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We use spatially resolved magneto-optical Kerr microscopy to track the complete microstates of arrays of
perpendicular anisotropy nanomagnets during magnetization hysteresis cycles. These measurements, along with
our statistical methodology, allow us to disentangle the intertwined effects of nearest-neighbor interactions,
disorder, and stochasticity on magnetization switching. We find that the nearest-neighbor correlations depend on
both interaction strength and disorder. We also find that although the global characteristics of the hysteretic
switching are repeatable, the exact microstate sampled is stochastic with the behavior of individual islands
varying between nominally identical runs. These protocols provide another way of understanding the relationship
between macrohistory and microhistory in artificial magnetic arrays.

DOI: 10.1103/PhysRevResearch.2.012001

Artificially structured lattices—artificial graphene [1], ar-
tificial skyrmion lattices [2], artificial spin ices [3–10], etc.—
have become popular platforms for studying complex col-
lective phenomena in condensed matter because they allow
systematic engineering and tuning of properties such as inter-
action strengths and defects to a degree far exceeding what
is possible with naturally occurring lattices. Artificial spin
ice (ASI) has allowed observation of magnetic monopoles
and Dirac strings in well-controlled frustrated geometries
[11–15], as well as access to the effects of thermal fluctuations
[16,17] and disorder [18,19]. Such systems are also interesting
candidates for applications in neuromorphic computing and
reconfigurable magnonics, which require an understanding of
stochasticity and noise. Perpendicular ASI systems [4,20] are
particularly propitious in this context because polar magneto-
optical Kerr effect (MOKE) microscopy allows complete in
situ imaging of microstates and their evolution as an applied
field is varied [21]. In this Rapid Communication, we combine
MOKE microscopy with a statistical methodology to map out
with microscopic detail the development of correlations in
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frustrated and unfrustrated magnetic arrays during the hys-
teretic magnetization reversal process, particularly around the
coercive field. This approach contrasts with previous studies
of the hysteresis loops of artificial spin ice systems which
focus on the macrohistory of an array. In these prior studies,
the development of the macrostate, characterized by aggregate
quantities, is reproducible from one field cycle to another. Our
focus on the microhistory of an array reveals that the evolution
of its microstate during a field sweep is not reproducible from
sweep to sweep. Although ambient temperature is very small
compared to the naive magnetic energy scales, these systems
are very sensitive to fluctuations of any sort when the external
field is near the coercive field. Fluctuations can be amplified
and locked in by the binary (Ising) character of island magne-
tization. The methodology developed here provides important
insights into the magnetization reversal process and can be
generalized to studies of other complex spin systems.

The samples studied in this Rapid Communication
were patterned using electron beam lithography, with
a standard liftoff of bilayer poly(methyl methacrylate)/
polymethylglutarimide (PMMA/PMGI) resist stack. All sam-
ples considered contain frustrated (kagome, triangular) and
nonfrustrated (hexagonal, square) arrays. Lattice spacing
ranges are 600–1000 nm for sample 1, and 500–800 nm
for samples 2 and 3. Scanning electron microscopy con-
firms island diameters of 400–450 nm. Magnetic films of
Ti(2 nm)/Pt(10 nm)/[Co(0.3 nm)/Pt(1 nm)]8 were deposited
using dc sputtering at Argonne National Laboratory. We
used superconducting quantum interference device (SQUID)
magnetometry to confirm the strong perpendicular magnetic
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TABLE I. Physical, magnetic, and statistical properties of three different artificial spin ice samples.

Diameter (nm) Ms (A/m) B0 (500 nm) (G) σd (G) σh (G) Avg. overlap (%)

Sample 1 400 3.46 × 105 3.61 15.70
Sample 2 450 3.75 × 105 4.96 28.21 10.8 ± 1.8 87.7 ± 1.1
Sample 3 425 3.46 × 105 4.09 17.28 9.8 ± 0.9 84.3 ± 0.8

anisotropy of these films, as well as to measure the saturation
magnetization for each film. Specific details on island size and
magnetization properties for the samples considered are found
in Table I.

Data are collected using an optimized polar MOKE imag-
ing setup, described in detail elsewhere [21]. The complete
microhistory of an array during a field sweep is obtained
by in situ resolution of the microstate (magnetization state
of every island) after each field step, as enabled by image
processing and illustrated in Fig. 1. Since each island reverses
magnetization only once during a field sweep, a microhistory
α is encapsulated by the list of island switching fields: In
sweep α, island i switches when Happ = hα

i . Although not
distinguished notationally, up sweeps and down sweeps are
treated separately, not combined in aggregate quantities or
directly compared via correlation functions.

Reproducible aggregate aspects. We begin with the switch-
ing field distribution and the contribution of island interactions
thereto. The total field experienced by an island comprises the
applied field Happ and a configuration-dependent contribution
from other islands which broadens the distribution of observed
(raw) switching fields. The semiempirical equation [21]

σ = AKB0(L) + σd (1)

FIG. 1. Top: MOKE images recorded at 380 G in an increasing
the field sweep, near the coercive field, for 500-nm lattice spacing
square (left) and triangular (right) arrays from sample 2. Bottom:
Normalized hysteresis loops recorded using imaging MOKE for
these arrays with intensity averaged over the entire array area.

separates the observed width σ of the switching field dis-
tribution into contributions of island interactions and static
disorder, the latter presumably introduced by the lithography
process. Here, A is a constant, K an effective coordination
number, B0(L) the dipolar field of an island on its nearest
neighbor at lattice spacing L, and σd the static disorder. Ad-
ditionally, from the microhistory we can directly calculate the
r-neighborhood-corrected switching field hi,r = Happ+ (field
from up-to-rth neighbors) in a point-dipole approximation,
accounting for both the internal and external fields felt by
an island when it switches. In this notation, hα

i,0 is the raw
switching field for sweep α.

The top panel of Fig. 2 shows the distributions of the
r-neighborhood-corrected switching fields hα

∗,r for a single
sweep for a 500-nm square array from sample 2 for 0 �
r � 5. (Similar results were obtained for sample 3.) These
are the distributions of all aggregated islands, hence the “∗”
subscript on h. The expected narrowing of the distribution as r

FIG. 2. (a) Switching field distribution and associated Gaussian
fits, with switching fields calculated by removing dipolar effects
from zero (as measured) to five nearest neighbors for a 500-nm
square array (sample 2). Width of the Gaussian fits for (b) hexagonal,
(c) kagome, (d) square, and (e) triangular as a function of lattice
spacing taking into account increasing numbers of neighbors. Fits
to Eq. (1) are shown as red lines, and disorder values from these fits
are shown as black dashed lines. The inset images show a cartoon
of the lattice geometry colored by target island (red) and neighbor
number to match the colors on the graphs. A full set of neighbors is
shown up to third nearest neighbor, along with a partial set of fourth
and fifth nearest neighbors.
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increases (further-neighbor fields accounted for) is prominent.
The lower panels of Fig. 2 show how the widths of the
hα

∗,r distributions change with lattice spacing for different
lattice types. The broadening in the raw (hα

∗,0) distributions
for different geometries is accounted for completely by the
difference in effective coordination number. With increasing
r, the width decreases, becoming independent of the lattice
spacing and approaching the calculated value of disorder.
The magnitude of the decrease is on the order of AKB0(L),
with K calculated considering r neighbors, consistent with
Eq. (1). This behavior agrees with previous studies pointing
to the significance of long-range interactions to the behavior
of artificial spin ice [22]. The analysis supports the treatment
of islands as interacting point dipoles, wherein an island’s
neighbors influence its switching behavior by supplementing
the external field with their net dipolar field strength.

While the r-neighborhood-corrected switching field distri-
butions demonstrate an influence of islands on one another,
they say nothing quantitative about correlations. We turn to
these next. The average spin (magnetization) in an array
during sweep α is 〈Sα

i 〉i. Subscripts on averaging brackets
indicate what is averaged over, and each spin takes a value
+1 or −1. 〈S〉 is a fairly reproducible function of external
field (for the same sweep direction). To minimize finite-size
effects in comparing different sweeps and different arrays, it is
preferable to parametrize the macrohistory by magnetization
〈S〉 rather than the applied field. Thus, the nearest-neighbor
spin correlation for sweep α,

Cα
S (〈S〉) = 〈

Sα
i

〉
i

〈
Sα

j

〉
j − 〈

Sα
i Sα

j

〉
α;NN

= 〈S〉2 − 〈
Sα

i Sα
j

〉
NN, (2)

is regarded as a function of 〈S〉. The sum is over all nearest-
neighbor pairs (i, j) as indicated briefly by the NN subscript.
CS is zero if spins are independently assigned values +1 or
−1 with probabilities consistent with 〈S〉, and increases with
the proportion of energetically preferred antiferromagnetic
nearest-neighbor configurations with our chosen sign conven-
tion. Figures 3(a) and 3(b) show the evolution of Cα

S (〈S〉) for
up sweeps for the square and triangular arrays on sample 2.
The correlation increases and then decreases as the sample
transitions from a saturated state, through zero magnetization
to the oppositely saturated state. However, the correlation
does not peak at zero magnetization. Rather, it increases
and then peaks at some offset 〈S〉. This behavior indicates
the importance of the quasidynamic switching path and the
influence of island interactions on it. While the offsets are
repeatable and observed in multiple samples, the data are too
noisy to discern any clear trends in the values.

One anticipates that the maximum value of nearest-
neighbor antiferromagnetic correlation will increase with the
strength of interactions, B0(L). Figure 3(c) shows that this
expectation is borne out and that the dependence is roughly
linear. Data for samples 1–3 are plotted in different colors.
For each sample, the maximum value of CS (〈S〉) is consistent
among all geometries, indicating that the interactions are not
sufficiently strong for the distinction between frustrated and
unfrustrated geometry to manifest in the macrostate. How-
ever, there is a distinct variation in the correlations between
samples, indicating that the interaction strength is an insuffi-

FIG. 3. Plots of CS (〈S〉) for various lattice spacings of (a) square,
and (b) triangular arrays from sample 2, for increasing values of
applied field. The dashed line in (a) shows CS (〈S〉) as the field is
decreased to more clearly illustrate the asymmetry. (c) shows the
maximum value of correlation as a function of the dipolar field of
an island on its nearest neighbor (i.e., the interaction strength) for
samples 1–3. (d) shows the same data as a function of the dipolar
field scaled by the measured disorder in the system.

cient parameter to characterize these systems. Using instead
the dimensionless ratio B0(L)/σd of interaction strength to
static disorder as an independent variable, a significant, albeit
partial, data collapse is obtained, as shown in Fig. 3(d). Quite
reasonably, local ordering is enhanced by increasing interac-
tion strength and hampered by increasing static disorder.

Microhistory stochasticity. The preceding discussion indi-
cates that histories of the global quantities 〈S〉 and CS , as well
as distributions of switching fields hi,0 and hi,r , are very simi-
lar run to run. A perfectly deterministic system, though, would
have a reproducible microhistory, following exactly the same
sequence of island switchings whenever subjected to the same
external field sweep. A simple measure of nonreproducibility
is the run-to-run switching field variance

σ 2
h = 〈(

hα
i − hi

)2〉
i,α

, (3)

where hi = 〈hβ
i 〉

β
is the run-averaged switching field of island

i. The average in Eq. (3) is over islands in the array and seven
to ten macroscopically identical hysteresis loops. In contrast
to the aggregate switching field distributions displayed in
Fig. 2, the run-to-run variance inherently involves an average
over runs and involves subtraction of an island-dependent
mean. Table I reports average values across all geometries of
the run-to-run switching field standard deviation (the square
root of the variance) σh for samples 2 and 3 at lattice spacings
above 650 nm, of around 10 G. σh increases with increasing
interaction strength, maximizing at around 20 G for the most
strongly interacting arrays. These values are much less than
the width of the aggregate switching field distribution because
they measure different quantities. The aggregate switching
field distribution measures the variation of hi throughout a
lattice, while σh measures the variation of the individual
island’s switching field around its mean value over a series
of distinct runs.
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FIG. 4. (a) The covariance of switching fields between multiple
runs for all three samples. (b) The average overlap at the coercive
field between pairs of runs for samples 2 and 3. Overlap is defined
as the percent of islands which are in the same state in both states
considered. (c) The experimentally measured value of CS (0) (open
squares) and the average value of CS (0) for randomly generated states
with the experimentally measured overlap with the experimental
state (solid squares), for a 500-nm square array from sample 3.
The difference between these two curves is defined to be �CS (0).
(d) The average difference in correlation between the experimentally
measured state and a state with the experimentally measured average
overlap.

Island switching is significantly influenced by local envi-
ronment; this is already clear from the switching field distribu-
tions in Fig. 2. An indication of how this influence contributes
to microhistory variation is provided by the switching field
covariance

Ch = 〈(
hα

i − hi
)(

hα
j − h j

)〉
α;NN. (4)

This quantity is plotted for all arrays in Fig. 4(a) as a function
of interaction strength B0(L). That Ch is negative conforms
to expectations since if one island switches “early,” it will
increase the energy barrier for a neighbor to switch, due to the
antiferromagnetic interactions. The arrays with the weakest
interaction, although they show significant σh (Table I), show
no significant covariance. As the interactions are increased,
the covariance between neighboring island’s switching fields
increases in magnitude. The increase in covariance also in-
creases as a function of effective coordination number, similar
to the switching field distribution broadening with effective
coordination number. In fact, at these interaction strengths, the
impact of array geometry can be described completely by the
coordination of the array, rather than the presence or absence
of frustration. The behavior at low interaction strength gives
an indication of the intrinsic behavior of the islands, and the
change with increasing interaction strength allows us to judge
the impact of interactions. Because dynamics play a large role
in the correlations of these systems, and there is some level
of random variation that propagates through the lattice by
neighbor interactions, it is likely that we will observe signifi-
cant differences in the microstates.

To further characterize the (non)reproducibility of the mi-
crohistory, we examine the average overlap

f= = 1
2

[
1 + 〈

Sα
i Sβ

i

〉
i;α �=β

]
(5)

at zero magnetization, 〈S〉 = 0. The average overlap is the
fraction of islands which are in the same state in a randomly
chosen pair of distinct runs. Calculated values for samples 2
and 3 are plotted in Fig. 4(b) and range from 84% to 90%.
Sample 2 has a consistently larger overlap than sample 3,
which is reasonable since σh is similar for the two samples
while σd is larger for sample 2. A larger ratio of σd/σh implies
that each island has access to a smaller subset of the switching
region, increasing the number of islands in the same state at
any given point in the switching process.

One may wonder whether an average overlap approaching
90% is enough by itself to explain the observed macrohistory
repeatability. A simple numerical experiment shows this is
not the case. Starting from one specific 〈S〉 = 0 microstate,
we randomly select a fraction 1 − f= of islands, flip them,
and calculate the change �CS (0) of the nearest-neighbor
correlation [see Fig. 4(c)]. Average values of �CS (0) for 1000
repetitions of this experiment are plotted in Fig. 4(d). The
drop in CS is significantly greater than the standard deviation
of the distribution over runs, hence one concludes that there
is more to the correlations than simply the overlap. Indeed,
one may calculate that if microstate S′

i is obtained from Si

by independently flipping spins with probability 1 − f=, that
the nearest-neighbor correlation of the new microstate has an
expectation value

〈S′
iS

′
j〉NN = (1 − 2 f=)2〈SiS j〉NN. (6)

The origin(s) of microhistory stochasticity are not clear.
Noise arising from the experimental setup, for instance, in
the power supply or magnet, seem unlikely to be responsible
since such influences would be uniform across the sample;
the magnetic field is quite homogeneous over our small field
of view. However, the significant run-to-run switching field
covariance shows that the stochasticity is at least strongly
affected by local conditions. Prima facie, one expects thermal
fluctuations to be completely negligible; the energy scale
of room-temperature kBT equals the magnetic energy of an
island in a field of order 10−1 G, about 5% the field step
size, which should lead to a high thermal stability at room
temperature. However, near the coercive field, thermal fluc-
tuations can be surprisingly significant in understanding the
behavior of nanomagnetic systems [23,24]. A non-negligible
fraction of islands might be caused to switch in a slightly
different field by a thermal fluctuation in a given run, and
the “misstep” would then be amplified and propagated by
island interactions. One might expect these propagated mis-
steps to lead to a decrease in the zero magnetization overlap
as the interactions are increased. However, we observe that
the overlap is insensitive to interactions, possibly because
only a subset of islands is susceptible to thermal fluctua-
tions at any given field step. Any island with a coercivity
that is not sufficiently close to a given field is constrained
to remain stable in its moment orientation at that field in
all runs.
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In conclusion, MOKE microscopy allows us to measure
complete microhistories of perpendicular artificial spin ice,
providing a direct and precise quantification of the role
of island interactions and stochasticity on the macrohistory
during magnetization reversal. These insights suggest other
seemingly stable systems of interest for applications may
show room-temperature microstate stochasticity. Our results
provide another protocol for future studies of the complex
relationship between the microhistory and macrohistory of

artificial spin ices and other artificially patterned nanomag-
netic arrays.

S.K., P.S., and N.S. acknowledge support from US Depart-
ment of Energy, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division under Grant No. DE-
SC0010778. P.E.L. and V.H.C. acknowledge support from the
National Science Foundation MRSEC program under Grant
No. DMR-1420620.

[1] L. Ládvorník, M. Orlita, N. A. Goncharuk, L. Smrčka, V.
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