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Long-term prediction of chaotic systems with machine learning
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Reservoir computing systems, a class of recurrent neural networks, have recently been exploited for model-
free, data-based prediction of the state evolution of a variety of chaotic dynamical systems. The prediction
horizon demonstrated has been about half dozen Lyapunov time. Is it possible to significantly extend the
prediction time beyond what has been achieved so far? We articulate a scheme incorporating time-dependent
but sparse data inputs into reservoir computing and demonstrate that such rare “updates” of the actual
state practically enable an arbitrarily long prediction horizon for a variety of chaotic systems. A physical
understanding based on the theory of temporal synchronization is developed.
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A recently emerged interdisciplinary field is a machine-
learning-based, model-free prediction of the state evolution
of nonlinear/chaotic dynamical systems [1–12]. A paradigm
that has been exploited is reservoir computing [13–16], a
class of recurrent neural networks. Starting from the same
initial condition, a well-trained reservoir system can generate
a trajectory that stays close to that of the target system for a
finite amount of time, realizing a short-term prediction. Be-
cause of the hallmark of chaos-sensitive dependence on initial
conditions, the solution of the reservoir system will diverge
from that of the original system exponentially. Nonetheless,
if training is done properly so that the single-step error is
orders of magnitude smaller than the oscillation range of the
chaotic signal [12], an accurate prediction can be achieved in
a short time. So far, the prediction horizon achieved is about
five or six Lyapunov time [7], where one Lyapunov time is the
inverse of the maximum Lyapunov exponent.

Is it possible to extend significantly the prediction horizon
of reservoir computing? We provide an affirmative answer in
this Rapid Communication. The key observation is that, after
training, prediction is enabled because the neural network
system can replicate the dynamical evolution of the target
system (or synchronize with it) but only for a transient period
of time. In the conventional scheme, data from the target
system are used only during the training phase. A solution
to extend the transient time is to provide some “update” of
the target system. We thus conceive the scenario where, after
the initial training, infrequent or sparse updates in the form
of new measurements or the observation of the target system
are available. We demonstrate that even rare updates of the

*Ying-Cheng.Lai@asu.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

actual state enable an arbitrarily long prediction horizon to
be achieved for a variety of chaotic systems. Essentially,
before the trajectories of the reservoir and original systems
diverge substantially (e.g., about to exceed a predefined ac-
curacy), we correct the state of the reservoir system with
a real measurement of a duration as small as a single data
point. We develop a physical understanding based on the
theory of temporal synchronization. Practically, with rare data
updates, the reservoir computing system can replicate the
evolution of the original system within some desired accuracy
for an arbitrarily long time, in spite of chaos. This will have
applications in fields where chaos arises.

The basic working of reservoir computing can be described
briefly as follows. Suppose time series data represented by a
relatively low-dimensional data vector from the target system
to be predicted are available. As shown in Fig. 1, one feeds
the time series into the input-to-reservoir (I/R) module to
generate a time-dependent data vector whose dimension is
significantly larger than that of the original data vector. The
high-dimensional vector is then sent to a complex network
constituting the core of the reservoir, whose size matches the
dimension of the vector. That is, there is a one-to-one corre-
spondence between any component of the high-dimensional
vector and a node in the network, and the data from a
component are fed into the corresponding node. The state of
the reservoir network is updated according to some nonlinear
function, and the resulting state vector is sent to a reservoir-
to-output (R/O) module whose function is opposite that of
the I/R module, i.e., to convert the high-dimensional vector of
the reservoir back into a vector of the same low dimension as
that of the original data from the target system. The reservoir
network, once chosen, is fixed, so all parameters associated
with it are hyperparameters. Training is done through a rel-
atively small set of adjustable parameters associated with
the R/O module, which can be tuned (or “learned”) based
on the available input data. During the training phase, the
system is open as it requires input from the target system.
After training, one feeds the output from R/O directly into
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FIG. 1. Proposed reservoir computing (RC) system with rare
state updates in the prediction phase, which is capable of generating
an arbitrarily long prediction of the state evolution of any chaotic
system. The I/R, reservoir, and R/O modules within the blue dashed
box constitute the conventional reservoir computing system. Initial
training with data from the target chaotic system is done in a
conventional manner. The articulated scheme of rare state updates
is represented by the C/I module inside the red dashed box, which
couples sparse measurement data with the output of the system to
generate updated inputs to the system.

the I/R module, closing the system. The system then evolves
by itself. Some key numbers involved in reservoir computing
for model-free predictions are as follows. For example, for the
Kuramoto-Sivashinsky equation (KSE) with spatiotemporally
chaotic solutions [7], the typical number of the spatial mea-
surement sites (the dimension of the input vector) is 64 and
the size of the reservoir network is about 5000. The number
of parameters in the R/O module to be trained is 4992 × 64.

Our proposed reservoir computing system functioning in
the prediction phase leading to an arbitrarily long prediction
horizon is shown schematically in Fig. 1, where the three mod-
ules inside the blue dashed box represent the conventional sys-
tem and the one inside the red dashed box is a new module in-
corporating rare state updates. The I/R module is described by
Win, a Dr × Din random matrix that maps a Din-dimensional
input vector v into a Dr-dimensional vector r(t ), where Din �
Dr . The elements of Win are generated from a uniform distri-
bution in [−σ, σ ]. The reservoir is a complex network of Dr

nodes with an average degree d , whose connecting topology
is described by the Dr × Dr matrix A. (For simplicity, we
choose it to be a directed random network.) A recent work [12]
has revealed that successful training and finite-time prediction
can be achieved if the spectral radius of the network is in a
finite range, which can be adjusted by properly normalizing
the link weights in the network. The R/O module is rep-
resented by a Dout × Dr matrix, whose elements are param-
eters determined through training [3,7]. Typically, we have
Dout = Din. Without any state update, in the prediction phase,
the reservoir computing system is a self-evolving dynamical
system described by r(t + �t ) = tanh [A · r(t ) + Win · v(t )]
and v(t + �t ) = Wout · f [r(t + �t )], where f (r) is the output
function [3,7]: fi(r) = ri and fi(r) = r2

i for odd and even
index i (i = 1, 2, . . . , Dr), respectively. Associated with the
dynamical evolution of the reservoir system are two sets of
dynamical variables: the high-dimensional reservoir state vec-
tor r and the (typically) low-dimensional output vector v. The
matrices Win and A are predefined while Wout is determined
by training during which v is replaced by the state vector u
of the target system. After training is completed, to set the

initial condition for the reservoir network, one approach is to
continue to use u in place of v but only for a few time steps,
after which the reservoir system executes natural dynamical
evolution by itself.

In the conventional scheme [1–12], after withdrawing the
true state vector u so that the system is closed, real mea-
surements are no longer used, resulting in a relatively short
prediction horizon for chaotic systems because of the expo-
nential divergence between the trajectories of the reservoir
and true systems. Our idea, as shown in Fig. 1, is to update
the reservoir state with a sparsely sampled real state vector
u′ before the divergence exceeds a predefined tolerance limit,
i.e., the updates are needed only rarely. In particular, during
the update, the input to the I/R module can be written as
v′(t ) = v(t ) + c[u′(t ) − v(t )], where u′ contains data at t and
c is the coupling parameter. Most of the time during the
evolution, we still have v′(t ) = v(t ). Updating is effectively
an on-off coupling process between the reservoir and the true
systems, where the “on” phase is significantly more sparse
than the “off” phase. Prediction can then be viewed as a
synchronization process [11,17] between the two systems that
are coupled but only intermittently [18,19].

We test the predictive power of our proposed reservoir
computing scheme with a large number of chaotic systems.
Here, we present two examples of high-dimensional chaotic
systems: KSE and the complex Ginzburg-Landau equation
(cGLE). (Examples of a number of low-dimensional chaotic
systems are presented in the Supplemental Material [20].) The
KSE is yt + yyx + yxx + yxxxx = 0, where y(x, t ) is a scalar
field in the interval x ∈ (0, L) with periodic boundaries. We
divide the spatial domain into M uniform subintervals. Fig-
ure 2(a) shows a typical spatiotemporal chaotic solution for
L = 22, where the numerical integration parameters are M =
64 and �t = 0.25, and the maximum Lyapunov exponent is
�max ≈ 0.05. Thus, approximately 80 time steps correspond
to one Lyapunov time. The M-dimensional data vector is fed
into the reservoir computing system with parameters Din =
Dout = M, Dr = 4992, σ = 1, d = 3, and ρ = 0.1. In addi-
tion, to avoid overfitting of Wout during the training process,
we set the relevant bias parameter [7] to be η = 1 × 10−4.
Figure 2(b) shows the difference between the evolution of
the reservoir and true system, i.e., the prediction error (color
coded). The prediction horizon is about five Lyapunov time.

We now instigate rare updates with the true data
yact (x, t ), where the coupling function is y′

rc(x, t ) =
yrc(x, t ) + c[yact (x, t ) − yrc(x, t )] if there is a data
update at the space-time point (x, t ), otherwise we have
y′

rc(x, t ) = yrc(x, t ), where yrc is the output of the reservoir
system. We divide the output time series into equal time
intervals, each of T time steps. In one interval, the actual
data points are available for consecutive T0 steps, and
there is no update for the remaining T − T0 steps. In the
space, we select Mc uniform spatial points from the total
M measurement points. For illustration, we T0 = 1 and
Mc = 64, i.e., each component of the input vector to the
reservoir system (corresponding to a distinct measurement
point in space) receives one true data point every T time steps.
Figures 2(c)–2(e) show the prediction error for T = 240, 160,
and 80 time steps, respectively, corresponding to three,
two, and one Lyapunov time. For T = 240 [Fig. 2(c)],
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FIG. 2. Prediction of spatiotemporal chaotic solution of KSE.
The system size is L = 22, the number of measurement points
is M = 64, and the value of the coupling parameter is c = 1.0.
(a) True spatiotemporal evolution of the chaotic solution. (b) The
difference (error) between the predicted and true solutions without
any measurement updating, i.e., with updating period T = ∞. The
prediction horizon is about five Lyapunov time. (c)–(e) The error
with updating period T = 240, 160, and 80 time steps, corresponding
to three, two, and one Lyapunov time, respectively, where the update
consists of a single data point from the true system. In (e), error at all
times is below the tolerance, signifying an arbitrarily long prediction
horizon.

the error is reduced as compared the case of no data
update [Fig. 2(b)] and exhibits intermittency, implying
an intermittently synchronous behavior between the reservoir
and the true system. In this case, the time interval in which the
error is below the tolerance emerges intermittently in time. As
the updating becomes more frequent, the small-error intervals
are generally enlarged, as shown in Fig. 2(d) for T = 160.
Remarkably, for T = 80, the error is essentially zero in the
whole time interval considered. This means that, insofar as a
single true data point is used to update the reservoir system
in every Lyapunov time, the prediction horizon becomes
arbitrarily long.

To obtain a systematic picture of the prediction horizon,
we calculate the average error δe over a long time interval,
e.g., about 100 Lyapunov time, in the parameter plane (T0, T )
(for T0 � T ). Figure 3(a) shows, for Mc = M/2 = 32 (the
number of spatial coupling channels) and c = 2.0, the error
behavior. In most of the parameter region, the error is small:
δe < 0.01. Long-term prediction fails only for extremely rare
updates, i.e., for small values of T0 and large values of T .
Fixing the value of T0, we obtain the curves of δe vs T . For
T0 = 1 (black line), δe increases rapidly with T . As more
data points are included in each update, e.g., as the value
of T0 is increased from two to ten, δe decreases gradually.
Figure 3(c) shows that, for Mc = M = 64, the error remains
small in all cases, giving rise to a significantly augmented
prediction horizon. Figure 3(d) shows the prediction error for
T up to 500 time steps. For a change from T0 = 1 to T0 = 2,
error δe decreases sharply. However, for T0 � 2, the prediction

FIG. 3. Behaviors of prediction error for KSE. (a) Prediction
error in the parameter plane (T0, T ) for Mc = 32 and c = 2.0.
(b) For Mc = 32, prediction error δe vs T for different values of T0.
(c) Prediction error for Mc = 64 and c = 1.0. (d) For Mc = 64, δe
vs T for different values of T0. (e) For random updating, prediction
error in the parameter plane (pt , ps ) for c = 1.2 and (f) δe vs pt (or
T0/T ).

error becomes saturated. Comparing Fig. 3(b) with 3(d), we
observe a dramatic reduction in δe for Mc = 64.

The cases considered so far are for rare but regular updates.
What about random updates? We examine the parameter plane
(pt , ps), where pt is the probability of update in each time
step and ps is the probability for a spatial point to receive
updates. Figure 3(e) shows the average prediction error, which
exhibits an approximately symmetric behavior with respect
to pt and ps. Figure 3(f) shows, for fixed ps = 0.5 and
ps = 1 (corresponding to the cases of Mc = 32 and Mc = 64
with regular coupling, respectively), random updating yields
somewhat larger errors than those with regular coupling.

We now demonstrate the predictive power of our reservoir
computing scheme for the 1D cGLE in the regime of spa-
tiotemporal chaos, At = (1 + iα)Axx + A − (1 + iβ )|A|2A,
where A(x, t ) is a complex field in the interval x ∈
(−L/2, L/2) with the periodic boundary condition, and α

and β are parameters. The cGLE is a general model for a
variety of physical phenomena [21–23]. For L = 18, α = 2,
and β = −2, the 1D cGLE exhibits spatiotemporal chaos with
the maximum Lyapunov exponent � ≈ 0.23. We divide the
whole interval into M = 32 equally spaced points—the mea-
surement sites. For integration step �t = 0.07, one Lyapunov
time corresponds to about 65 time steps. Figure 4(a) shows
the true spatiotemporal evolution pattern |A(x, t )|. Because
the field A(x, t ) is complex, it is necessary to use both the real
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FIG. 4. Long time prediction of the state evolution of one-
dimensional cGLE. The system size is L = 18 and the number of
measurement sites is M = 32. (a) Spatiotemporal pattern of true
state evolution. (b)–(e) The difference between the predicted and
actual state evolution for T = ∞, T = 195, T = 130, and T = 65,
respectively. (f) For regular updating, the prediction error in the
parameter plane (T0, T ) for Mc = 32 and c = 0.4. (g) For random
updating, the prediction error in the parameter plane (pt , ps ) for
c = 0.4.

[Ar (x, t )] and imaginary [Ai(x, t )] parts for training the reser-
voir system. The parameters of the reservoir system are Din =
Dout = 2M, Dr = 9984, σ = 1, d = 3, ρ = 0.1, and η = 2 ×
10−5. Without any update, the error between the predicted and
true state evolution is shown in Fig. 4(b), where the prediction
horizon is about five Lyapunov time. To introduce rare updates
of the true state, we use the coupling scheme A′r(i)

rc (x, t ) =
Ar(i)

rc (x, t ) + 0.4[Ar(i)
act (x, t ) − Ar(i)

rc (x, t )] if there is actual data
at the space-time point (x, t ), and otherwise A′r(i)

rc (x, t ) =
Ar(i)

rc (x, t ), where Ar(i)
act (x, t ) is the real (imaginary) part of

the true data and Ar(i)
rc is the real (imaginary) part of the

predicted state. We demonstrate updating with only a single
data point, T0 = 1. Figures 4(c)–4(e) show the prediction error
for T = 195, 130, and 65, corresponding to three, two, and
one Lyapunov time, respectively. Evidence of intermittent
synchronization between the reservoir and the actual systems
is shown in Figs. 4(c) and 4(d). As for the spatiotemporally
chaotic KSE system, updating the reservoir system with a
single data point every Lyapunov time [Fig. 4(e)] leads to
an arbitrarily long prediction horizon for the spatiotemporally
chaotic state of the 1D cGLE.

Figures 4(f) and 4(g) show the time-averaged prediction
error δe in the parameter planes (T0, T ) (regular updating
scheme) and (ps, pt ) (random updating scheme), respectively,

where the average is taken over approximately 100 Lyapunov
time. For regular updating, a small prediction error can be
achieved in most of the parameter plane. For random updating,
the error decreases with an increase in pt and/or ps.

The theoretical explanation for the observed long-term
prediction is that, after proper training the output vector of the
reservoir system follows the state vector of the target system
for a finite amount of time, indicating complete synchroniza-
tion between the two systems. Without state updating, the syn-
chronization state is slightly unstable, leading to a short pre-
diction horizon. State updates, even applied rarely, represent
a kind of perturbation that makes the synchronization state
less unstable, prolonging the prediction horizon. When the
frequency of the updates is such that there is one update within
one Lyapunov time, the synchronization state becomes stable,
giving rise to an arbitrarily long prediction horizon. This
scenario has been verified using low-dimensional chaotic sys-
tems [20] through a synchronization stability analysis [24,25].
We also note that, for a variety of low-dimensional chaotic
systems including the classic Rössler [26] and Lorenz [27]
oscillators, the Hindmarsh-Rose neuron [28], and a chaotic
food web [29], rare updates to a single state variable enables a
properly trained reservoir system to predict all state variables
for an arbitrarily long period of time [20]. For example, for
the chaotic food web, it is necessary only to supply sparse
vegetation data for the reservoir system to correctly predict
the abundances of the herbivores and predators, for as long as
one wishes.

To summarize, existing reservoir computing systems can
predict the dynamical evolution of chaotic systems but only
for a short period of time. We have articulated a scheme
incorporating true state updates and demonstrated that rare
updates of a subset of state variables can significantly prolong
the prediction horizon. Of particular interest is the finding
that, insofar as there is a state update of a single data point
within one Lyapunov time, the prediction horizon can be
made arbitrarily long. The machine-learning scheme proposed
and studied here has the potential to extend significantly
the application scope of reservoir computing in predicting
complex dynamical systems.

The difference in our work is threefold: (1) We have
introduced intermittent data updates into machine learning,
(2) we have demonstrated that a long prediction time can be
achieved, and (3) we have introduced the concept of temporal
synchronization with on-off coupling to understand the work-
ing of the reservoir computing machine with state updating.
Our work sheds light on the working of reservoir computing in
predicting the state evolution of chaotic systems. In particular,
in the synchronization-based scenario, the predictability of
reservoir computing is the result of its ability to synchronize
with the target chaotic system for a finite amount of time. At
the start of the prediction phase, the reservoir system has the
same initial condition as the target system. Because of tem-
poral synchronizability, the reservoir system is able to follow
the target system for some time before the synchronization
error becomes significant. Without state updates, the time it
takes for the error to grow to a predefined threshold value
determines the prediction time. State updates, even being rare,
reset the synchronization error from time to time, insofar as a
new update is provided before the error exceeds the threshold.
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In essence, the basic idea of our method is similar to
that of data assimilation, where models and measurements
(true state updates) are combined to generate accurate predic-
tions with applications in, e.g., weather forecasting [30–32].
In a recent study, data assimilation and machine learning
have been combined to emulate the Lorenz 96 model from
sparse and noisy observations [33]. It is also noteworthy
that, in predicting chaotic dynamical systems, an alternative
machine-learning-based framework is radial basis function
networks—artificial neural networks employing radial ba-
sis functions as activation functions [34,35]. Given a set
of inputs, such a network outputs a signal that is a lin-
ear combination of radial basis functions of the inputs,
and the parameters of the artificial neurons are determined

through training based on, e.g., the standard backpropagation
scheme. The method has been demonstrated to be effec-
tive for low-dimensional chaotic systems such as the logis-
tic map and the classic Lorenz chaotic oscillator [36–39].
Whether the method can be superior to reservoir comput-
ing in predicting spatiotemporal chaotic systems is an open
question.
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