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Orbital transmutation and the electronic spectrum of FeSe in the nematic phase
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We consider the electronic spectrum near M = (π, π ) in the nematic phase of FeSe (T < Tnem) and make a
detailed comparison with recent ARPES and STM experiments. Our main focus is the unexpected temperature
dependence of the excitations at the M point. These have been identified as having xz and yz orbital character
well below Tnem, but remain split at T > Tnem, in apparent contradiction to the fact that in the tetragonal phase the
xz and yz orbitals are degenerate. Here we present two scenarios which can describe the data. In both scenarios,
hybridization terms present in the tetragonal phase leads to an orbital transmutation, a change in the dominant
orbital character of some of the bands, between T > Tnem and T � Tnem. The first scenario relies on the spin-orbit
coupling at the M point. We show that a finite spin-orbit coupling gives rise to orbital transmutation, in which
one of the modes, identified as xz (yz) at T � Tnem, becomes predominantly xy at T > Tnem and hence does
not merge with the predominantly yz (xz) mode. The second scenario, complementary to the first, takes into
consideration the fact that both ARPES and STM are surface probes. In the bulk, a direct hybridization between
the xz and yz orbitals is not allowed at the M point, however, it is permitted on the surface. In the presence
of a direct xz/yz hybridization, the orbital character of the xz/yz modes changes from pure xz and pure yz at
T � Tnem to xz ± yz at T > Tnem, i.e., the two modes again have mono-orbital character at low T , but do not
merge at Tnem. We discuss how these scenarios can be distinguished in polarized ARPES experiments.
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I. INTRODUCTION

The intriguing physical properties of FeSe continue to
attract the attention of the correlated electron systems commu-
nity [1–3]. This material has the simplest structure among the
Fe-based superconductors (FeSCs), yet its phase diagram is
rather complex, particularly under pressure [4,5], and is quite
different from that of other FeSCs. The most notable distinc-
tion is a wide temperature range where the tetragonal sym-
metry of the lattice is spontaneously broken down to C2 (the
nematic phase). The nematic order emerges at Tnem ∼ 90 K
at nominal pressure, and is not accompanied by a stripe
magnetic order [6]. Superconductivity emerges at a much
smaller T ∼ 8 K [7].

The electronic structure of FeSe in the tetragonal phase
(T > Tnem) is fairly typical of the FeSCs–there are two cylin-
drical hole pockets centered at � = (0, 0) in the Brillouin zone
(BZ) and two cylindrical electron pockets [3]. In the 1-Fe BZ,
one of the electron pockets is centered at (π, 0) (the X point),
while the other is centered at (0, π ) (the Y point) [8]. The
hole pockets consist equally of fermions from the xz and yz
orbitals, the X pocket is made of fermions from the yz and
xy orbitals, and the Y pocket of fermions from the xz and
xy orbitals [3]. In the crystallographic 2-Fe unit cell, the X
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and Y pockets are folded onto M = (π, π ), or, equivalently,
M ′ = (π,−π ), and form inner and outer pockets [9]. The
inner pocket is made mostly of xz and yz fermions, and the
outer pocket is made mostly of xy fermions [3]. The two
pockets touch along high-symmetry axes in the absence of
spin-orbit coupling (SOC) and split in its presence [10–12].
Although the same geometry of low-energy excitations holds
in other FeSCs, the peculiarity of FeSe is that the Fermi
energies for the hole and electron bands are smaller than in
other FeSCs [13–18].

In the nematic phase, the occupations of the xz and yz
orbitals become inequivalent on both hole and electron pock-
ets [19], and the occupations of the xy orbitals at X and at
Y also generally become different (the latter gives rise to a
hopping anisotropy in real space [20]). This changes both the
shape of the pockets and the orbital composition of excitations
along them. Of the two hole pockets, the smaller one sinks
below the Fermi level, and the larger one becomes elliptical
[19,21,22]. The direction of its longer axis (towards X or Y in
the 1-Fe BZ, or, equivalently, towards M or M ′ in the 2-Fe BZ)
is chosen spontaneously. In nonstrained (twinned) samples,
angle-resolved photoemission spectroscopy (ARPES) mea-
surements necessarily see a superposition of the two hole
pockets elongated along orthogonal directions, due to the
presence of twin domains [18]. However, polarized ARPES
measurements on twinned samples or unpolarized measure-
ments in detwinned samples allow one to focus on a single
domain. Here, we follow ARPES data and focus on the
domain in which, deep in the nematic phase, the hole pocket is
elongated towards Y in the 1-Fe BZ [21,23], or, equivalently,
along �-M ′ in the 2-Fe BZ (we use the convention that �-Y
direction in the 1-Fe BZ corresponds to �-M ′ in the 2-Fe BZ,
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FIG. 1. 1-Fe and 2-Fe unit cells in (a) real and (b) momentum
space. In (a), gray denotes Fe-atoms and purple denotes the Se atoms
puckered above and below the Fe-plane. The rotated red square
denotes the 1-Fe unit cell, while the blue square denotes the 2-Fe
unit cell. In (b), the corresponding unit-cells in momentum space are
shown with schematic Fermi surfaces overlaid. In the 1-Fe unit cell
(red), one electron pocket is centered at both X and Y . In the 2-Fe unit
cell (blue), there are two electron pockets at M and two at M ′ (note
that the use of M ′ = (−π, π ) is not standard). In both unit cells, two
hole pockets are centered at �.

see Fig. 1 for the an explanation of the relationship between
the 1- and 2-Fe unit cells [9].) For the electron pockets,
both ARPES [21,24–26] and scanning tunneling microscopy
(STM) measurements [2] have shown that, within the same
domain, the inner electron pocket acquires a peanutlike shape,
with smaller axis towards M ′ (larger axis towards M).

The change of the shapes of the hole and electron pockets
can be well understood at the mean-field level, by adding to
the kinetic energy the fermionic bilinears that couple directly
to the nematic order parameters:

H�
nem = φ�

(
d̃†

xz,σ d̃xz,σ − d̃†
yz,σ d̃yz,σ

)
HM

nem = φ1
(
d̂†

xz,σ d̂xz,σ − d†
yz,σ dyz,σ

)
+φ3

(
d̂†

xy,σ d̂xy,σ − d†
xy,σ dxy,σ

)
. (1)

Here, φ� and φ1 are the nematic orders associated with the
xz and yz orbitals near � and M, respectively, and φ3 is the
nematic order associated with the two xy orbitals near M
[27]. We use d̃ for the states at �, d̂ for the states at the Y
point in the 1-Fe BZ and d for the states at the X point. The
elongation of the hole pocket along �-M ′ and the peanut-like
form of the electron pocket, with larger axis along �-M, are
reproduced if φ� > 0 and φ1 < 0 (Refs. [2,28–30]). We will
use this convention throughout. It implies that the xz orbital is
the dominant one for the hole pocket, while the yz orbital is the
dominant one for the inner electron pocket. The sign change
between φ� and φ1 is consistent with the theoretical reasoning
that, for repulsive interactions, a spontaneous nematic order
is possible only if it changes sign between hole and electron
pockets [31], similarly to an s+− superconducting order. The
φ3 term leads to a splitting of the two degenerate xy orbitals
from the X and Y pockets (see Fig. 2). This term does not
affect the peanut-like shape (shown in Fig. 3) of the inner
electron pocket [20] and will play only a secondary role in our
analysis. The sign (and magnitude) of this term has not been
verified in experiments. In renormalization group calculations
[32], the sign is the same as of φ1.

FIG. 2. Evolution of the states at the M point as a function
of temperature for the “standard model” of Eq. (1). The full blue
lines correspond to the case with φ3 = ±10 meV, while the dashed
blue line corresponds to the case φ3 = 0. At T � Tnem, the four
excitations are the orbital eigenstates xz (green), xy (blue), and yz
(red). Upon approaching Tnem, the energies of the xz and yz states
merge, and the two form a doublet, as does the energies of the two
xy states.

While the shape of the pockets near M can be well un-
derstood by including only the standard terms in Eq. (1),
the ARPES data for the excitations right at the M point
cannot be straightforwardly explained within the “standard
model” of Eq. (1). Specifically, above Tnem, the yz and xz
states at M form a doublet and are degenerate. Below Tnem

they split exactly by 2φ1, according to Eq. (1) (see Fig. 2).

FIG. 3. Fermi surfaces and orbital weights at T � Tnem (a)–(c)
and T > Tnem (d)–(f) for the standard case in which only the terms of
Eq. (1) and the xy hopping anisotropy are included (φ3 = −10 meV
here). The orbital color code is the same as in Fig. 2.
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ARPES measurements deep in the nematic state do detect two
sharp excitations [16,18,23–26,33,34], and a recent polarized
ARPES study [25] provided strong evidence that these two
states are indeed xz- and yz-dominated, by tracking them from
the M to the � point. However, as T increases towards Tnem,
the two states do not merge and remain split even above Tnem

[16,18,23–26,33,34]. In Ref. [25], it was speculated that the
absence of merging may be a spurious feature due to thermal
broadening, while in Refs. [16,18,23,24,33,34] it is argued
that the splitting of the two modes above Tnem is a physical
feature. If this is indeed the case, the ARPES data at M are
inconsistent with the standard model of Eq. (1).

In this communication, we argue that the ARPES data
at the M point can be explained if one includes SOC for
the fermions near the electron pockets. In the presence of
SOC, the excitations at M are no longer orbital eigenstates.
In the tetragonal phase, this does not lead to drastic changes:
the excitations still form two doubly degenerate states, such
that the states in the doublet closer to the Fermi level are
xz and yz with small admixtures of xy, while the states in
the doublet farther from the Fermi level are xy, one with a
small admixture of xz, the other with a small admixture of yz
(see Fig. 4). Our key finding is that below Tnem, where the
double degeneracy is lost, an excitation from each doublet
undergoes an orbital transmutation, i.e., its dominant orbital
contribution changes compared to that in the tetragonal phase.
Specifically, the doublet closer to the Fermi level splits into
two energy levels: the upper one remains predominantly yz,
while the lower one becomes predominantly of xy character at
T � Tnem. The other doublet also splits into two levels. In this
case, the upper one remains predominantly xy, while the lower
one becomes predominantly of xz character at T � Tnem. As
T increases towards Tnem, the yz excitation remains sharp
and becomes a part of the upper doublet in the tetragonal
phase. The excitation dominated by the xz orbital at T � Tnem

becomes more incoherent as temperature is increased and the
dominant orbital weight changes from xz to xy. At Tnem, this
excitation merges with the lower, xy dominated doublet. We
show the excitations in Fig. 4 (for different values of φ3) and
the spectral function in Fig. 6.

The orbital transmutation can be gleaned by looking at the
excitations in the standard model of Eq. (1). From Fig. 2, we
see that the xz band crosses the xy excitations. In the absence
of SOC, this is just a level crossing as xz and xy orbitals are
not allowed to hybridize at the M point. A nonzero SOC gives
rise to level repulsion between the xz excitation and one of the
xy excitations (the one from the X pocket in the 1-Fe BZ), see
Eq. (10). As a result, the orbital weight is transferred between
the two excitations. We show that a similar behavior emerges
if instead of SOC we include a hybridization between the xz
and yz orbitals at the M point. Such hybridization is forbidden
in the bulk by glide-plane symmetry [10], but is allowed
on the surface [20] and in this regard should be viewed as
surface-induced hybridization (SIH) [35]. It is relevant to
ARPES and STM experiments as both probe electrons near
the surface. Due to SIH, the xz/yz doublet is split already in
the tetragonal phase into higher and lower energy excitations,
with equal mixtures of xz and yz orbital characters (Fig. 9).
In the nematic phase, the orbital character of the excitation
closer to the Fermi level becomes predominantly yz, while

the orbital character of the excitation farther from the Fermi
level becomes predominantly xz. In this case, the modes are
sharp both at T � Tnem and T > Tnem, but they do not merge
at T > Tnem (Fig. 12). When both SOC and SIH are present,
the two excitations should remain visible to ARPES at all
temperatures, see Fig. 13.

We believe that this theoretical scenario solves the puzzle
of ARPES data at the M point in FeSe. As we said before,
all ARPES experiments observe two sharp excitations at
M at T � Tnem [16,18,23–26,33,34]. Our results agree with
Refs. [16,18,24,26,33,34], which followed these two excita-
tions from T � Tnem to T > Tnem and argued that they remain
split at T > Tnem. Our results also agree with Ref. [33], which
identified two additional, less coherent excitations at T �
Tnem, located in between the xz and yz dominated excitations.
In our scenario, these excitations are identified as having
predominantly xy orbital character.

We also discuss the orbital composition of the pockets.
The polarized ARPES and STM measurements show that
the nematic order drastically changes the orbital content of
the pockets deep in the nematic phase. In one domain, the
elliptical hole pocket becomes predominantly xz, and the inner
electron pocket becomes predominantly yz. This is in sharp
contrast to the behavior in the tetragonal phase, where the
orbital content of these pockets oscillates between xz and
yz (see Fig. 3). Such a drastic change of the orbital content
is not expected in a generic FeSC, where φ� and φ1 are
much smaller than the corresponding Fermi energies EF , but
has been reproduced theoretically for FeSe [28,36], where
the pockets are smaller than in other FeSCs, and φ� and φ1

are comparable to EF . For the same parameters, calculations
show that the outer electron pocket becomes larger and more
circular in the nematic phase [16,22,28,36,37], and its orbital
content is predominantly xy (see Fig. 3). In other words, all
pockets become nearly mono-orbital deep in the nematic state:
the hole pocket becomes xz (yz), the inner electron pocket be-
comes yz (xz), and the outer electron pocket becomes xy [and,
if the second, smaller hole pocket does not sink completely
below the Fermi level, its orbital content becomes yz (xz)].

The near-xy composition of the outer electron pocket may
explain why this pocket has not been detected in ARPES
measurements. Namely, it has been argued in several papers
[2,36,38–40], that the xy fermions are either completely in-
coherent, or have only a small coherent spectral weight at
low energies (Zxy � 1), with the rest of the spectral weight
transferred to higher energies. If this is the case, then the
pocket made of xy fermions is almost invisible to ARPES,
as the large incoherent background would mask any shallow
peaks.

The rest of the paper is organized as follows. In Sec. II, we
introduce the low-energy model and describe in more detail
the standard coupling to the nematic order parameter, the SOC
for fermions near M, and the SIH term. We set the parameters
in the fermionic dispersion to match the observed forms of
hole and electron pockets in the tetragonal and the nematic
phases. In Sec. III, we discuss the orbital composition of the
Fermi pockets and the excitations at M in the presence of
SOC. In Sec. IV, we discuss the same in the presence of
SIH. We discuss the results and present our conclusions in
Sec. V.
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TABLE I. Parameters used in the low-energy model listed in units of meV.

ε1,0 ε3,0 v p1 p2 (2m1)−1 (2m3)−1 a1 a3

−24.6 −32.0 −122.90 −137.22 −11.67 1.41 186.11 136.12 −403.84

II. THE LOW-ENERGY MODEL

We work in the crystallographic 2-Fe BZ, in which the
electron pockets at X and Y are folded onto the M (and M ′)
points, and form inner and outer electron pockets. To obtain
the fermionic dispersion, we follow Ref. [10] and use a k · p
expansion around the M point, which respects all the symme-
tries of a single FeSe layer. In the absence of SOC, the orbital
states at the M point are pure eigenstates. Since the space
group of FeSe, P4/nmm, is nonsymmorphic, all irreducible
representations at the M point are twofold degenerate [10],
in which case the excitations form doublets (quadruplets, if
we include spin degeneracy). The doublet closest to the Fermi
level consists entirely of the xz and yz orbitals, whereas the
lower doublet is made of the two xy orbitals originating from
the two inequivalent Fe sites in the 2-Fe BZ (the states near X
and near Y in the 1-Fe BZ). A suitable basis for these doublets
is

�(k) =
(

�Y (k)
�X (k)

)
, (2)

where

�Y (k) =
(

d̂xz,σ (k)
d̂xy,σ (k)

)
, �X (k) =

(
dyz,σ (k)
dxy,σ (k)

)
, (3)

and k is the deviation from M. As in Eq. (1), we label the
states which are associated with the Y pocket in the 1-Fe BZ
point by d̂ . The kinetic energy term in this basis is

Hkin(k) =
(

h+(k) 0
0 h−(k)

)
, (4)

with

h±(k) =
(

ε1 + k2

2m1
± a1kxky −iv±(k)

iv±(k) ε3 + k2

2m3
± a3kxky

)
⊗ σ 0,

(5)

where σ 0 is 2×2 identity matrix (we use σ to denote matrices
in spin space) and v±(k) is a polynomial odd in powers of k:

v±(k) = v(±kx + ky) + p1
(±k3

x + k3
y

) + p2kxky(kx ± ky).

(6)

At the M point, k = 0, the Hamiltonian is diagonal

h+(0) = h−(0) =
(

ε1 0

0 ε3

)
⊗ σ 0, (7)

i.e., the eigenstates are pure orbital states. We assume that
the onsite energies ε1 and ε3 are slowly-varying functions of
temperature and use ε1(T ) = ε1,0 + 0.083T, ε3(T ) = ε3,0 +
0.083T , where ε1,0 = −24.6 meV and ε3,0 = −32.0 meV, to
reproduce the ARPES data at M in the tetragonal phase
[3,18,21,22,34,41]. We use these values in Figs. 2 and 3 to ob-
tain the variation of the excitations at M in the nematic phase
within the standard model. We will adjust ε1,0 and ε3,0 slightly

in the presence of SOC and SIH to maintain the peanut-like
shape of the inner electron pocket. The exact values will be
given in the appropriate sections, but the variation between
cases is rather small, within 3 meV.

Away from the M point, the eigenstates are no longer pure
orbital states. We use the parameters listed in Table I to re-
produce the ARPES and STM data for the peanut-shape inner
electron pocket [2,3,18,21,22,34,41]. The standard coupling
of fermions near the M point to the nematic order parameters
φ1 and φ3 is given by Eq. (1). For our analysis, it suffices
to consider a mean-field temperature-dependence of φ1 and
φ3: φi(T ) = φi,0

√
1 − T/Tnem, where Tnem = 90 K. For defi-

niteness, we set φ1,0 = −24 meV in all calculations, and use
three different values of φ3,0 (φ3,0 = 0 and φ3,0 = ±10 meV).
We will see that the results do not depend substantially on the
choice of φ3,0.

The Fermi surfaces and the thermal evolution of the exci-
tations at the M point within this standard model are shown
in Figs. 2 and 3. The shape of the inner pocket and its orbital
composition are consistent with ARPES and STM data. The
outer electron pocket has predominantly xy orbital character.
Fermions on the xy orbital are likely incoherent [38,39], which
may explain why this pocket has not been observed in ARPES
studies in the nematic phase.

We see from Fig. 2 that the excitations at M retain their
orbital character in the nematic phase: two of the four modes
are xy, one is xz, and one is yz. The xz and yz excitations are
split at T < Tnem, but merge at T = Tnem and form a doublet
at T > Tnem (the energies of the two xy modes merge into
another doublet). As stated above, this is inconsistent with
ARPES. It is argued in several papers [16,18,23,24,26,33,34],
that the excitations identified as xz and yz deep in the ne-
matic state remain split at T = Tnem. In the next section, we
show that a new effect, dubbed orbital transmutation, emerges
once we extend the standard model to include SOC, and the
evolution of the excitations in the model with SOC is fully
consistent with ARPES data.

The form of the SOC at the M point has been analyzed
in Ref. [10] using symmetry considerations. It was argued
that SOC leads to an additional off-diagonal term in the
Hamiltonian Hkin(k) in Eq. (4):

HSOC =
(

0 hSOC

h†
SOC 0

)
, (8)

where

hSOC = i

2
λ

[(
0 1
0 0

)
⊗ σ 1 +

(
0 0
1 0

)
⊗ σ 2

]
. (9)

In terms of the operators at M this is

HSOC = i

2
λ d̂†

xz,ασ x
αβdxy,β + i

2
λ d̂†

xy,ασ
y
αβdyz,β + H.c. (10)
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FIG. 4. Evolution of the energies of the M-point excitations as
a function of temperature for the SOC scenario with λ = 10 meV.
The orbital color code is the same as Fig. 2. Here, ε1,0 = −24.8 and
ε3,0 = −35.0. In (a), we show the situation where φ3 = 0 while in
(b) and (c), we illustrate the difference between φ3 = −10 (b) and
10 meV (c). The inclusion of SOC hybridizes the xz/yz states with xy
states leading to an orbital transmutation at lower temperatures, such
that the state with predominantly xz character at T � Tnem originates
from the lower of the two doublets at the M point. The colored bars
denote the orbital weight at respectively 0 and 120 K for each of the
excitations.

In the 1-Fe BZ, this couples xz fermions at Y with xy fermions
at X , and yz fermions at X with xy fermions at Y . We empha-
size that the coupling in Eq. (10) is the only symmetry allowed
momentum-independent SOC. Momentum-independent cou-
plings between d̂xz,σ and d̂xy,σ or dyz,σ and dxy,σ , i.e., between
fermions from the same electron pocket in the 1-Fe BZ, are
not allowed by symmetry [10]. Momentum-dependent SOC
terms are allowed [10,42], but these terms are expected to be
small in FeSe because the relevant momenta are small.

The sum of the kinetic energy term and the SOC term is

Htot (k) =
(

h+(k) hSOC

h†
SOC h−(k)

)
. (11)

In the presence of SOC, excitations in the tetragonal phase
still form two doublets (two quadruplets if we include spin),
but each eigenstate no longer has pure orbital character
(see Fig. 4 at T > Tnem). The two states from the upper
doublet are still dominated by the xz and yz orbitals, but each
now has an admixture of the xy orbitals. Similarly, the two
states from the lower doublet are still primarily xy, but one
has an admixture of xz and the other of yz. In the next section,
we analyze how these states evolve in the nematic phase.

The SOC in Eq. (8) is the bulk term, and its form is set
by the symmetry of the P4/nmm space group of the bulk.

In Sec. IV, we consider the special situation at the surface,
as both ARPES and STM generally probe electrons near the
surface. The glide-plane symmetry is broken at the surface,
which allows additional coupling terms to be present. One
can describe the effect of the surface in terms of an effective
electric field η, perpendicular to the surface [43,44]. Such a
field transforms as the A2u irreducible representation of the
P4/nmm space group at the zone center. Consequently, it cou-
ples to the fermionic bilinear at the M point, d̂†

xz,σ dyz,σ + H.c.,
which also transforms as A2u. As a result, the Hamiltonian for
fermions at the surface acquires an additional term

Hsurf = η d̂†
xz,σ dyz,σ + H.c. (12)

In the presence of such term, the xz and yz orbitals remain
degenerate at the M point in the tetragonal phase, but the new
eigenstates are d±,σ = (d̂xz,σ ± dyz,σ )/

√
2. This hybridization

term splits the xz/yz doublet and gives rise to two dis-
tinct states with mixed xz/yz character at M (see Fig. 9 at
T > Tnem).

III. EXCITATIONS IN THE NEMATIC PHASE
IN THE PRESENCE OF SOC

The full Hamiltonian at M in the nematic phase is the sum
of HM

nem from Eq. (1) and Htot (k) from Eq. (11). Because the
atomic SOC only couples d̂xz with dxy and dyz with d̂xy the
Hamiltonian matrix at the M point decouples into four 2×2
matrices. Each matrix can be straightforwardly diagonalized.
Consider, e.g., d̂xz,↑ and dxy,↓. The corresponding 2×2 matrix
Hamiltonian is (

ε1 + φ1
i
2λ

− i
2λ ε3 − φ3

)
. (13)

The eigenenergies are

E± = 1
2

(
ε1 + ε3 + φ1 − φ3 ±

√
λ2 + (ε1 − ε3 + φ1 + φ3)2

)
,

(14)

and the transformation to the diagonal basis is

a = d̂xz,↑ cos ϕ − idxy,↓ sin ϕ,

b = dxy,↓ cos ϕ − id̂xz,↑ sin ϕ, (15)

FIG. 5. Evolution of cos2 ϕ and sin2 ϕ, given by (16), with in-
creasing nematic order parameter φ1 + φ3. We used ε1 = −25 meV,
ε3 = −35 meV, and λ = 10 meV. As discussed in the text, when the
magnitude of φ1 + φ3 exceeds ε1 − ε3, the dominant orbital character
of the two excitations at M flips. When φ1 + φ3 increases further, the
excitations become increasingly mono-orbital.
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FIG. 6. Spectral function as a function of T and ω at the M point.
We set damping rates to be �xy = 10 meV and �xz = �yz = 3 meV.
One peak is clearly seen above Tnem, originating from the xz/yz
doublet. Another shallower peak from the xy states can be seen
farther from the Fermi level. At T � Tnem, two peaks can be easily
distinguished, the one closest to ω = 0 tracing back to the strong
peak at high temperatures. This is in contrast to the peak at ω ≈
−50 meV, which traces back to the shallower, xy dominated peak
at higher temperatures. In addition, there is a broad peak at ω ≈
−25 meV with predominantly xy character, while the fourth peak is
masked by the peak at ω ≈ −50 meV.

where

tan 2ϕ = − λ

ε1 − ε3 + φ1 + φ3
. (16)

Accordingly, E+ is the energy of the a excitation while E−
is the energy of the b excitation. In the absence of SOC and
for φ1,3 = 0, we find ϕ = 0. In this case, E+ = ε1, and the
excitation is made exclusively by xz fermions, while E− = ε3

is made by xy fermions. For finite SOC, the weight of the xz
component for the a fermions is cos2 ϕ and the weight of the
xy component is sin2 ϕ. For the b fermions, the situation is
the opposite: cos2 ϕ is the weight of the xy component, while
sin2 ϕ is the weight of xz. In Fig. 5, we show the evolution of
ϕ with increasing the magnitude of φ1 + φ3.

For dyz,↑ and d̂xy,↓ (or dyz,↓ and d̂xy,↑), the excitation ener-
gies are instead

Ē± = 1
2

(
ε1 + ε3 − φ1 + φ3 ±

√
λ2 + (ε1 − ε3 − φ1 − φ3)2

)
,

(17)

and the transformation to the band basis is

ā = dyz,↑ cos ϕ̄ − d̂xy,↓ sin ϕ̄,

b̄ = d̂xy,↓ cos ϕ̄ + dyz,↑ sin ϕ̄, (18)

with

tan 2ϕ̄ = − λ

ε1 − ε3 − φ1 − φ3
. (19)

FIG. 7. Fermi surfaces for the SOC scenario, with λ = 10 meV.
The orbital color code is the same as Fig. 2. (a)–(d) depict the Fermi
surface at T = 0 K, deep in the nematic phase, while (e)–(h) show
the Fermi surface for T = 120 K, where nematic order is absent.
The top row shows the orbital weight along the Fermi surfaces,
as a function of θ . The lower row shows the coherent part of
the spectral function at the Fermi surface, illustrating the fact that
the pocket consisting predominantly of xy fermions is weaker than
the one consisting predominantly of yz fermions. In our modeling,
this is due to �xy > �yz.

In this case, the weight of the yz orbital for the ā excitation
(the one with energy E+) is cos2 ϕ̄, while the weight of xy is
sin2 ϕ̄. For the b̄ excitation, the weight of xy is cos2 ϕ̄, and the
weight of yz is sin2 ϕ̄.

The key to the phenomenon of orbital transmutation is
the fact that in FeSe the difference ε1 − ε3 is smaller than
in other Fe-based materials (recall ε3 < ε1 < 0). At some T
below Tnem, the combined value of the nematic order parame-
ters, φ1 + φ3 = −|φ1| + φ3 becomes larger in magnitude than
ε1 − ε3 (recall φ1 < 0 by assumption) [45]. This can actually
be seen from Fig. 2: the xz band, whose energy is ε1 + φ1

in the absence of SOC, crosses both xy excitations, whose
energies are ε3 ± φ3. At low T , ε1 − ε3 + φ1 + φ3 therefore
changes sign and becomes negative. This implies that ϕ, given
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by Eq. (16), varies from ϕ ≈ −0 to ϕ ≈ −π
2 . Accordingly,

the content of the a excitation at E+ varies from near-xz at
T � Tnem to near-xy at T � Tnem. Similarly, the content of
the b excitation varies from near-xy in the high-temperature
regime to near-xz deep in the nematic phase (see Fig. 5).
For the ā and b̄ excitations, no orbital transmutation occurs
because ε1 − ε3 − φ1 − φ3 in the denominator of Eq. (19)
does not change sign.

In Fig. 4, we show the results of the full calculation of the
excitation spectrum for three values of φ3 (positive, negative,
and zero). The boxes near the lines show the orbital content.
We see that one branch of the split upper doublet remains
predominantly yz between T = Tnem and T � Tnem, but the
other becomes predominantly xy instead of xz. For the lower
doublet, one branch remains predominantly xy, but the other
becomes xz instead of xy. Combining this with the assumption
that the xy orbital is incoherent [38,39], we find that, deep in
the nematic state, ARPES should see the sharp coherent xz
and yz orbital states (the latter closer to the Fermi level) and
two much weaker incoherent xy excitations in between these
two. In Figs. 6 and 7, we show the spectral function,

A(k, ω) = −2Tr[
(ω + i� − H(k))−1], (20)

both away and at the Fermi level. Here, H(k) is the full
Hamiltonian including the nematic order, and � is a phe-
nomenological diagonal damping term, which we assume to
be larger for the xy orbital, to mimic its incoherence.

The results for the dispersions and the spectral functions in
Fig. 6 are largely consistent with the available photoemission
data. The two stronger peaks at T � Tnem have been identified
by all photoemission groups [16–18,22,24–26,33,34]. Refer-
ence [25] identified the orbital content of the excitation closer
to the Fermi level as yz and the one farther from the Fermi
level as xz, by tracking these two excitations between the M
and � points. Ref. [33] reported the observation of two weaker
peaks in between the two stronger peaks. In our theory, these
are the two xy excitations. As T increases towards Tnem, the
yz excitation evolves such that it becomes a component of
the upper doublet at T > Tnem, while the orbital character
of the predominantly xz excitation at T � Tnem evolves as
T is increased towards Tnem and becomes increasingly xy
dominated. Thus, the yz and xz dominated excitations at T �

Tnem do not merge at Tnem (see Fig. 4). Instead, the lower
component of the upper doublet, which is predominantly
xz for T � Tnem becomes predominantly xy as T � Tnem

and hence becomes increasingly incoherent. ARPES data did
indeed find that near Tnem, the excitation closer to the Fermi
level is sharper than the one farther from the Fermi level [3].

We also emphasize that the energy splitting of the xz and
yz states at low T is not simply �E = −2φ1, as it would be
without SOC, but

�E = −φ1 + φ3 + 1
2

√
λ2 + (ε1 − ε3 − φ1 − φ3)2

+ 1
2

√
λ2 + (ε1 − ε3 + φ1 + φ3)2, (21)

which is valid in the case |φ1 + φ3| > |ε1 − ε3|. The modified
splitting is a direct consequence of the orbital transmutation.
In Fig. 7, we show the two electron Fermi surfaces in the
presence of SOC and the orbital composition of the pock-
ets. We see that the smaller, peanut-shaped inner electron
pocket is mainly made out of yz fermions, while the outer,
more circular-looking pocket is predominantly made out of
xy fermions. The peanut-shaped pocket does contain some
admixture of both xy and xz along the diagonal direction.
The xz contribution is due to SOC. Because of its presence,
this portion of the peanut-shaped pocket becomes visible
to ARPES in the polarization orthogonal to yz, even if the
xy orbital is localized and not detectable. This agrees with
Refs. [23,34], in which the portions of the peanut-shaped
electron-pocket along the diagonal direction have been ob-
served in the polarization orthogonal to yz. Note that the
degree of xz spectral weight along the diagonal direction is
rather sensitive to the magnitudes of the SOC and the nematic
order parameters.

In Fig. 8, we show the evolution of the dispersions along
the direction from M to � at low T � Tnem and at T > Tnem.
We clearly see that along the M-� direction, the orbital com-
position of the band that crosses the Fermi surface closer to M
changes drastically between T > Tnem and T � Tnem. Orbital
transmutation is much weaker along the orthogonal direction,
where the main effect of the nematicity is the shrinking of the
Fermi momentum for the yz band along the shorter axis of the
peanut-shaped Fermi surface.

FIG. 8. Dispersion along M-� direction at T � Tnem (a) and T > Tnem (c) with the temperature evolution shown in (b). The key effect of
nematicity is the drastic change of the orbital composition of the band that crosses the Fermi surface closer to M. The orbital color code is the
same as in Fig. 2.
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FIG. 9. Temperature evolution of the energies at the M point in
the case when the xz and the yz orbitals hybridize due to surface
effects. The orbital color code is the same as in Fig. 2. Here
ε1,0 = −26.3 and ε3,0 = −32.0 and we chose η = 10 meV. The
doublet with xz/yz orbital character is split by a surface-induced
hybridization already at temperatures T > Tnem. As nematic order
sets in at T = Tnem, the yz orbital becomes more dominant in the
state whose energy is closest to the Fermi level, while xz is dominant
for the state whose energy is farthest from the Fermi level, as seen by
the difference between the colored bars at high and low temperatures.
Note that the surface does not break the xz/yz degeneracy above Tnem,
and the split levels contain equal weights of the xz and the yz orbitals.

IV. EXCITATIONS IN THE NEMATIC PHASE IN THE
PRESENCE OF SURFACE-INDUCED HYBRIDIZATION

In this section, we analyze separately the effect of the
surface-induced hybridization (SIH), i.e., of the extra term in
the Hamiltonian, given by Eq. (12). This term, allowed in the
surface only, hybridizes fermions in the xz and yz orbitals at
M already in the tetragonal phase, where it splits the xz/yz
doublet into two distinct excitations with mixed xz + yz and
xz − yz orbital character (see Fig. 9).

FIG. 10. Spectral function as function of T and ω in the presence
of the surface-induced hybridization term. The two peaks are clearly
distinguished above the nematic transition and each can be traced all
the way down to T = 0 K. The two shallow peaks, originating from
the xy modes, are at ω ≈ −20 and ω ≈ −40 meV at T = 0.

Below Tnem, the upper excitation shifts closer to the Fermi
level, and its orbital content changes from an equal mixture
of xz and yz to almost pure yz. The lower excitation shifts
farther from the Fermi level, and its orbital content changes to
almost pure xz. At low T , the two energies are split by �E =
2
√

φ2
1 + η2. As T increases towards Tnem, the two excitations

get closer ro each other, but remain split by �E = 2η also
above the nematic transition, at T > Tnem.

In Fig. 10, we show the spectral function in the presence
of SIH. Like before, we set the damping rate to be larger for
xy fermions to mimic their incoherence. The behavior is quite
similar to that in the case of SOC. The two differences are
(i) the xz excitation remains coherent at all T and (ii) the xz
and yz excitations do not merge even if we extrapolate their
positions based only on the low T results. The Fermi surfaces,
shown in Fig. 11 along with the orbital weights, is also similar
to the case of finite SOC. For temperatures far below Tnem, the

FIG. 11. Fermi surfaces in the presence of a surface-induced
hybridization term, η = 10 meV. The orbital color code is the same
as Fig. 2. (a)–(d) correspond to T = 0 K, deep in the nematic phase,
while (e)–(h) depict the case at T = 120 K, where nematic order is
absent. The Fermi surfaces depicted here are rather similar to the
SOC scenario of Fig. 7, although the specific orbital weight around
the Fermi pockets differ slightly.
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inner pocket remains predominantly of yz character and the
outer pocket has predominantly xy character.

V. DISCUSSION AND CONCLUSIONS

In this paper, we analyzed the puzzling ARPES data
on FeSe of the electron pockets at the M = (π, π ) point.
Deep in the nematic phase, at T � Tnem, ARPES experi-
ments have detected two relatively sharp excitations at M
[16,18,24–26,33,34], and a recent study unambiguously iden-
tified these excitations as having predominantly xz and yz
orbital character [25]. Above the nematic transition, at T >

Tnem, the xz and yz orbital states are degenerate, and excita-
tions associated with the xz and yz orbitals should therefore
merge in the tetragonal phase. However, the data show that
the two excitations come closer to each other, but remain split
at T > Tnem. We argue that these results are reproduced if we
include the effect of SOC.

In the presence of SOC, the excitations at M form two
doublets at T > Tnem. The upper doublet is predominantly
made out of either the xz or the yz orbital, each with small
admixtures of xy. The lower doublet consists predominantly
of xy fermions, with small admixtures of either xz or yz
fermions. Below Tnem, the components of each doublet are
split, and there are four distinct excitations. We showed
that the dominant orbital character of two of the excitations
at M changes drastically between T > Tnem and T � Tnem.
Namely, one of the excitations consisting predominantly of
the xy orbital along with a small admixture of xz in the
tetragonal phase, becomes near-xz deep in the nematic phase.
Similarly, the excitation dominated by the xz orbital with
a small admixture of xy in the tetragonal phase, becomes
near-xy deep in the nematic phase. This phenomenon is due
to an effect dubbed orbital transmutation. Because of this
effect, the excitation dominated by the xz orbital deep in the
nematic phase changes orbital content to xy as T is increased
towards Tnem, and ultimately merges with the lower doublet.
As a result, the excitations dominated by the xz and yz orbitals
at T � Tnem do not merge at Tnem, in agreement with ARPES
data. Other features of the spectral function at M, shown in
Fig. 6, and the shape and orbital composition of the two
electron pockets, shown in Fig. 7, also agree with the data. We
showed that almost the same behavior is obtained if, instead
of SOC, we include the SIH between the xz and yz orbitals
at M. Such hybridization is not allowed in the bulk because it
would violate the glide-plane symmetry, but is allowed at the
surface. The only substantial difference between the effects of
SOC and SIH is that, in the presence of SOC, there are two
doublets at T > Tnem, while in the presence of SIH there is
one xy doublet [35] and two singlets with equal superpositions
of xz and yz. For completeness, in Fig. 12, we illustrate the
combined effect of SOC and SIH on the excitation spectrum,
and in Fig. 13, we plot the spectral function for this scenario.
Whether the observed behavior is due to SOC or SIH or a
combination of both requires further experiments probing the
orbital content of the excitations at T > Tnem. We note in this
regard that the combination of SOC and SIH breaks double
degeneracy of the bands away from the M point. This results
in the doubling of the number of Fermi surfaces. The latter
has not been resolved in experiments, which likely implies

FIG. 12. Temperature evolution of the energies at the M point
in the presence of both SOC and SIH terms, λ = η = 10 meV. Here,
ε1,0 = −27.6 meV and ε3,0 = −32.0 meV. In this case, both doublets
are split at T > Tnem. The xz/yz doublet is split by the hybridization
and the xy doublet inherits this splitting through the SOC.

that the combined effect of SOC and SIH is small and is
masked by the thermal broadening. We also note that at the
� point, both Rashba- and Dresselhaus-like SOC terms are
generated for momenta away from the � point, as discussed
in Ref. [20]. These terms are responsible for lifting the double
degeneracy of the bands in the vicinity of � and for doubling
of the number of hole Fermi surfaces.

Neither SOC on the electron pockets, λ, nor the SIH, η,
has been measured directly. For the hole pockets, SOC has
been measured and is around 20 meV [12]. We showed the
results for λ = 10 meV. As λ increases, the orbital trans-
mutation becomes more effective, but qualitatively the re-
sults do not change. The same holds if we only include
SIH—our results are shown for η = 10 meV, but variation of
η does not lead to qualitative changes. We also argued that the
larger electron pocket (the one with non-peanut-like shape)

FIG. 13. Spectral function as a function of T and ω in the
presence of both SOC and SIH. As in Fig. 10, two peaks can be
tracked from T > Tnem all the way to T = 0. Note that the peaks
associated with the xy-dominated excitations are more visible due to
increased orbital weight of the xz and yz components (see Fig. 12).
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is not seen in ARPES experiments because xy fermions are
incoherent.

The two scenarios can be distinguished by comparing
measurements at the M point in the tetragonal phase with
measurements in the orthorhombic phase. In the SOC sce-
nario, there are two doubly degenerate bands in the tetragonal
phase, while in the SIH scenario there are four bands with
different energies, compare Figs. 4 and 12 (recall that Fig. 9
assumes a vanishing SOC). Additionally, in the SOC scenario,
one doubly degenerate band consists predominantly of the
xz and yz orbitals, while the other is mostly xy. If the xy
orbital is more incoherent, the ARPES intensity of the xz/yz
mode should be higher than the intentisty of the xy mode,
and the width of the first mode should be narrower. In the
SIH scenario, two modes in the tetragonal phase are made
equally of xz and yz orbitals, and their intensity should be
equal, even if the other two modes (with xy character) are too
incoherent to be detected. If both effects are present and are
of comparable strength, ARPES measurements would reveal
four peaks of varying intensity, depending on their relative
orbital content (see Fig. 12).

A different reason for the disappearance of the second
electron-pocket was put forward in Ref. [25]. There, it was
argued that it shrinks in the nematic phase. This is in variation
with our result that the size of this pocket increases below
Tnem. The reduction of the non-peanut-shaped pocket can in
principle be obtained if we assume that the magnitude of φ3

is comparable to ε3. However, this requires fine-tuning, and
this scenario does not explain the nonmerging of the xz and yz
excitations at Tnem.

Another seemingly appealing option is to introduce SOC
or hybridization between xz/xy and yz/xy fermions within the
same pocket in the 1-Fe BZ, i.e., add to the Hamiltonian the

terms

Hintrapocket hyb

= η
(1)
hybd̂†

xz,σ d̂xy,σ + η
(2)
hybd†

yz,σ dxy,σ + H.c., (22)

Hintrapocket SOC

= λ
(1,i)
SOCd̂†

xz,ασ i
αβ d̂xy,β + λ

(2,i)
SOCd†

yz,ασ i
αβdxy,β + H.c. (23)

This would split the xz/yz and xy doublets and shrink the
size of the non-peanut-shape pocket [25,26]. However, we
emphasize that neither Eq. (22) nor Eq. (23) are allowed by
the P4/nmm space group symmetry, regardless of whether the
system is in the tetragonal or in the nematic phase [10]. At the
surface, Hintrapocket hyb is still not allowed, but Hintrapocket SOC

with i = x, y is allowed [20]. However, this term is gener-
ated by the combination of atomic SOC, Eq. (10), and SIH,
Eq. (12) and the effects of this term are secondary to those
from the SOC and the SIH (see Figs. 12 and 13).
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