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Impact of the distribution of recovery rates on disease spreading in complex networks
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We study a general epidemic model with arbitrary recovery rate distributions. This simple deviation from the
standard setup is sufficient to prove that heterogeneity in the dynamical parameters can be as important as the
more studied structural heterogeneity. Our analytical solution is able to predict the shift in the critical properties
induced by heterogeneous recovery rates. We find that the critical value of infectivity tends to be smaller than
the one predicted by quenched mean-field approaches in the homogeneous case and that it can be linked to the
variance of the recovery rates. Our findings also illustrate the role of dynamical-structural correlations, where
we allow a power-law network to dynamically behave as a homogeneous structure by an appropriate tuning
of its recovery rates. Overall, our results demonstrate that heterogeneity in the recovery rates, eventually in all
dynamical parameters, is as important as the structural heterogeneity.
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I. INTRODUCTION

Heterogeneity, whether in the nature of the components
or the pattern of connections, is a key characteristic of com-
plex systems. This is particularly evident in the case of the
spreading of a disease in a networked population, where the
inclusion of structural heterogeneity has long been known
to radically change the process’s critical behavior [1–6].
As an illustration, consider two classical contagion models,
the susceptible-infected-susceptible (SIS) and the susceptible-
infected-recovered (SIR) models. On a homogeneous net-
work, they both present a nonvanishing critical point [5,6].
However, the introduction of structural heterogeneity, in the
form of broad degree distributions of the nodes, can result in a
vanishing critical point [1,5–7]. More specifically, in the ther-
modynamic limit, a divergence of the second moment of the
degree distribution [1,5,6,8] or a divergence in the maximum
degree [1,5,6,8] implies a vanishing critical infectivity. This
in turn has important practical implications for real-world
networks, because many of them display very broad [7–9]
(or even scale-free) degree distributions [10]. References
[11–18] considered, in contrast, homogeneous structures but
accounted for arbitrary times in the state transitions. Interest-
ingly, previous works studied models characterized by a series
of infected states (without a biological interpretation) that
described the global behavior accurately [12–15,17]. Notably,
the model proposed in [12] is general, but each transition has
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an assigned function, which complicates the model, making
its practical use limited. These works encounter, however, a
fundamental limitation, because they describe the population
at the mean-field level [11–18]. While structural and dynami-
cal heterogeneities are independently accounted for, modeling
both types of heterogeneities together has received consid-
erably less attention until recently. Indeed, it was mainly
studied for the SIR model: A message-passing formalism was
proposed in [19,20] and a heterogeneous mean-field approach
in [21]. In the latter, the authors also performed numerical
experiments showing that the population can be more vul-
nerable in the scenario with dynamical heterogeneity. More
recently, this problem was investigated on temporal networks
[22] using an SIS process, which was described within the
quenched mean-field (QMF) formalism and mainly focusing
on spreading rates [23,24]. A similar approach was considered
in [25], where however the authors highlighted a different
aspect, i.e., the allocation of resources during an outbreak.

Here we investigate a different type of dynamical hetero-
geneity by characterizing the critical properties of an SIS
model when recovery rates are distributed heterogeneously
across the population. Heterogeneous recovery rate distribu-
tions can be associated with biological differences between in-
dividuals [26,27], demographic characteristics [28], and social
differences that result in nonhomogeneous access to the health
system [29]. Additionally, we also consider the case in which
correlations arise between the structure and dynamics. We
show, both analytically and numerically, that such correlations
can induce opposing and unexpected dynamical outcomes,
for example, power-law (PL) networks displaying nonvan-
ishing critical points and conversely homogeneous networks
displaying vanishing critical points. Indeed, we show that
the standard QMF predictions, which are a lower bound in
the standard scenario, no longer provide such a bound in the
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heterogeneous rate case. We then propose a simple formu-
lation to overcome this and provide a different lower bound
for the process. Our results complement previous evidence on
the SIR model [21] and imply that proper characterization of
the dynamical parameters is of utmost importance not only
for a better understanding of spreading processes, but also for
many practical applications, such as surveillance, forecasting,
resource management, and network reconstruction, among
many others.

II. THE SIS MODEL WITH HETEROGENEOUS
RECOVERIES

We start by considering a population composed of N
individuals with an arbitrary pattern of connections in a single
connected component. These connections can be represented
as a network and are described by the network’s (usually
symmetric) adjacency matrix A. Each individual can be in
one of two states: (i) infected (Yi = 1) or (ii) susceptible
(Xi = 1). Using a Markovian approach, the epidemic process
is modeled as a collection of independent Poisson processes.
In order to model the spreading of the disease through the
network of contacts, with each directed edge i ∼ j, emanating
from the infected individual i, we associate a Poisson process
with rate λi j , Nλi j (t ) (whose transitions are Yi + Xj → Yi +
Yj). Additionally, with each infected individual, we associate
a Poisson process with rate δi, Nδi (t ), modeling the recovery
(Yi → Xi). This system is statistically described using the
order parameter ρ and the susceptibility χ , defined as

ρ = 1

N

N∑
i

〈Yi〉, χ = 〈nI
2〉 − 〈nI〉2

〈nI〉 , (1)

where nI is the number of infected individuals. Both quan-
tities can be directly estimated using Monte Carlo methods,
in particular, the quasistationary method and the Gillespie
algorithm, where each of the processes mentioned above is
simulated, and the state of the nodes is evaluated [6].

In the QMF approach, one implicitly assumes that 〈XiYj〉 ≈
〈Xi〉〈Yj〉. Physically, this corresponds to neglecting dynamical
correlations. Defining yi = 〈Yi〉, the process is described as

dyi

dt
= −δiyi + (1 − yi )

∑
j

λi jAi jy j . (2)

Thus, defining �ii = δi, W = λi j , and Q = �−1(A ◦ W), the
critical point is given as

λQMF
c = [�max(Q)]−1, (3)

where �max(Q) is the leading eigenvalue of Q. Note that the
elements of Q are the expected number of contacts before
recovery. Obviously, the critical point simplifies to τQMF,std

c =
( λ

δ
)c = [�max(A)]−1 in the homogeneous case, i.e., when δi =

δ and λi j = λ. Thus, in the thermodynamic limit, the critical
point for PL networks goes to zero if the maximum degree
is a growing function of the network size [5,6,8]. On the
other hand, we can consider a scenario that is equivalent to
the contact process (CP) by setting the spreading rates as
λi j = λ

ki
, which is thus described by the probability transition

matrix Pi j = Ai j

ki
. In this case, the critical point is finite and

0.00 0.02 0.04 0.06 0.08 0.10
λ

10−1

100

101

102

χ

2

3

4

5

10

100

1000

α

100 101 102

α

10−3

10−2

10−1

λQ
M
F

c

0.0 0.1λ c
0.0

0.1

λQ
M
F

c

FIG. 1. Susceptibility curves extracted from the Monte Carlo
simulations for an Erdős-Rényi network with N = 105 and 〈k〉 ≈ 10
considering that the recovery rate distribution follows an inverse-
gamma distribution, whose shape parameter α is color coded. The
insets show the dependence of λQMF

c on α (top) and a comparison
with numerical results (bottom), also for different α.

τQMF,CP
c = 1, regardless of the underlying structure. Note that,

similarly to the homogeneous case, this prediction [Eq. (3)] is
an upper bound for the heterogeneous recovery rate scenario,
because it relies on the independence of the random variables:
If i ∼ j, then P (Yi = 1|Yj = 1) � P (Yi = 1) = yi, which im-
plies that the nodal probability is always overestimated (see
[2] for a similar argument). From here onward, we set λi j = λ

and focus on the effect of the recovery rate distribution on the
critical point. Considering an undirected network, from the
matrix norm we can bound Eq. (3) using the standard QMF
predictions as

min(δi)τ
QMF,std
c � λQMF

c � max(δi)τ
QMF,std
c . (4)

We can see that Eq. (4) suggests that the standard QMF
predictions might not be a lower bound to the alternative
process. Note that the uncertainty assuming the standard QMF
prediction increases as the variance also increases.

III. SYNTHETIC NETWORKS

To further characterize the critical behavior of our model,
we first consider an Erdős-Rényi (ER) network with N = 105

and 〈k〉 ≈ 10 (therefore τQMF,std
c ≈ 0.1). This graph has a

homogeneous structure and allows us to analyze the struc-
tural and dynamical effects independently. Mounting evidence
shows that infectious times in real epidemics follow a gamma
distribution [17,30,31]. Consequently, the rate distribution
must follow an inverse-gamma distribution. We impose there-
fore the recovery rates to have an inverse-gamma distribution
δ ∼ 
−1(α, β ), where α and β are the shape and scale param-
eters, respectively. Its mean is 〈δi〉 = β

α−1 and its variance is

Var(δi) = β2

(α−1)2(α−2) for α > 2. To facilitate the comparison
between different distributions, we restrict the distributions to
unitary mean. In Fig. 1 we present the critical behavior of an
ER network for different shapes α. The top inset emphasizes
the behavior of the predicted critical point as a function of
α and its comparison with estimations from Monte Carlo
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simulations. As expected, for sufficiently large values of α,
the dynamics behave similarly to the standard SIS model with
uniform δ, where the predicted threshold coincides (dashed
line in the top inset). The agreement between analytical and
simulated critical points is excellent, as it can be seen in
the bottom inset of Fig. 1. Furthermore, as α decreases, the
variance of δ and consequently the uncertainty of the bounds
are also enlarged. However, we observed that the critical point
systematically moved towards zero in our simulations, which
is also consistent with Eq. (4). Note that the inverse-gamma
distribution is asymmetric with respect to its average and cen-
tered at δi � 〈δi〉. This implies that the bounds in Eq. (4) are
also asymmetric. Since the recovery rates are sampled from
this distribution, we expect that the number of individuals that
take longer to recover is greater than the number of individuals
that recover fast. This suggests that, via infection/reinfection
mechanisms, the disease can survive for lower values of λ

as compared to the standard QMF predictions. In addition to
the critical properties, we also show a different supercritical
behavior; for example, the low-α regime of a network can
be similar to, and even in some regions it can be mistaken
for, the high-α regime on top of a network with a different
structure. This multiplicity of supercritical behaviors also
raises questions in network reconstruction models based on
disease dynamics.

IV. REAL-WORLD NETWORKS

We confirmed that our results hold in real-world networks.
As before, we consider an inverse-gamma distribution. Fig-
ure 2 shows results of simulations in two real networks: the
UC Irvine messages social network [Fig. 2(a)] [32,33] and the
OpenFlights network [Fig. 2(b)] [33,34]. These networks rep-
resent different spatial scales of a similar spreading process:
The social network corresponds to smaller scales and spatially
localized systems, while the OpenFlights network captures
a wider spatial scale. In the top inset of Fig. 2(b) we show
that the critical point predictions are remarkably good for
inverse-gamma recovery rates, even for these real networks.

Figures 1 and 2 reveal that the critical point decreases as we
increase the variance of the recovery rate distribution. Thus,
if we consider heterogeneous networks, assuming an average
recovery rate in the QMF is not enough to provide an ade-
quate characterization of the process. It is not a lower bound
anymore, as can be seen in Fig. 1, where the numerically
estimated critical point is always slightly lower than the value
predicted by the standard QMF predictions (τQMF,std

c ≈ 0.1).
The proper correction for the QMF predictions is given by
Eq. (3), which is a lower bound for the underlying process
(see the bottom inset in Fig. 1).

V. EFFECTS OF DYNAMICS-STRUCTURE
CORRELATIONS

The bounds in Eq. (4) implicitly assume that there are
no correlations between the structure and dynamics. From
the Gershgorin circle theorem we know that every eigen-
value of Q lies at least in one of the disks D(Qii, Ri ) cen-
tered in Qii with a radius given as Ri = ∑

i �= j |Qi j |. There-
fore, considering a symmetric matrix, |�k| � Qii + Rk , hence
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FIG. 2. Results for the susceptibility when the dynamics are on

top of real networks. We use (a) the UC Irvine messages social
network [32,33] (•) and (b) the OpenFlights network [33,34] (�). In
both cases, we considered the undirected version of the giant compo-
nent. In the main figure of each panel, we present the susceptibility
for different values of α and λ. In the bottom right insets, we present
the order parameter. In the top inset of (b), we present a comparison
between the QMF estimated and predicted critical points.

�max � ‖Q‖∞, where the infinity norm is defined as

‖Q‖∞ = max
1�i�N

⎛
⎝ N∑

j=1

Ai j

δi

⎞
⎠ = max

1�i�N

(
ki

δi

)
. (5)

If the structure and the dynamics are correlated, Eq. (5) might
give us further insight. For instance, for the PL case, the
leading eigenvalue of A diverges in the thermodynamic limit,
leading to a vanishing critical point. Conversely, using Eq. (5)
and a proper choice of δi, we can change this behavior. In fact,
assuming that δi(ki ) ∝ ki in the thermodynamic limit, we have

lim
N→∞

‖Q‖∞ = lim
N→∞

[
max

1�i�N

(
ki

δi

)]
= c, (6)

where c < ∞ is a finite real constant. This radically changes
the critical behavior of the dynamics. Note that both the CP
(λi j = λ

ki
) and the δi = ki cases are described, at first order,

by the probability transition matrix P, yielding τQMF,CP
c =

λQMF
c = 1.
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FIG. 3. Finite-size analysis considering structure-dynamics cor-
relations. We present the susceptibility (colors represent the sizes)
in (a) the heterogeneous recovery rates, where δi = ki on top of
the power-law networks, whose exponents are γ = 2.1, 2.7, 3.5, and
(b) the SIS model with heterogeneous recovery rates, considering an
Erdős-Rényi network and the recovery rates as δi = ki

kPL
, where kPL

is a discrete power law, more specifically, the degree sequence of the
networks used in (a). In the inset we present the critical point as a
function of the system size in log-log scale.

In Fig. 3(a) we perform a finite-size analysis when the
dynamics occurs on top of PL networks and recovery rates
are δi = ki, finding evidence of a finite critical point, i.e.,
the value of λ corresponding to the peak of χ does not
vanish. For comparison, the results for the CP are reported
in Appendix E. We remark that the convergence towards the
critical value for growing N seems to be slower in the CP case.
In summary, our results show that a network with a power-law
degree distribution may show a finite critical point for the
SIS dynamics if degrees and recovery rates are appropriately
correlated.

Next we show that the inverse scenario is also possible.
Consider an ER network with 〈k〉 ≈ 10 and δi = ki

kPL
, where

kPL is a discrete power law, i.e., P (kPL) ∼ k−γ

PL . That is,
we now have a homogeneous structure and a heterogeneous
recovery rate distribution. In Fig. 3(b) we show a finite-size
analysis for this configuration with varying γ = 2.1, 2.7, 3.5.
We observe that for γ = 2.7 and 3.5 the underlying structure
plays an important role, suggesting a nonvanishing critical

point or considerable reduction in the scaling exponent [see
Fig. 3(b) inset, where both curves have a slope close to
zero]. However, for γ = 2.1 our results indicate the existence
of a vanishing critical point [see Fig. 3(b) inset]. It seems
reasonable to hypothesize that the scenario observed when
γ = 2.1 is due to the fact that, in the steady state, the in-
fection probabilities are inversely proportional to the nodal
recovery rates and thus that the evaluation of the recovery time
at both ends of every edge enables an infection-reinfection
mechanism. Understanding what the necessary and sufficient
conditions to observe such a mechanism are and the interplay
between structure and dynamics requires, however, further
exploration.

In [8,35,36] it was shown that, depending on the network
structure, the transition can be triggered by different activation
mechanisms, namely, (i) collective (e.g., ER networks or the
CP), (ii) k core (uncorrelated power law with 2 < γ < 2.5),
or (iii) hub (uncorrelated power law with γ > 2.5). Note that
for uncorrelated power laws, this coincides with the differ-
ent regimes of leading eigenvector localization [37] [for the
analysis of the inverse participation ratio (IPR) of the leading
eigenvector of Q we refer the reader to Appendix F]. Thus,
we conjecture that it may be possible to alter these structural
mechanisms with a proper recovery rate distribution, pos-
sibly considering dynamics-structure correlations. Note that
we implicitly showed [Fig. 3(a)] how to transform k-core
(γ = 2.1) and hub-activated (γ = 2.7, 3.5) mechanisms into a
collective behavior phenomenology. Importantly, our findings
may lead to alternative prevention/intervention techniques
that take advantage of the phenomenology reported here. We
also highlight that the consequences of our findings are not
limited to the cases explored here. For instance, it is natural
to conjecture the existence of Griffith’s phase in our setup.
In this type of transition, we have an extended critical region
instead of a single critical point, which was studied in complex
networks in [36,38–42]. More specifically, in [39] the authors
showed that slow dynamics on a weighed treelike structure
can occur in a contact process. Its similarities to our scenario
thus suggest that similar phenomenology is also possible in
our case.

VI. CONCLUSION

We have analyzed the impact of introducing heterogeneity
in the recovery rates of an SIS disease dynamics. We showed
that dynamical heterogeneity is as significant as structural
heterogeneity and that it can induce drastic changes in the SIS
critical properties. Furthermore, our results show that the stan-
dard QMF approach does not provide a lower bound for the
heterogeneous case anymore. To solve this inconsistency, we
proposed a solution that relates the structural and dynamical
features via the spectral properties of a different matrix Q.
This formulation presents opportunities for future research.
For example, our findings raise questions about the conse-
quences of heterogeneities in spreading rates and the interplay
between spreading and recovery rates. Furthermore, with re-
gard to control/containment strategies, heterogeneity in the
recovery rates can be considered for intervention strategies
(or even immunization, δi → 0). In contrast, heterogeneity of
spreading rates would be related to prevention. In this context,
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our findings might also be of potential interest. In addition
to the specific conclusions drawn here, there are others that
concern more general aspects of disease spreading processes
as well as the characterization of complex systems in general.
For instance, differences in the localization properties induced
by dynamical heterogeneities might influence the predictabil-
ity of complex systems, and in particular of diseases [43],
or in the reconstruction of networks from the dynamics as
proposed in [44]. Finally, we also stress that our results might
also have an impact on information spreading processes since
individuals have different activity timescales, which could
ultimately be related to the recovery time distribution.
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APPENDIX A: EQUATION (4) AS A BOUND FOR EQ. (3)

The critical point given by Eq. (3) can be bounded using a
matrix norm. Thus, using the 2-norm, we obtain

‖A‖2

�max(�)
� ‖�−1A‖2 � ‖A‖2

�min(�)
, (A1)

where ‖A‖2 =
√

�max(AT A). Equation (A1) therefore pro-
vides bounds on the leading eigenvalue of Q given by the
structure and the variance of δi. Next, for undirected networks
we have that ‖A‖2 = �max(A) = (τQMF

c )−1. Moreover, the
Perron-Frobenius theorem for non-negative matrices states
that every non-negative matrix can be written as a limit of
positive matrices, and therefore one has the existence of an
eigenvector with non-negative components and the corre-
sponding eigenvalue will be non-negative and greater than
or equal (in absolute value) to all other eigenvalues [45].
Therefore, from the norm definition,

‖Q‖2 = σmax(Q) = max
i

[�i(Q)] (A2)

since Q is non-negative. Finally, inverting the equations and
writing it in terms of the critical properties, we obtain Eq. (4).

APPENDIX B: ANALYZING EQ. (4) FOR THE
INVERSE-GAMMA DISTRIBUTION

The bounds obtained in Eq. (4) or (A1) cannot be further
improved without knowledge about the relationship between
the matrix A or W and �−1 [for more details about the effects
of dynamics-structure correlations, see Eq. (5)]. Alternatively,
one can use the asymmetries in the recovery rate distribution
to understand how the lower and upper bounds behave. More
specifically, the cumulative distribution for the inverse-gamma
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FIG. 4. Evaluation of P (δ � 1) and P (δ > 1) as a function of
α, the shape parameter of an inverse-gamma distribution with β =
α − 1.

distribution is given as

P (δ � x) = 

(
α,

β

x

)

(α)

= Q

(
α,

β

x

)
, (B1)

where 
(a, b) is the upper incomplete Gamma function, 
(a)
is the Gamma function, and Q(a, b) is the regularized gamma
function. Next, keeping the average fixed, i.e., setting β =
α − 1, we can analyze how these bounds behave as a function
of the shape α. We can calculate the probability that δ is larger
or smaller than a give value x. Formally,

P (δ � x) = Q

(
α,

α − 1

x

)
, (B2)

P (δ > x) = 1 − Q

(
α,

α − 1

x

)
. (B3)

Next, evaluating (B2) and (B3) for the average value 〈δi〉 =
x = 1, we obtain the fraction of individuals that have a
recovery rate that is lower and higher, respectively, than
average. Since Q(α, α−1

x ) � 1
2 the inverse-gamma distribution

is peaked below the average value, therefore suggesting that
the lower bound decreases faster than the upper bound. In-
terestingly, α → ∞ implies that P (δ � 1) = P (δ > 1) = 1

2 ,
and thus the uncertainty is symmetrical. This is also depicted
in Fig. 4.

We remark that the discussion of this Appendix concerns
the uncertainty of the bounds and their asymmetry, which
only suggests (but does not prove) that the critical point might
decrease. This hypothesis is supported by our simulations.

APPENDIX C: UNIFORM SYMMETRIC RECOVERY
RATE DISTRIBUTION

In the main text we focused on the inverse-gamma distri-
bution. This distribution is asymmetric. In this Appendix we
focus on a symmetric scenario considering the uniform dis-
tribution U (a, 2 − a) whose average is 〈δi〉 = 1 and variance
is Var(δi ) = (1−a)2

3 . We remark that a normal distribution was
not considered since it is defined for negative numbers, while
rates are positive. Figure 5 shows the critical point estimations
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FIG. 5. Susceptibility curves extracted from the Monte Carlo
simulations for an Erdős-Rényi network with N = 105 and 〈k〉 ≈ 10
considering that the rate distribution follows a uniform distribution
(symmetric) U (a, 2 − a), where the parameter a controls the vari-
ance and is color coded.

in this scenario. The same conclusions we obtained for Fig. 1
also apply here. The same trend is observed, in which the
critical point moves to the left. The main observed difference
is that, in this case, the critical predictions are poorer when
the variance is larger. Although the error is larger in these
cases, our predictions are still better than the standard QMF
formulation.

APPENDIX D: SUPERCRITICAL BEHAVIOR

Aside from the critical behavior, discussed in the main text,
it is also instructive to evaluate the supercritical behavior of
our dynamics. Figure 6 shows the phase diagram for Erdős-
Rényi and PL networks with γ = 2.1, 2.7, 3.5. It is clear
that not only the critical but also the supercritical behavior
changes for different values of α. Note that, in some cases,
the lower-α regime is similar to the higher-α regime of a
different structure. This is particularly clear for the PL case
of γ = 3.5 and α = 2.0, which is very similar to γ = 2.7 and
α → ∞. A similar effect is also visible for other parameters.
This is a particularly important issue if one uses the dynamical
process to infer the network structure [44]. Furthermore, for
sufficiently large values of λ all the curves tend to converge;
however, this convergence is arguably slower for PL networks,
as emphasized in the inset of Fig. 6.

APPENDIX E: CONTACT PROCESS

In the continuous formulation, the CP is modeled as a
set of Poisson processes, where each edge has the spreading
rate defined as λi j = λ

ki
. The recovery rate is kept fixed for

all nodes. In this dynamical process, the average number of
contacts of each node is the same for all individuals in the
network regardless of their degree. This process is described
by the probability transition matrix P, hence τQMF,CP

c = 1.
In Fig. 7 we can observe that the critical point predictions
are not as accurate as for the previous case we studied in
the main text [Fig. 3(a)]. This was anticipated in [46,47].
Interestingly, a better prediction for the critical point in the
CP is obtained using the heterogeneous mean field, which

(a)

(b)

FIG. 6. Phase diagram for (a) Erdős-Rényi (•) networks and
(b) PL networks. In (b), from top to bottom, we have γ = 2.1 (�),
γ = 2.7 (�), and γ = 3.5 (�). In the inset in (a) we present the
behavior for larger λ’s in all the networks. They comprise N = 104

nodes. The recovery rate distribution is given as an inverse-gamma
distribution, whose shape parameter α is color coded.

predicts τHMF, CP
c = 〈k〉

〈k〉−1 [47]. Thus, the mismatch between
prediction and estimated critical points, in both cases, seems
to be related to dynamical correlations.

Due to its similarities, it is instructive to compare this
model with our dynamic-structure correlated model, i.e., δi =
ki. In Fig. 7 we show the finite-size analysis for the CP case on
top of power-law networks with exponents γ = 2.1, 2.7, 3.5.
We remark that this process has a finite critical point. Thus,
comparing with Fig. 3(a), we observe that both processes
present a similar behavior as a function on N . However, note
that both models have slightly different estimated critical
points. Aside from that, our results also suggest that the
convergence to the asymptotic value seems to be faster in the
CP case. We can thus conclude that although both processes
have the same predictions for the critical point, the second-
order effects are different in both of them.

APPENDIX F: LOCALIZATION PROPERTIES

On top of some structures and just above the critical
point, the mean-field theory predicts that the disease can be
restricted (localized) in a subgraph [3,48]. This phenomenon
is known as metastable localization. In the standard scenario,
this property depends only on the structure, more specifically,
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FIG. 7. Finite-size analysis for the CP for (a) susceptibility and
(b) the order parameter. The colors represent the sizes and from
bottom to top, the curves are grouped by the power-law exponents
γ = 2.1, 2.7, 3.5, respectively.

on the leading eigenvector of A. This property is very robust
with respect to the spreading mechanism. In [48] the authors
showed that bursts of infection are not sufficient to turn a
localized spreading into a delocalized spreading. Interestingly,
in our model, we can show that the recovery rates are enough
to alter the localization. We remark that the control of the lo-
calization of diseases is still an open and interesting problem,
as also pointed out in [48].

As anticipated, our model plays an important role in the
localization of the leading eigenvector. More specifically, the
matrix Q might present a different localization pattern if
compared to the adjacency matrix. To quantify localization
we use the so-called inverse participation ratio, initially used
in epidemics in [3]. Formally, it is given as

IPR =
N∑
i

v4
i , (F1)

FIG. 8. The IPR versus N for the Erdős-Rényi, PL networks
and the correlated case �−1A, where �i = ki

kPL
for (a) γ = 2.1 and

(b) γ = 3.5. Fifty networks were considered in each case.

where v is the normalized leading eigenvector, i.e., ‖v‖ =
1. As shown in [37] and recently formalized in [48], the
eigenvector is localized in a subextensive portion, i.e., IPR ∼
O(N−ν ) with 0 < ν < 1. Thus, in the fully delocalized case,
IPR ∼ O(N−1), and in the fully localized case, IPR ∼ O(1).
As expected, Fig. 8 shows that in an ER network the IPR
scales with ν ≈ 1, ν < 1 for a PL network with γ = 2.1
[Fig. 8(a)], and a PL network with γ = 3.5 is localized
[Fig. 8(b)]. Complementarily, when δi = ki, the leading eigen-
vector of P = Q is homogeneously distributed; therefore
IPR ∼ O(N−1) and the disease is fully delocalized, which
suggests that this is an effective strategy for full delocaliza-
tion.

Furthermore, Fig. 8 also shows that when heterogeneous
recovery rates are considered, the IPR might also change. It
is possible that a network that exhibits full delocalization in
the standard case (light pink circles for an ER network in
Fig. 8) will instead exhibit localization when the recovery
rates and structure are correlated (blue triangles in Fig. 8).
Thus, by introducing localization and/or tuning, its scaling
exponent ν is not trivial. More specifically, one might naively
use the recovery rates as δi = ki

kPL
as a strategy. In this case,

ki would delocalize the matrix, while kPL would control the
new IPR towards the distribution kPL. To evaluate this strategy,
we fixed the structure to an ER network. Next we defined kPL

as a PL degree distribution and opted for a discrete approach
for kPL, which allowed for a comparison with the localization
properties of a network with the same degree distribution, i.e.,
kPL. However, as we observed in Fig. 8, this was insufficient
to control localization. In the evaluated cases, the resulting
matrix Q is localized. Note that kPL ∼ k−2.1 is partially delo-
calized [dark pink squares in Fig. 8(a)], but its composition
with the delocalized structure results in a localized IPR. The
case of kPL ∼ k−3.5 is less surprising, but also emphasizes
the role of heterogeneity in the recovery times in disease
localization. Therefore, with this simple strategy, we could not
control the localization for an arbitrary ν.
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