347 (Springer,
Berlin, 2014), p. 235.

[25] Z.-H. Yang and C. A. Ullrich, Direct calculation of exciton
binding energies with time-dependent density-functional the-
ory, Phys. Rev. B 87, 195204 (2013).

[26] C. A. Ullrich and Z.-H. Yang, in Density-Functional Methods
for Excited States, edited by N. Ferré, M. Filatov, and M. Huix-
Rotllant, Topics in Current Chemistry Vol. 368 (Springer,
Berlin, 2015), p. 185.

[27] Y.-M. Byun and C. A. Ullrich, Assessment of long-range-
corrected exchange-correlation kernels for solids: Accurate
exciton binding energies via an empirically scaled bootstrap
kernel, Phys. Rev. B 95, 205136 (2017).

[28] Y.-M. Byun and C. A. Ullrich, Excitons in solids from time-
dependent density-functional theory: Assessing the Tamm-
Dancoff approximation, Computation 5, 9 (2017).

[29] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,
Generalized Kohn-Sham schemes and the band-gap problem,
Phys. Rev. B 53, 3764 (1996).

[30] A. Görling and M. Levy, Hybrid schemes combining the
Hartree-Fock method and density-functional theory: Under-
lying formalism and properties of correlation functionals,
J. Chem. Phys. 106, 2675 (1997).

[31] R. Baer and L. Kronik, Time-dependent generalized Kohn-
Sham theory, Eur. Phys. J. B 91, 170 (2018).

[32] A. D. Becke, Density-functional thermochemistry. III.
The role of exact exchange, J. Chem. Phys. 98, 5648
(1993).

[33] A. D. Becke, Density-functional thermochemistry. IV. A new
dynamical correlation functional and implications for exact-
exchange mixing, J. Chem. Phys. 104, 1040 (1996).

[34] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mix-
ing exact exchange with density functional approximations,
J. Chem. Phys. 105, 9982 (1996).

[35] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J.
Frisch, Ab initio calculation of vibrational absorption and

circular dichroism spectra using density functional force
fields, J. Phys. Chem. 98, 11623 (1994).

[36] C. Adamo and V. Barone, Toward reliable density functional
methods without adjustable parameters: The PBE0 model,
J. Chem. Phys. 110, 6158 (1999).

[37] J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, Energy
band gaps and lattice parameters evaluated with the Heyd-
Scuseria-Ernzerhof screened hybrid functional, J. Chem. Phys.
112, 174101 (2005).

[38] I. C. Gerber, J. G. Ángyán, M. Marsman, and G. Kresse, Range
separated hybrid density functional with long-range Hartree-
Fock exchange applied to solids, J. Chem. Phys. 127, 054101
(2007).

[39] T. M. Henderson, J. Paier, and G. E. Scuseria, Accurate
treatment of solids with the HSE screened hybrid, Phys. Status
Solidi B 248, 767 (2011).

[40] M. Jain, J. R. Chelikowsky, and S. G. Louie, Reliability of
Hybrid Functionals in Predicting Band Gaps, Phys. Rev. Lett.
107, 216806 (2011).

[41] M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and
S. Botti, Density-based mixing parameter for hybrid function-
als, Phys. Rev. B 83, 035119 (2011).

[42] Y.-I. Matsushita, K. Nakamura, and A. Oshiyama, Compar-
ative study of hybrid functionals applied to structural and
electronic properties of semiconductors and insulators, Phys.
Rev. B 84, 075205 (2011).

[43] J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky, Analysis
of the Heyd-Scuseria-Ernzerhof density functional parameter
space, J. Chem. Phys. 136, 204117 (2012).

[44] C. Friedrich, M. Betzinger, M. Schlipf, S. Blügel, and A.
Schindlmayr, Hybrid functionals and GW approximation in
the FLAPW method, J. Phys.: Condens. Matter 24, 293201
(2012).

[45] J. H. Skone, M. Govoni, and G. Galli, Self-consistent hybrid
functional for condensed systems, Phys. Rev. B 89, 195112
(2014).

[46] J. H. Skone, M. Govoni, and G. Galli, Nonempirical range-
separated hybrid functionals for solids and molecules, Phys.
Rev. B 93, 235106 (2016).

[47] M. Gerosa, C. E. Bottani, L. Caramella, G. Onida, C. Di
Valentin, and G. Pacchioni, Electronic structure and phase
stability of oxide semiconductors: Performance of dielectric-
dependent hybrid functional DFT, benchmarked against GW
band structure calculations and experiments, Phys. Rev. B 91,
155201 (2015).

[48] Y. Hinuma, Y. Kumagai, I. Tanaka, and F. Oba, Band
alignment of semiconductors and insulators using dielectric-
dependent hybrid functionals: Toward high-throughput evalu-
ation, Phys. Rev. B 95, 075302 (2017).

[49] W. Chen, G. Miceli, G.-M. Rignanese, and A. Pasquarello,
Nonempirical dielectric-dependent hybrid functional with
range separation for semiconductors and insulators, Phys. Rev.
Mater. 2, 073803 (2018).

[50] J. Paier, M. Marsman, and G. Kresse, Dielectric properties and
excitons for extended systems from hybrid functionals, Phys.
Rev. B 78, 121201(R) (2008).
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