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Dislocation defect as a bulk probe of monopole charge of multi-Weyl semimetals
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Multi-Weyl semimetals feature band crossings with the dispersion that is, in general, linear in only one
direction, and as a consequence their band structure is characterized by the monopole charge n which can be
greater than one. We show that a single screw dislocation defect oriented in the direction connecting the nodal
points, which acts as an effective pseudomagnetic flux tube, can serve as a direct probe of the monopole charge
n � 1 characterizing the bulk band structure of a multi-Weyl semimetal. To this end, as a proof of principle,
we propose a rather simple mesoscopic setup in which the monopole charge leaves a direct imprint on the
conductance measured in the plane perpendicular to the dislocation. In particular, the ratio of the positions of
the neighboring maxima in the conductance as a function of the gate voltage can serve to deduce the monopole
charge, while the value of the effective pseudomagnetic flux can be extracted from the position of a conductance
maximum. We expect that these findings will prompt further studies on the role of multiple dislocations, as well
as other topological lattice defects, such as grain boundaries and disclinations, in topological nodal materials.

DOI: 10.1103/PhysRevResearch.2.012043

Introduction. Weyl semimetals are the focus of research in
condensed matter physics due to their exotic properties, such
as unusual Fermi arc surface states and the chiral anomaly,
intimately related to their topological nature [1,2]. Since at
least time-reversal or inversion symmetry is broken in these
systems, valence and conduction bands can cross at pairs of
nodal points, representing the sources and the sinks of the
Abelian Berry curvature in the Brillouin zone (BZ), which
are characterized by the monopole charge n. In conventional
(single) Weyl semimetals n = 1 while in multi-Weyl semimet-
als (mWSMs) it can be greater than one with the crystalline
symmetries bounding its maximum value to three [3–5]. As a
consequence, close to these nodal points, mWSMs host low-
energy quasiparticles with the dispersion which is, in general,
linear only in one direction, implying anomalous features
in the transport [6–12]. Furthermore, by virtue of the bulk-
boundary correspondence, these nodal points are connected
via the n topologically protected localized Fermi arc surface
states. On the other hand, in crystalline solids, dislocation
defects are rather ubiquitous as they are energetically inexpen-
sive. In this Rapid Communication we propose that lattice dis-
locations can be used to directly probe the monopole charge
in mWSMs in a simple mesoscopic setup shown in Fig. 1.

The role of topological lattice defects has been extensively
explored in gapped topological materials, such as topological
insulators and superconductors, where, for instance, disloca-
tions can host special topologically and symmetry protected

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

modes [13–23], the experimental signatures of which have
been reported in Refs. [24,25]. Furthermore, these lattice
defects in topological semimetals may serve as a platform for
the realization of the chiral anomaly through protected gapless
propagating modes [26–32]. Related insulating states, e.g.,
axion insulators, can also feature such defect modes [33,34].
A natural question in this context is therefore what is the
relationship between the topological features of a mWSM and
lattice dislocations, in particular, whether these defects can
probe the monopole charge in a mWSM.

FIG. 1. Illustration of the setup for the transport experiment
probing the monopole charge in a multi-Weyl semimetal. The screw
dislocation is characterized by a Burgers vector along the z axis
generating an effective pseudomagnetic field BD = �D/πa2 pointing
in the same direction as the Burgers vector. The radius of the
dislocation core is a. The leads are placed in the x-z plane and are
biased at a voltage V . The monopole charge and the effective flux are
directly imprinted in the measured dependence of the conductance
on the gate voltage (see Fig. 2).
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We here provide an affirmative answer to the above ques-
tion by showing that the monopole charge n is imprinted in
the scattering of the low-energy quasiparticles off a single
dislocation defect, which may be measured in the electrical
conductance, using the setup in Fig. 1. Starting with an
effective low-energy description of the dislocation in terms
of a flux tube with an effective U (1) vector potential that
minimally couples to the low-energy nodal quasiparticles, we
show that the electrical conductance displays characteristic
features directly related to the monopole charge. In particular,
the ratio between the neighboring conductance peaks as a
function of applied gate voltage can be used to directly infer
this topological invariant (see Fig. 2). Furthermore, once the
monopole charge is determined, the position of the conduc-
tance peak can be used to find the effective flux carried by the
dislocation defect.

Model. We start by considering a minimal Hamiltonian of
a mWSM with broken time-reversal symmetry, describing the
low-energy quasiparticles in the vicinity of two nodal points
at the momenta ξKW = ξ (0, 0, KW,z ), with ξ = ± [35],

H (n)
ξ (k) = αnkn

⊥[σx cos(nφk ) + σy sin(nφk )] + ξvzkzσz, (1)

where k2
⊥ = k2

x + k2
y , φk = arctan (ky/kx ), and n > 0. αn and

vz are the parameters of the model. Notice that while α1 has
dimensions of velocity, α2 has dimensions of inverse mass.
The anticommuting property of Pauli matrices implies the
dispersion of the low-energy quasiparticles in the form

ελ
n,k = λ

√
α2

nk2n
⊥ + v2

z k2
z ≡ λεn,k, (2)

where λ = ± labels the conduction and valence band,
respectively. The corresponding eigenstates, satisfying
H (n)

ξ 
 (λ,ξ )(r) = λεn,k

(λ,ξ )(r), read


 (λ,ξ )(r) = eik·r
√

2

(
χ+

λχ−einφ

)
, (3)

where χμ ≡ χμ(λ, ξ, vz, kz, εn,k) = √
1 + μλξ (vzkz/εn,k),

and μ = ±.
Multi-Weyl semimetal in the presence of a screw dislocation

defect. We now consider a single screw dislocation defect with
the Burgers vector oriented in the z direction. Such a disloca-
tion is described as a tube carrying an effective pseudomag-
netic (time-reversal preserving) flux, �D = �

top
D + �mat

D , with
both a topological �

top
D ∼ KW · b [15] and nontopological

(material-specific) part �mat
D ∼ β|b|, where b is the Burgers

vector of the dislocation and β is an effective Grüneisen
parameter of the material [29,36]. To account for the physics
at the scale of the defect core within the continuum theory, we
employ a regularization so that the effective magnetic field
BD = BDez is concentrated within the radius a. Furthermore,
the flux tube extends in the z direction along the length L and
the effective field is assumed to be constant, BD = �D/πa2

(see also Fig. 1). The low-energy fermionic excitations in the
vicinity of the two nodal points are minimally coupled to the
emergent chiral vector potential as k → k + ξAD (hereafter,
we set e = h̄ = kB = 1). The long-range effect of this gauge
field is then encoded through the matching condition between
the scattered waves and the defect-induced Landau levels
(LLs). This procedure is justified a posteriori since the radius

a enters only as a prefactor in the transmission function, while
the remaining expression is a function of only the monopole
charge and the dimensionless effective pseudomagnetic flux
of the defect [see Eq. (13) and the discussion there]. In turn,
the features in the conductance allowing the direct probing of
the monopole charge do not depend on the defect core radius.

We start by solving the Landau problem for the continuum
Hamiltonian, given by Eq. (1),

H (n)
ξ (k + ξAD)

∣∣
 (λ,ξ )
m

〉 = λEm

∣∣
 (λ,ξ )
m

〉
, (4)

with AD = (BD/2)(−yex + xey) corresponding to a constant
effective pseudomagnetic field BD carried by the defect. The
energy of the dislocation-induced LLs then reads

Em =
√√√√(vzkz )2 +

(
2α

2/n
n

2

)n
m!

(m − n)!
, (5)

where m � 0 is an integer LL index and  = 1/
√

BD is
the magnetic length of the order of the dislocation core
radius. Notice that at kz = 0 there are precisely n zero-energy
states, while the finite-energy ones (m � n) scale as Em ∼√

m!/(m − n)!. We display the form of only the nonzero LLs
(with finite energy at kz = 0) as these are the ones contributing
to the scattering,



(λ,ξ=+)
m,M (r) = e−r2

 /2eikzz√
4πL2(|M| + m − n/2)!

×
(

χ+C(m − n, r, |M| + n/2)ei(M− n
2 )φ

λχ−C(m, r, |M| − n/2)ei(M+ n
2 )φ

)
,

(6)

where the functions χμ ≡ χμ(λ, ξ = +, vz, kz, Em),
C(m, r, n) = √

m!(−i)mrn
 Ln

m(r2
 ), with r ≡ r/

√
2, Ln

m(x)
as the associated Laguerre polynomial, and the node index
ξ = +, while 


(λ,ξ=−)
m,M = σx


(λ,ξ=+)
m,M . Here, M = m′ + n/2,

with m′ an integer, is the eigenvalue of the total angular
momentum operator Jz = Lz + (n/2)σz for the multi-Weyl
fermion with monopole charge n, [Jz, H (n)

ξ (k + ξAD)] = 0,
where the Hamiltonian is given by Eq. (1) [see the
Supplemental Material (SM), Sec. S1 [37]].

Scattering analysis. We now compute the scattering am-
plitude for the incident waves propagating along the x axis
and scattering off the dislocation defect within an approach
analogous as in Refs. [38,39]. To find the imprint of the
effective U (1) gauge field emerging from the dislocation
defect on the electronic states scattering off it, as a first step,
we impose the continuity condition at the dislocation core,



(λ,ξ )
out,M (r = a, φ, z) = 


(λ,ξ )
m,M (r = a, φ, z), (7)

with 

(λ,ξ )
m,M (r, φ, z) as the LL state given by Eq. (6), while the

outgoing wave is parametrized in terms of the scattering phase
shifts as



(λ,ξ )
out,M (r) = C̃Meikzz

(
ϕM−n/2(δM, r)

inαnkn
⊥

ξvzkz+λεn,k
ϕM+n/2(δM, r)

)
, (8)

with

ϕM±n/2(δM, r) = ei(M±n/2)φ[cos δMJM±n/2(k⊥r)

− sin δMYM±n/2(k⊥r)], (9)
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FIG. 2. Conductance (dimensionless) calculated from the analytical Eq. (13), as a function of applied bias V [in units of αn(h̄/a)n] at a
finite temperature T . The solid blue (dotted red) line corresponds to a pseudomagnetic flux Nφ = 1 (Nφ = 1.8). (a)–(c) correspond to the values
of the monopole charge n = 1, n = 2, and n = 3, respectively.

where Jm(x) and Ym(x) are the Bessel functions of the first
and the second kind, respectively. The matching condition in
Eq. (7) leads to the form of the phase shifts δM , whose exact
analytical expressions are provided in the SM [37], Eqs. (S59)
and (S60). Finally, the asymptotic form of the scattered waves
far away from the defect (r → ∞),



(λ,ξ )
out

∣∣
r→∞ =

[



(λ,ξ )
inc +

(
f1(φ)

f2(φ)

)
eik⊥r+ikzz

√
r

]∣∣∣∣∣
r→∞

, (10)

determines both the constants C̃M = exp(iδM + imπ/2)/
√

2
in the scattered wave in Eq. (8) and the scattering amplitudes
f1,2(φ), the form of which are explicitly given in Sec. S2 of
the SM [37]. Notice that the phase shifts explicitly depend on
the monopole charge n. Next, we compute the conductance to
show the signatures of the monopole charge in this transport
observable.

Transmission and Landauer conductance. Following a
Landauer ballistic approach [38,39], the average transmission
function in the x direction for the states scattered off the
dislocation (see Fig. 1) is obtained as

T̄ξ (Em) =
∫ π/2

−π/2
dφ cos φ

(
1

σ (Em)

)
dσ (φ)

dφ

∣∣∣∣
kn
⊥= Em

αn

. (11)

Here, the elastic scattering is explicitly enforced by the
condition k⊥ = (Em/αn)1/n on the right-hand side, σ (Em) =
4(αn/Em)1/n

∑
M∈Z |F (δM )|2, with the LLs’ energy Em at kz =

0 given in Eq. (5). The effective cross section in the angular
in-plane direction reads

dσ (φ)

dφ
= 2

πk⊥

∑
M,M ′∈Z

F (δM, φ)F ∗(δM ′ , φ), (12)

where F (δM, φ) = exp(iδM + iMφ) sin δM (see Sec. S3 of the
SM for details [37]).

The total current through the junction is given by the sum
of the individual ones from each of the Weyl nodes ξ = ±,
I = I+ + I−. Finally, assuming that both contacts are held at
the same temperature TL = TR = T , but at different chemical
potentials μL = μR + V , μL,R > 0, with the difference given

by the gate voltage V , the electrical conductance G(T,V ) =
∂I/∂V is given by the expression

G(T,V ) = α1/n
n

T

∑
λ,ξ,m

T (Em) fL(λEm)[1 − fL(λEm)], (13)

where we used that the transmission function in Eq. (11) is
independent of the node, and fL,R(E ) are the local Fermi-
Dirac distribution functions at the contacts. The transmission
function T (Em) is obtained by performing the integration over
the angle in Eq. (11), with the explicit form in terms of the
phase shifts given by Eq. (S74) in the SM [37]. It is important
to notice that the effective transmission function entering the
conductance given in Eq. (13), up to a prefactor, is a function
of only the effective flux Nφ and the monopole charge n,
and independent of the radius of the dislocation core a; see
also Sec. S4 in the SM [37]. This feature is fundamentally
important for the probing of the monopole charge in the setup
we propose, as discussed below.

Results. The differential conductance as a function of the
applied voltage is displayed in Fig. 2, for the cases n = 1, 2, 3,
respectively, at finite temperature and the dislocation defect
characterized by the dimensionless pseudomagnetic flux Nφ .
A remarkable feature in Fig. 2 is the presence of the peaks cor-
responding to resonances located at each dislocation-induced
LL Em [m � n, see Eq. (5)], i.e., the voltage Vk ∼ Em=n+k ,
for k = 1, 2, . . . consecutive peaks. Those resonances are
expected, since they correspond to the states that can be trans-
mitted through the dislocation region according to Eq. (13).
As can be seen in Fig. 2, because of the form of LLs in
Eq. (5), the position of a resonance peak ∼(Nφ )n/2, and hence
can in principle be used to determine the magnitude of the
dislocation pseudomagnetic flux.

The monopole charge of the semimetal can be found
directly from the scaling of the conductance as a function of
the applied voltage for a fixed value of the flux Nφ , shown
in Fig. 2. Since the LLs at nonzero energy and for kz = 0
arise for m � n, as given in Eq. (5), the first two peaks in
the conductance as a function of the bias voltage are resonant
with the first two LLs at nonzero energy, V1 ∼ Em=n and
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V2 ∼ Em=n+1, respectively. Therefore, the value of n is directly
related to the ratio of the first two peaks in the conductance,

n =
⌊(

V2

V1

)2

− 1

⌉
. (14)

Here, the symbol �x� represents the nearest integer to x. Take,
for instance, the calculated conductance versus bias voltage
curve displayed in Fig. 2(b), where we can directly read off
the first and second peak, with the precision at two significant
figures, to be at V1  2.9 and V2  5.0, respectively. Now ap-
plying Eq. (14), we obtain (with the same precision) n  2.0,
in excellent agreement with the monopole charge considered
in this example. Furthermore, the number of the effective
magnetic flux quanta (in units of hc/e = 2π ) associated with
the dislocation defect can be calculated directly from Eq. (5).
Since Em=n = V1, we find

Nφ = 1

2

(
V1√

n!

)2/n

, (15)

which in the same example yields Nφ  2, again in agreement
with the exact value chosen there. These features are directly
related to the independence of the transmission function of the
dislocation radius. Otherwise, the maxima in the conductance
would acquire an additional dependence on the dislocation
radius, which would spoil their universal features.

Discussion and outlook. To summarize, in this Rapid Com-
munication we propose that a dislocation, a rather ubiquitous
lattice defect in crystals, can serve as a direct probe of the
monopole charge of a generalized Weyl semimetal in a simple
mesoscopic setup, illustrated in Fig. 1. A dislocation defect
acting as an emergent U (1) gauge field leaves its imprint
on the spectrum and the scattering phase shifts, which in
turn yield the characteristic conductance peaks, as shown in
Fig. 2. The ratio of the neighboring peaks, as we showed,
can be used to directly determine the monopole charge, while
the position of the peak in the G-V plane directly yields the
value of the effective U (1) flux carried by the defect [see
Fig. 2(b)].

We remark that, in principle, a real magnetic field would
induce similar qualitative spectral and transport properties as
the dislocation considered here, since Landau levels would
also emerge under these conditions. However, in practice it
is nearly impossible to impose an external magnetic field
confined to a localized flux tube as would be required here,

unless perhaps the sample was placed right on top of a vortex
in a type-II superconducting material. Another conceptually
interesting configuration is given by the combination of a
confined external magnetic field and a dislocation, which may
yield the breaking of the symmetry between the Weyl nodes,
thus leading to chirality-dependent transport.

Our results therefore provide a direct guidance for the
experimental detection of the monopole charge in the candi-
date double-Weyl (n = 2) materials, e.g., HgCr2Sr4 [3,4] and
SrSi2 [40,41], and in the triple-Weyl (n = 3) compounds, for
instance, the proposed transition-metal monochalcogenides
A(MoX3) with A = Na, K, Rb, In, Tl, and X = S, Se, Te [42],
and BaAgAs [43]; see also Refs. [44,45]. The proposed setup
may serve as a complement to the existing probes, such as
angle-resolved photoemission spectroscopy (ARPES).

It is important to point out that the transmission function in
our setup, where the electronic states carry kz ≈ 0, depends
only on the effective flux and the monopole charge. When
the effects of the propagating modes along the z direction are
included, the location of the conductance peaks will display
an extra dependence on the velocity vz, according to Eq. (5),
with 1/L as the momentum scale along the z axis. Therefore,
in this case two pairs of nearest-neighbor peaks are enough
to determine the value of the monopole charge. On the other
hand, one may then estimate the effect of a finite sample size
in the z direction on the extracted value of the monopole
charge n. Finally, we emphasize that the x-y plane does not
feature Fermi arc surface states, and therefore they do not
contribute to the conductance calculated here. However, it
remains as an interesting problem to consider on general
grounds the interplay of the dislocation and the Fermi arc
contributions in the transport.

Our results motivate further studies of the role of topolog-
ical defects in the quantum transport in topological nodal ma-
terials. In particular, the effects of many dislocation defects,
which are expected to only shift position and the height of
the conductance peaks, as well as of disclinations and grain
boundaries, should be considered. Finally, we anticipate that
our results will motivate experimental and numerical studies
of the effects discussed in this Rapid Communication.
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