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Local determination of the Hubble constant and the deceleration parameter
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The determination of the Hubble constant H0 from the cosmic microwave background by the Planck
Collaboration (N. Aghanim et al., arXiv:1807.06209) is in tension at 4.2σ with respect to the local determination
of H0 by the SH0ES collaboration [M. J. Reid et al., Astrophys. J. Lett. 886, L27 (2019)]. Here we improve
upon the local determination, which fixes the deceleration parameter to the standard �CDM model value of
q0 = −0.55, that is, uses information from observations beyond the local universe. First, we derive the effective
calibration prior on the absolute magnitude MB of type Ia supernovae, which can be used in cosmological
analyses in order to avoid the double counting of low-redshift supernovae. We find MB = −19.2334 ± 0.0404
mag. Then we use the above MB prior in order to obtain a determination of the local H0 which uses only local
observations and assumes only the cosmological principle, that is, large-scale homogeneity and isotropy. This is
achieved by adopting an uninformative flat prior for q0 in the cosmographic expansion of the luminosity distance.
We use the latest Pantheon sample and find H0 = 75.35 ± 1.68 km s−1 Mpc−1, which features a 2.2% uncertainty,
close to the 1.9% error obtained by the SH0ES Collaboration. Our determination is at the higher tension of
4.5σ with the latest results from the Planck Collaboration that assume the �CDM model. Furthermore, we also
constrain the deceleration parameter to q0 = −1.08 ± 0.29, which disagrees with the Planck Collaboration at
the 1.9σ level. These estimations only use supernovae in the redshift range 0.023 � z � 0.15.

DOI: 10.1103/PhysRevResearch.2.013028

I. INTRODUCTION

The �CDM model, the standard model of cosmology, has
been extremely successful. Assuming only general relativity
and well-understood linear perturbations about a homoge-
neous and isotropic background model, with just six param-
eters it accounts for basically all cosmological observations
on a vast range of scales in space and time. Its key ingredients
are the cosmological constant, a constant of nature, and dark
matter, yet-undetected particles which are predicted by, e.g.,
supersymmetric extensions of the standard model of particle
physics. Although the theoretical basis for both the cosmolog-
ical constant and dark matter may be rightfully questioned, the
standard model has pragmatically maintained its supremacy,
due to its performance and simplicity.

However, since the first release of the cosmic microwave
background (CMB) observations by the Planck Collaboration
in 2013 [1], the determination of the Hubble constant H0 based
on the standard model of cosmology started to be in tension
with the model-independent determination via calibrated local
Supernovae Ia (SN) by the SH0ES Collaboration in 2011 [2].
The initial tension of 2.4σ worsened over the past six years.
On one side, systematic uncertainties were better understood
and CMB data accumulated [3,4]. On the other side, the
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sample of local supernovae increased and the anchors used
to calibrate them considerably improved [5–7]. The present
situation is that the two determinations of the Hubble constant,
one by the Planck Collaboration in 2018 [8] and the other by
the SH0ES Collaboration in 2019 [7], are now in tension at
the considerable 4.2σ level. (See [9] for a historical overview
and [10] for the present status.)

Much work has been done trying to understand the impli-
cations of this tension: It is indeed, by far, the most severe
problem the �CDM model is facing. On one hand, the effect
of the local structure, the so-called cosmic variance on H0, has
been thoroughly studied (see [11] and references therein), as
well as possible reassessments of the error budget [12–14]. On
the other hand, physics beyond the standard model has been
investigated, in the hope that this tension could reveal possible
alternatives to the highly tuned cosmological constant and the
yet-undetected dark matter (see, e.g., [15–19]). However, at
the moment, it is not clear which kind of physics beyond
�CDM could solve this crisis [20].

Here we wish to improve upon the local determination by
the SH0ES Collaboration, which adopts a Dirac δ prior on
the deceleration parameter, centered at the standard �CDM
model value of q0 = −0.55. In [14] it was shown that using
the broad (truncated) Gaussian prior q0 = −0.5 ± 1, it is
indeed possible to obtain a competitive constraint on the Hub-
ble constant. In what follows, first we derive the calibration
prior on the absolute magnitude MB of supernovae Ia that
was effectively used in the H0 determination by the SH0ES
Collaboration. Then, using the MB prior and an uninformative
flat prior on q0, we obtain a competitive determination of the
H0. Indeed, our determination has an uncertainty comparable
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to the one by the SH0ES Collaboration and it is at the even
higher tension of 4.5σ with the latest results from the Planck
Collaboration that assume the �CDM model. We stress that
our determination only uses local observations and only
assumes the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric, that is, the cosmological principle, according to which
the universe is homogeneous and isotropic at large scales.

This paper is organized as follows. After introducing low-
redshift cosmography in Sec. II, we will obtain the effective
calibration prior in Sec. III and the determination of the Hub-
ble constant in Sec. IV using the Pantheon data set. We discuss
our results in Sec. V and summarize in Sec. VI. Appendix A
presents details regarding the derivation of the effective cal-
ibration prior, Appendix B reports the results relative to the
Supercal supernova data set, and Appendix C reports the
results relative to the older determination of H0 in [6].

II. COSMOGRAPHY

The apparent magnitude mt
B of a supernova at redshift z is

given by

mt
B(z) = 5 log10

[
dL(z)

1 Mpc

]
+ 25 + MB, (1)

where dL(z) is the luminosity distance and MB the absolute
magnitude. Using a cosmographic approach within an FLRW
metric, which only assumes large-scale homogeneity and
isotropy, one has

dL(z) = cz

H0

[
1 + (1 − q0)z

2
+ O(z2)

]
, (2)

where the Hubble constant and the deceleration parameter are
defined, respectively, according to

H0 = ȧ(t )

a(t )

∣∣∣∣
t0

, q0 = −ä(t )

H (t )2a(t )

∣∣∣∣
t0

. (3)

Cosmography is a model-independent approach in the sense
that it does not assume a specific model as it is based on the
Taylor expansion of the scale factor. However, this does not
mean that its parameters do not contain cosmological infor-
mation. For example, the deceleration parameter is connected
to the parameters of wCDM cosmologies according to

q0 = �m0

2
+ 1 + 3w

2
�de0 = 1 + 3w�de0

2

= 1 − 3��0

2
� −0.55, (4)

where the second equality in the first line assumes spatial
flatness (�m0 + �de0 = 1), the first equality in the second line
assumes the �CDM model (w = −1), and the second one in
the second line assumes the concordance value ��0 � 0.7.

Combining now Eqs. (1) and (2), one has

mt
B = 5 log10

[
1 + (1 − q0)z

2
+ O(z2)

]

+ 5 log10
czH−1

0

1 Mpc
+ 25 + MB. (5)

We are neglecting the second-order correction that contains
the jerk parameter j0 = ...

a
H3a |t0 because we consider only low-

FIG. 1. Shown with a solid line is the percentage difference
between the distance modulus with and without the second-order
correction in the expansion of the luminosity distance of Eq. (2).
The difference is always smaller than 0.7%. The histogram shows
the distribution WSN of the supernovae in the range 0.023 � z �
0.15 that are used for local determinations of H0. The filled green
histogram corresponds to the Pantheon sample (237 supernovae) [25]
and the empty black one to the Supercal sample (217 supernovae)
[26]. Using these distributions, the weighted error from neglecting
the second-order correction is only 0.2%.

redshift supernovae. Indeed, the latest local determinations
of H0 use supernovae in the range 0.023 � z � 0.15, where
the minimum redshift is large enough in order to reduce the
impact of cosmic variance [11,21] and the maximum redshift
is small enough in order to reduce the impact of cosmology
in the determination of H0. We have to bear in mind that the
cosmographic expansion could be problematic if extended to
high redshifts (z > 1). Indeed, it fails to converge [22] and
also its accuracy depends on the order adopted [23]. Here
we avoid these possible issues as the maximum redshift is
z = 0.15 [24]. Figure 1 shows the percentage difference with
respect to the computation that considers the second-order
correction, together with the distribution of the supernovae
Ia that are used to determine H0. The weighted error is
0.2%, which is negligible compared to the error budget to be
discussed below. Furthermore, the fact that it is safe to neglect
the second-order correction implies that this analysis is valid
also for spatially curved models.

III. EFFECTIVE CALIBRATION PRIOR

The determination of H0 by the SH0ES Collaboration
is a two-step process. On one hand, the anchors, Cepheid
hosts, and calibrators are combined to produce a constraint on
MB. This step depends on the astrophysical properties of the
sources and is independent of cosmology. On the other hand,
the Hubble-Flow supernovae of the Supercal sample [26]
are used to probe the luminosity-distance–redshift relation in
order to determine H0. In this section, using two different
methods, we determine the calibration prior f (MB) which was
effectively used in the analysis in [6].

A. Demarginalization

Within a Bayesian framework, the determination of H0

by the SH0ES Collaboration can be effectively summarized
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according to the analysis

f (H0, MB|SN) = f (H0) f (MB)L(SN|H0, q0, MB)

E , (6)

f (H0|SN) =
∫

dMB f (H0, MB|SN), (7)

where the posterior on H0 was obtained by marginalizing over
MB. In the equations above, f (H0) is an improper flat prior on
H0, L is the likelihood, and E is the evidence. Here SN stands
for Supercal supernovae in the range 0.023 � z � 0.15 [26].
In addition, f (MB) is the informative prior on the supernova
absolute magnitude and is the result of the complicated cali-
bration of the local supernovae via the cosmic distance ladder
(see [24] for details).

The likelihood is given by

L(SN|H0, q0, MB) = |2π�|−1/2e− 1
2 χ2(H0,q0,MB ), (8)

where the χ2 function is

χ2 = {
mB,i − mt

B(zi)
}
�−1

i j

{
mB, j − mt

B(z j )
}
, (9)

where � is the supernova covariance matrix and mB,i are the
observed apparent magnitudes at the redshifts zi. Following
the methodology of [24], we fix the nuisance parameters that
control stretch and color corrections to α = 0.14 and β = 3.1,
correct the apparent supernova magnitudes with hosts above
and below log10 Mstellar ∼ 10 by 0.03 mag fainter and brighter,
respectively, and include an intrinsic dispersion of σint = 0.1
mag together with a peculiar velocity error of 250 km/s.

The analysis of [7] fixes q0 = −0.55 in Eq. (6) and obtains

HRe19
0 = 73.5 ± 1.4 km s−1 Mpc−1. (10)

Reference [6] states that the sensitivity of H0 to knowledge of
q0 is very low as the mean SN redshift is only 0.07. However,
q0 = −0.55 is justified only if one uses information beyond
the local universe that can constrain the properties of dark
matter and dark energy [see Eq. (4)], such as data that include
supernovae at z > 0.15 [25,27]. This was necessary as there
were not enough local supernovae and/or their calibration
was less precise so it was not possible to constrain well H0

if q0 was not fixed. However, as we will show below (see
also [14]), the latest supernova catalog and anchors allow us
to perform an analysis which is only based in the z � 0.15
universe. It is important to stress that the actual analysis of
[6] is more complicated than the one of Eq. (6) as it involves
many intermediate steps.

Here, in order to get the calibration prior f (MB) we solve
the integral equation obtained by demanding that Eq. (7) gives
the constraint of Eq. (10). Assuming a Gaussian distribution
for MB with mean M̄B and dispersion σM , which is also
justified a posteriori by the fact that MB is tightly constrained
by data, it is possible to marginalize analytically the two-
dimensional (2D) posterior in Eq. (7). The result is that H0

is distributed according to a log-normal distribution with the
parameters

μdm
ln = ln 10

5

[
M̄B + ln 10

5

(
σ 2

M + 1

S0

)
− S1

S0

]
, (11)

σ dm
ln = ln 10

5

√
σ 2

M + 1

S0
. (12)

FIG. 2. Reconstruction of the determination by Reid et al. [7]
of Eq. (10) using the calibration prior of Eq. (16). Also shown is
a Gaussian probability distribution function (PDF) with same mean
and dispersion. It is evident that the deviation from Gaussianity is
negligible.

One can then match first and second moments of the log-
normal distribution with Eq. (10) so that one has

μRe19
ln � 4.2971, σ Re19

ln � 0.019 046, (13)

where we used Eqs. (A8) and (A9). The calibration prior is
then given by

Mdm
B = 5

ln 10
μRe19

ln + S1

S0
− ln 10

5

(
σ 2

M + 1

S0

)
, (14)

σ 2
Mdm

B
= 25

ln2 10
σ 2 Re19

ln − 1

S0
. (15)

The quantities S0 and S1 are defined in Appendix A, where the
full derivation can be found. Using the previous equations, one
obtains the calibration prior f (MB):

Mdm
B = −19.2334 ± 0.0404 mag. (16)

In the computation above we considered the second-order
correction in dL/z and fixed j0 = 1 because [6] does so [see
Eq. (19)]. The second-order correction shifts the prior by
a small ∼0.1σ . The log-normal distribution on H0 is very
close to a Gaussian as shown in Fig. 2, where the log-normal
f (H0|SN) is compared with a Gaussian, both with mean and
dispersion as in Eq. (10).

B. Deconvolution

One may obtain the calibration prior also via the following
approach. The Hubble constant and the supernova absolute
magnitude are connected through the equation [24]

log10 H0(q0, j0) = MB + 5aB(q0, j0) + 25

5
, (17)

where the “intercept” aB is obtained via the Hubble-Flow
supernovae,

aB(z, mB, q0, j0) = log10[cz f (z, q0, j0)] − 1
5 mB, (18)

f = 1 + 1 − q0

2
z − 1 − q0 − 3q2

0 + j0
6

z2 + O(z3), (19)

where z and mB are the observed redshift and apparent mag-
nitude of the supernovae. In (17) the absolute magnitude MB

and the intercept aB are independent as the former is obtained
via the astrophysical observations of anchors, Cepheid hosts,

013028-3



DAVID CAMARENA AND VALERIO MARRA PHYSICAL REVIEW RESEARCH 2, 013028 (2020)

and calibrators, while the latter is obtained via Hubble-Flow
supernovae that probe the cosmological luminosity-distance–
redshift relation. In particular, fixing q0 = −0.55 and j0 = 1
affects aB but not MB. This shows clearly that it is possible to
derive the constraint on MB by “subtracting” (or deconvolv-
ing) the contribution of aB from the constraint on H0.

The constraint on aB using the Supercal sample [26] is [24]

aB(q0 = −0.55, j0 = 1) = 0.712 73 ± 0.001 76, (20)

which can be obtained via [28]

aB =
∑

i, j (C
−1)i j aB,i∑

i, j (C
−1)i j

, σ 2
aB

= 1∑
i, j (C

−1)i j
, (21)

where aB,i = aB(zi, mB,i, q0, j0) are the intercept measure-
ments with covariance matrix C. After propagating the errors
on z (mostly peculiar velocity) on mB, it is C = �/25, where
� is the covariance matrix for mB. Regarding mB and �, we
follow the methodology of [24] as described in the preceding
section.

One can then proceed in two ways. The simplest approach
is just to perform first-order error propagation

Me
B = 5

(
log10 HRe19

0 − aB − 5
) = −19.2322,

σ e
M =

√(
5

ln 10

σHRe19
0

HRe19
0

)2

− 25σ 2
aB

= 0.0404. (22)

Alternatively, one can make a change of variable so that the
higher moments are included. Adopting Gaussian distribu-
tions for MB and aB, it follows that H0 is distributed according
to the log-normal distribution of Eq. (A5) with the parameters

μdc
ln = ln 10

5
(M̄B + 5aB + 25), (23)

σ dc
ln = ln 10

5

√
σ 2

M + 25σ 2
aB

, (24)

so the calibration prior is given by

Mdc
B = Mdm

B + ln 10

5

(
σ 2

M + 1

S0

)
, (25)

σ 2
Mdc

B
= σ 2

Mdm
B

, (26)

where we used the fact that

5aB + 25 = −S1

S0
, 25σ 2

aB
= 1

S0
. (27)

Using the previous equations, one obtains the calibration prior
f (MB),

Mdc
B = −19.2326 ± 0.0404 mag, (28)

which confirms the validity of the first-order estimate of
Eq. (22). We see that the demarginalization and deconvolution
approaches give very similar results: The variance of the
prior is actually identical while the central value differs by
a negligible amount:

Mdc
B − Mdm

B � 5

ln 10

(
σHRe19

0

HRe19
0

)2

� 8 × 10−4. (29)

We will adopt the demarginalization result as the analysis of
the next section generalizes its methodology.

C. Robustness

The computation of the calibration prior with the methods
of the previous sections is possible because its determination
is independent of the cosmological Hubble flow that is used
to determine H0. In particular, MB is independent of the value
adopted for the cosmographic parameters q0 and j0 as their
effect is to alter the luminosity distance and not MB. This
would not be the case if SH0ES constrained Hubble flow and
MB together as, in this case, MB would be correlated with the
Hubble-flow supernovae.

Even though the methodology is well posed, there could
be astrophysical or cosmological effects that could bias the
determination of MB. A calibration bias could be produced
by the coherent flow of the local supernovae, akin to cosmic
variance [11]. However, both the determination of Eq. (10)
and the Supercal data set have already been corrected for
such effects using velocity fields derived from galaxy den-
sity fields [26]. Another bias could be due to correlations
between supernovae and environmental properties such as
star formation rate and metallicity. Reference [6] concluded
that these correlations are not significant, so they should not
impact Eq. (16) either (see, however, [29,30]). Therefore, we
conclude that our determination of the MB prior is robust and
correctly encodes the supernova calibration via the distance
ladder.

D. Calibration prior in cosmological analyses

The calibration prior on MB of Eq. (16) can be meaning-
fully used in cosmological analyses instead of the correspond-
ing H0 determination. Indeed, there are 175 supernovae in
common between the Supercal and Pantheon data sets in the
range 0.023 � z � 0.15 and, in the standard analysis, these
supernovae are used twice: once for the H0 determination and
once when constraining the cosmological parameters. This
induces a covariance between H0 and the other parameters
which could bias cosmological inference. The advantage of
adopting the calibration prior is that these 175 supernovae are
used only once, avoiding any potential bias.

IV. DETERMINATION OF LOCAL H0

Here we wish to obtain a determination of H0 that is
based solely on the local universe (z � 0.15) and that is truly
independent of any cosmological assumptions besides the cos-
mological principle and the astrophysics of anchors, Cepheid
hosts, and calibrators. We achieve the latter by considering an
uninformative flat prior on q0 and marginalizing the posterior
also over q0, that is,

f (H0, q0, MB|SN) = f (H0) f (q0) f (MB)L
E , (30)

f (H0|SN) =
∫

dMBdq0 f (H0, q0, MB|SN), (31)

where f (q0) is the flat ignorance prior on q0. The method
of [6] is recovered if we set f (q0) = δ(q0 + 0.55). In this
analysis we adopt the more recent Pantheon supernova sample
[25], which features 237 supernovae in the redshift range
0.023 � z � 0.15 (see Fig. 1). In this case the covariance
matrix and the apparent supernova magnitudes do not depend
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−2.0−1.5−1.0−0.5 0.0

q0

68 72 76 80

H0

−2

−1.5

−1

−0.5

0

q 0

This work

Planck 2018

FIG. 3. Determination of the Hubble constant H0 and the de-
celeration parameter q0 from the Pantheon supernovae in the
redshift range 0.023 � z � 0.15 [25]. The constraints have been
marginalized over the absolute magnitude MB. Also shown are the
marginalized 2D constraints on H0 and q0 from the CMB-only Planck
Collaboration analysis that assumes the standard flat �CDM model
[8]. The tension between the two determinations is at the 4.5σ level.

on the nuisance parameters that control stretch and color
corrections, and the correction for the apparent magnitudes
with hosts above and below log10 Mstellar ∼ 10 is already
applied. Also, the covariance matrix includes all the uncertain-
ties. The results relative to the Supercal sample are given in
Appendix B.

We have used EMCEE [31], an open-source sampler for
Markov chain Monte Carlo (MCMC), to sample the posterior
and GETDIST [32] for analyzing the chains. The result of this
analysis is presented in Fig. 3. We obtain

H loc
0 = 75.35 ± 1.68 km s−1 Mpc−1, (32)

qloc
0 = −1.08 ± 0.29. (33)

The latest CMB-only constraint from the Planck Collabora-
tion (see Table 2 in [8]) is

HPlanck
0 = 67.36 ± 0.54 km s−1 Mpc−1 (34)

and the tension with our determination now reaches 4.5σ :∣∣H loc
0 − HPlanck

0

∣∣√
σ 2

H0
+ σ 2

HPlanck
0

� 4.52. (35)

As it is clear from Fig. 3, low-redshift supernovae are
able to constrain not only H0 but also q0, whose distribution
is peaked at values lower than the standard model one of
q0 = −0.55. However, the deceleration parameter is not yet
tightly constrained and the tension between our determination
and the one by Planck is at the 1.9σ level. Note that the
�CDM model cannot give values of q0 below −1.

Finally, it is interesting to compare directly the marginal-
ized 2D posterior on H0 and q0 from CMB and low-z super-
nova observations. We obtained the CMB posterior using the
MCMC chain from the CMB-only Planck analysis available
from [33]. The tension in the H0-q0 plane is also presented in
Fig. 3.

In order to quantity the tension we adopt the index of
inconsistency (IOI) [34], which directly generalizes the esti-
mator of Eq. (35). We find

√
2 IOI ≡

√
δT (Cloc + CPlanck )−1δ � 4.54,

δ = {
H loc

0 − HPlanck
0 , qloc

0 − qPlanck
0

}
, (36)

where C are the covariance matrices on H0 and q0 from the
analysis of Fig. 3 and δ is the difference vector. Note that these
estimators assume Gaussianity and that the posteriors on H0

and q0 are very close to Gaussian. The tension in the H0-q0

plane is again very strong: 4.5σ .

V. DISCUSSION

Our determination of the Hubble constant of Eq. (32) is
based on the calibration prior of Eq. (16) and on the low-
redshift cosmographic expansion of Eq. (2). While the validity
of the calibration prior depends on the standardizable nature
of supernovae Ia, a process that includes corrections due
to color, stretch, and host-galaxy mass, the validity of the
cosmographic analysis is solely based on the approximation
that the FLRW metric provides a good description of our
universe at large scales. While it is possible to test directly
this hypothesis [35–38], the validity of the FLRW metric is
a direct consequence of assuming the cosmological principle,
according to which the universe is homogeneous and isotropic
at large scales. Therefore, as far as cosmological assumptions
are concerned, the determination of Eq. (32) only assumes the
cosmological principle.

While our goal here was to improve the local determination
of H0 by considering a flat prior on q0, it is also possible to
perform a more thorough reanalysis of the cosmic distance
ladder and consider the impact of non-Gaussianities [14],
hyperparameters [12], and a blinded pipeline [13]. In partic-
ular, our results are in agreement with the findings of [14],
which, using a Bayesian hierarchical model, also found that
data prefer a lower value of q0 ≈ −1 and so, owing to their
anticorrelation, a higher value of H0. In particular, Ref. [14]
adopted a broad (truncated) Gaussian prior q0 = −0.5 ± 1,
similar to our improper flat prior, and obtained a value of
H0 which is ∼1 km s−1 Mpc−1 higher than their baseline H0

value. This is in good agreement with our results relative to
the Supercal sample, the one adopted in [14]. Indeed, the
determination of Eq. (B1) is ∼1 km s−1 Mpc−1 rather than the
HRe19

0 of Eq. (10).
It is also possible to extend the cosmic ladder to baryon

acoustic oscillation (BAO) and CMB observations. Refer-
ence [39] constrained H0 via a cosmographic inverse lad-
der approach, using BAO measurements to break the de-
generacy between MB and H0 and finding a value of the
Hubble constant very close to the Planck one: HM18

0 =
67.8 ± 1.3 km s−1 Mpc−1. The cosmographic inverse ladder
approach propagates the prior on the sound horizon from
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CMB to the BAO scale. However, the calibration of MB

depends on the luminosity-distance–redshift relation of super-
novae both at low and high redshift. This introduces correla-
tions between MB and the properties of dark energy, which can
explain why our cosmology-independent determination of q0

differs from the constraint qM18
0 = −0.37 ± 0.15 obtained in

[39]. Finally, a low local value of q0 ≈ −1 was also obtained
in [40], where the cosmic ladder was extended to BAO and
CMB observations using the distance-duality relation instead
of a high-redshift cosmographic expansion.

VI. CONCLUSION

We obtained the effective local calibration prior on the
absolute magnitude MB of Supernovae Ia, which we used
to obtain a determination of the Hubble constant from the
local universe that assumes only large-scale homogeneity and
isotropy: H0 = 75.35 ± 1.68 km s−1 Mpc−1. Our determina-
tion uses the latest Pantheon sample. As shown in Fig. 3, the
allowed values are in stronger tension with what the CMB
predicts if the standard model of cosmology is valid. The
H0 crisis is approaching the 5σ level. We stress that our
determination relies only on supernovae in the redshift range
0.023 � z � 0.15. If, on one hand, this limits the available
information as there are many more supernovae at higher red-
shifts, on the other hand, this restricted redshift range makes
this analysis local. We would like to stress that the calibration
prior on MB = −19.2334 ± 0.0404 mag can be meaningfully
used in cosmological analyses, instead of the corresponding
H0 determination, in order to avoid the double counting of
low-redshift supernovae.

The fact that both Hubble constant and deceleration pa-
rameter differ seems to suggest that a new phenomenon is
affecting both the sound horizon and the recent expansion
rate of the universe. Early dark energy may be a promising
candidate [16]. The increased statistical significance of our
determination of H0 reinforces this suggestion.
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APPENDIX A: DERIVATION OF THE
DEMARGINALIZATION

Here we explain how we obtained Eqs. (11) and (12). First,
we define

m̃t
B ≡ mt

B − MB + logh, (A1)

where we used the shorthand notation logh = 5 log10 H0. We
can then rewrite Eq. (9) as

χ2 = {Wi + logh − MB}�−1
i j {Wi + logh − MB}

= S0(MB − logh − S1/S0)2 + const, (A2)

where ‘const’ consists of all terms that do not depend on H0

and MB and we defined

Wi = mB,i − m̃t
B(zi), Vi = 1,

S0 = V · �−1 · V T ,

S1 = W · �−1 · V T . (A3)

The unnormalized posterior of Eq. (6) is then

f (H0, MB|SN) ∝ e
− (M−M̄B )2

2σ2
M e− 1

2 χ2(H0,MB ), (A4)

where an improper flat prior on H0 was adopted. Equation
(A4) can then be integrated over MB so that the normalized
posterior on H0 is distributed according to the log-normal
distribution

f (H0|SN) =
∫

dMB f (H0, MB|SN)

= 1

H0

√
2πσln

exp − (ln H0 − μln )2

2σ 2
ln

, (A5)

with the parameters

μdm
ln = ln 10

5

[
M̄B + ln 10

5

(
σ 2

M + 1

S0

)
− S1

S0

]
, (A6)

σ dm
ln = ln 10

5

√
σ 2

M + 1

S0
. (A7)

Finally, the mean and variance of the log-normal distribution
are

H̄0 = eμln+ 1
2 σ 2

ln , (A8)

σ 2
H0

= (eσ 2
ln − 1)e2μln+σ 2

ln . (A9)

APPENDIX B: ANALYSIS WITH THE SUPERCAL SAMPLE

Here we present the results using the Supercal supernova
catalog [26] that was used in [6,24]. It features 217 supernovae
in the redshift range 0.023 � z � 0.15 (see Fig. 1). Figure 4
shows the results of this analysis, which are compared with
the ones of Sec. IV that use the more recent Pantheon sample.
We obtain

H loc
0 = 74.62 ± 1.54 km s−1 Mpc−1, (B1)

qloc
0 = −0.90 ± 0.22, (B2)

which are in tension with the determinations of H0 and q0

by the Planck Collaboration at the 4.5σ and 1.7σ levels,
respectively. The tension in the H0 − q0 plane is 4.5σ . There
is good agreement between the results that use the Supercal
and Pantheon data sets.

The previous results were obtained using the methodology
of [24], that is, fixing the nuisance parameters that control
stretch and color corrections to α = 0.14 and β = 3.1, cor-
recting the apparent supernova magnitudes with hosts above
and below log10 Mstellar ∼ 10 by 0.03 mag fainter and brighter,
respectively, and including an intrinsic dispersion of σint =
0.1 mag together with a peculiar velocity error of 250 km/s.
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FIG. 4. Comparison between the analysis that uses the Supercal
supernova sample and the one of Fig. 3 that uses the Pantheon
sample. The agreement is good.

If instead we adopt a flat prior on α and β we obtain basically
the same results:

H loc
0 = 74.85 ± 1.57 km s−1 Mpc−1, (B3)

qloc
0 = −0.98 ± 0.24. (B4)

APPENDIX C: ANALYSIS RELATIVE TO THAT
OF RIESS et al.

Here we report the results relative to the measurement by
Riess et al. in [6]:

HR19
0 = 74.03 ± 1.42 km s−1 Mpc−1. (C1)

The calibration prior is

Mdm
B = −19.2178 ± 0.0407 mag, (C2)

which gives the determinations

H loc
0 = 75.89 ± 1.70 km s−1 Mpc−1, (C3)

qloc
0 = −1.08 ± 0.29, (C4)

which are in tension with the corresponding CMB-only con-
straints from the Planck Collaboration at the 4.8σ and 1.9σ

levels, respectively. The tension in the H0-q0 plane is at the
4.8σ level.
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