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We study the effect of electron interaction in an electronic system with a high-order Van Hove singularity,
where the density of states shows a power-law divergence. Owing to scale invariance, we perform a renor-
malization group (RG) analysis to find a nontrivial metallic behavior where various divergent susceptibilities
coexist but no long-range order appears. We term such a metallic state as a supermetal. Our RG analysis reveals
noninteracting and interacting fixed points, which draws an analogy to the φ4 theory. We further present a finite
anomalous dimension at the interacting fixed point by a controlled RG analysis, thus establishing an interacting
supermetal as a non-Fermi liquid.
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I. INTRODUCTION

A Bloch electron in a crystal is described by the energy
dispersion Ek that relates the energy with its wave vector
k. For metals, the energy dispersion determines the density
of states (DOS) at the Fermi level, which to a large extent
governs various thermodynamic properties such as charge
compressibility, spin susceptibility, and specific heat. Van
Hove’s seminal work [1] revealed that the DOS exhibits
nonanalyticity at an extremum or a saddle point of the energy
dispersion, where ∇kEk = 0. Importantly, Van Hove singu-
larities (VHS) are guaranteed to exist in every energy band
by the continuity and the periodicity of Ek over the Brillouin
zone. The behavior of the DOS at a VHS depends on whether
it is at an energy extremum or a saddle point, and also on
the dimensionality of the system. For example, at a saddle
point in two dimensions with Ek = k2

x − k2
y , the DOS diverges

logarithmically. As the chemical potential crosses the VHS,
the topology of Fermi surface changes from electron to hole
type, known as an electronic topological transition.

Recently, we have extended the notion of VHS to high-
order saddle points, where, aside from ∇kEk = 0, the Hessian
matrix Di j = ∂ki∂k j Ek satisfies det D(k) = 0 [2]. These high-
order saddle points occur where two Fermi surfaces touch
tangentially, or at the common intersection of three or more
Fermi surfaces [3,4]. An example of the former is Ek = k2

x −
k4

y , and of the latter is Ek = k3
x − 3kxk2

y . Generally speaking,
high-order saddle points can be realized by tuning the energy
dispersion with one or more control parameters. At high-order
saddle points in two dimensions, the DOS shows a power-law
divergence D(E ) ∝ |E |−ε , much stronger than a logarithmic
one at ordinary VHS [2,4].
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The existence of high-order VHS has recently been iden-
tified in a variety of materials including twisted bilayer
graphene near a magic angle, trilayer graphene-hexagonal
boron nitride heterostructure [2], and Sr3Ru2O7 [5]. In par-
ticular, a power-law divergent DOS of high-order VHS with
exponent − 1

4 was found in scanning tunneling spectroscopy
measurements [6] on magic-angle twisted bilayer graphene
[2].

In the presence of electron-electron interaction, a large
DOS near the Fermi level may have important consequences.
On the one hand, it may trigger Stoner instability to ferro-
magnetism. On the other hand, a large DOS may result in
strong screening of repulsive interaction, so that a Fermi-
liquid description remains valid at low energy. For the case
of a single conventional VHS with a logarithmically divergent
DOS at the Fermi energy, previous works [7–21] have shown
that repulsive interaction decreases at low energies, likely
leading to a marginal Fermi liquid [22–26].

In this work, we study interacting electron systems with a
high-order saddle point near the Fermi level. Assuming that
electron interaction is weak, dominant contributions to low-
energy thermodynamic properties of the system come from
those states in the vicinity of the saddle point, from which
the DOS divergence originates. This allows us to formulate a
continuum field theory of interacting fermions by taking the
leading-order energy dispersion relation Ek near the saddle
point and extending the range of momentum to infinity.

In this field theory, when the high-order VHS is right at
the Fermi level, the Fermi surface in k space becomes scale
invariant. As the VHS approaches the Fermi level, charge and
spin susceptibilities exhibit power-law divergence, reminis-
cent of critical phenomena. Motivated by these observations,
we develop a renormalization group (RG) theory for interact-
ing fermions near high-order VHS, which parallels Wilson-
Fisher RG approach to the φ4 theory [27,28]. By introducing
a small parameter ε associated with the DOS divergence, we
present a controlled RG analysis and find that short-range
repulsive interaction is relevant at the noninteracting fixed
point and drives the system into a nontrivial T = 0 interacting
fixed point. The former is the analog of the Gaussian fixed
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point in Fermi systems, and the latter the analog of the Wilson-
Fisher fixed point.

The metallic state at the interacting fixed point exhibits
scale invariance in space and time and power-law divergent
charge and spin susceptibility, but finite pairing susceptibility.
In other words, this is a metal on the verge of charge sep-
aration and ferromagnetism. We call such a critical state of
metal with various divergent susceptibilities, but without any
long-range order, a supermetal. This terminology is motivated
by a comparison with a metal and a semimetal. All three are
conductors without a band gap at the Fermi level, but differ
in the DOS. A semimetal has a vanishing DOS, a metal has a
finite DOS, and a supermetal has a divergent DOS.

We further show by a two-loop RG calculation for a high-
order saddle point that the fermion field acquires a finite
anomalous dimension. Hence, the interacting supermetal we
found is a non-Fermi liquid, as opposed to a marginal Fermi
liquid for the case of a conventional VHS. The singular DOS
of supermetal D(E ) ∝ |E |−ε plays a pivotal role by making
a non-Fermi liquid possible under weak repulsive interaction.
The DOS exponent ε naturally serves as a small parameter that
allows a controlled analysis via perturbative RG calculation.

The outline of the paper is as follows: In Sec. II, we
introduce a tight-binding model with a high-order VHS and
calculate the power-law divergent DOS, whose exponent is
determined from the scaling property of energy dispersion
near the high-order saddle point. We show that a high-order
VHS appears generically when the energy dispersion around
a saddle point is modified by changing just a single hopping
parameter.

In Sec. III, we present a mean-field analysis of interacting
electrons with a high-order saddle point near Fermi level. We
find that in the presence of repulsive contact interaction, as the
chemical potential approaches the Van Hove energy, a first-
order transition to a ferromagnetic metal occurs, displaying a
discontinuous change in spin polarization and charge density.

In Sec. IV, we perform the energy-shell RG analysis step
by step. We first define the energy shell as a region of momen-
tum space. Then, the tree-level and one-loop RG equations
for the chemical potential and interaction strength are derived
in sequence, which resembles the case of the φ4 theory.
We identify the noninteracting fixed point and the nontrivial
interacting fixed point, which is the analog of the Wilson-
Fisher fixed point in Fermi system. We next consider other
relevant perturbations to the system, including Zeeman and
pairing fields as well as additional symmetry-allowed terms
in the energy dispersion. A discussion about a higher-loop RG
analysis follows, while an actual two-loop calculation appears
in a later section.

In Sec. V, we combine the results from the mean-field
and RG analyses to propose a phase diagram of interacting
electrons near a high-order VHS in the parameter space
of chemical potential, interaction strength, and detuning of
single-particle energy dispersion from the high-order VHS.
We show that a supermetal appears on a line in the phase
diagram, which can be reached by tuning two parameters.
We then perform the scaling analysis for thermodynamic
quantities and correlation functions. The generic formalism
is first presented, followed by the one-loop result for various
exponents of divergent susceptibilities. In addition, we discuss

the Ward identity, which results from charge conservation and
gives relations among the field renormalization and scaling
exponents.

In Sec. VI, we introduce another RG scheme, the field-
theory approach with a soft UV energy cutoff, which is
confirmed to satisfy the Ward identity. Compared to the
energy-shell RG analysis, it has the advantage in calculating
higher-order perturbative corrections. The one-loop calcula-
tion reproduces the energy-shell RG analysis in Sec. IV. Fur-
thermore, the two-loop calculation shows the finite anomalous
dimension of the fermion field at a high-order saddle point.
This result directly establishes the non-Fermi-liquid nature of
an interacting supermetal.

In Sec. VII, we evaluate the quasiparticle lifetime at finite
temperature due to electron interaction. From a perturbative
calculation, we find an unusual temperature dependence in
the quasiparticle lifetime, which also implies the non-Fermi-
liquid behavior.

In Sec. VIII, we summarize the results and discuss their
significance in the broad context of Van Hove physics, RG
approaches to Fermi systems, and non-Fermi liquids. We
compare interacting supermetal with other non-Fermi-liquid
systems, such as one-dimensional systems [29–31], quantum
critical metals [32–56], and doped Mott insulators [57–63].
We also discuss experimental signatures of a supermetal.

II. MODEL

A. An example of high-order VHS in two dimensions

We consider a tight-binding model on an anisotropic square
lattice

Ĥ = −
∑

j

(txc†
j+x̂c j + tyc†

j+ŷc j + t ′
yc†

j+2ŷc j ) + H.c. (1)

tx and ty are the nearest-neighbor hopping amplitudes along
the x and y directions, respectively, and t ′

y is the second-
nearest-neighbor hopping along the y direction. The energy
dispersion is obtained as

Ek = −2tx cos(kxa) − 2ty cos(kya) − 2t ′
y cos(2kya), (2)

with the lattice constant a.
For |ty| � 4|t ′

y|, there are four VHS points in the Brillouin
zone at the high-symmetry points: � = (0, 0), X = (π/a, 0),
Y = (0, π/a), and M = (π/a, π/a). With tx, ty, t ′

y > 0, the
energy minimum and maximum are located at � and M
points, respectively, and X and Y points are the saddle points
[Fig. 1(a)]. Near the Y point, the energy dispersions take the
form

Ek = k2
x − k4

y − λk2
y , (3)

where kx and ky are rescaled to eliminate the coefficients of k2
x

and k4
y .

The evolution of the Fermi surface by changing λ is shown
in Fig. 2. For λ > 0 (ty > 4t ′

y), there is an ordinary saddle
point with a logarithmically divergent DOS, where the Fermi
surfaces cross at a point at μ = 0. At λ = 0 (ty = 4t ′

y), the
two Fermi surfaces touch tangentially to realize a high-order
saddle point. For λ < 0 (ty < 4t ′

y), the singular point splits
into two saddle points and one minimum. Those saddle points
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FIG. 1. Lattice model for a high-order VHS. (a) Energy contour plot with ty/tx = 0.8 and t ′
y/tx = 0.2. We find the energy minimum at �,

the maximum at M, and the two saddle points at X and Y . Y and M are high-order VHS points. At Y , we see that the two Fermi surfaces touch
tangentially while they cross linearly at X . (b) DOS for the energy dispersion in (a). The four VHS points give rise to analytic singularities
in the DOS, where the corresponding points are labeled in the figure. The two peaks at Y and M correspond to high-order VHS, fitted by the
analytic formula for the continuum theory (8).

are located at (kx, ky) = (0,±√|λ|/2) with the energy λ2/4.
We can see that the high-order VHS is realized around the
conventional VHS point(s) by controlling the single parameter
λ in the energy dispersion [2]. We add that, at ty = 4t ′

y, the
energy dispersion near M point becomes k2

x + k4
y , describing

a high-order energy extremum.
The specific tight-binding model (1) illustrates a general

feature of Bloch electron’s energy dispersion: the existence
of saddle points is mathematically guaranteed [1], and tuning
a single parameter can turn an ordinary saddle point into a
high-order one [2].

A VHS manifests itself as an analytic singularity in the
DOS:

D(E ) =
∫

k
δ(E − Ek), (4)

where
∫

k = ∫
dd k

(2π )d stands for the momentum integration in
d dimensions. The DOS for the present model (d = 2) is
depicted in Fig. 1(b). We find four singularities in the DOS
and each of them is tied to the individual VHS of the model.
The band bottom at � gives rise to a discontinuity in the DOS
and the saddle point at X shows a logarithmic divergence
in the DOS. Those two are conventional VHS, known since
the original work of Van Hove [1]. Here, we focus on the

high-order VHS at Y and M. They exhibit distinct behavior:
the DOS has a power-law divergence as |E |−1/4 instead of
a logarithm. In addition, the divergence at Y is stronger on
the electron side by the factor

√
2 than on the hole side.

Such an asymmetry is not seen for a conventional VHS
with a logarithmic divergence at X . The two Fermi surfaces
touch tangentially at Y at the Van Hove energy. When the
chemical potential μ crosses the Van Hove energy, the Fermi
surface topology changes from being closed to open in the ky

direction.
In Fig. 1(b), the DOS peaks at the two high-order VHS

in our tight-binding model are fitted by the analytical expres-
sions of the DOS calculated from the continuum models in
their vicinities. The calculation will be shown in the next
subsection. We can see a close fit within a finite-energy
range. Since the divergent DOS and hence susceptibilities
originate from the vicinity of the high-order VHS, the con-
tinuum model is expected to capture universal features at
low energy. Using the continuum model has the advantage
of removing nonuniversal aspects associated with high-energy
regions away from the high-order VHS in the tight-binding
model. We will show that infrared (IR) scaling properties
are not indeed affected by the UV cutoff in the continuum
model.

FIG. 2. Energy contours for the dispersion (3). The parameter λ describes a perturbation around a high-order saddle point. The sign of λ

controls the topology of the Fermi surface; there is one VHS point at (kx, ky ) = (0, 0) for λ � 0, and it splits into two located at (0, ±√|λ|/2)
for λ < 0.
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Before proceeding, we briefly mention the Fermi surfaces
in strained Sr2RuO4 [64–66]. It has a quasi-two-dimensional
electronic structure with a layered perovskite structure. Under
uniaxial pressure, a Lifshitz transition occurs on the Brillouin
zone boundary [65]. At the transition point, there is one VHS
in the Brillouin zone at the Fermi energy. The Fermi surface of
the band of interest resembles the one obtained from Eq. (2).

B. Generalization

From now on, we study a continuum model of fermions
with a high-order energy dispersion. For the purpose of a
controlled RG analysis later, here we consider the generalized
energy dispersion in the d-dimensional k space

Ek = A+kn+
+ − A−kn−

− . (5)

The momentum is denoted by

k = (k+, k−), (6)

where k± are d±-dimensional vectors with d+ + d− = d , and
k± = |k±|. Analyticity of the energy dispersion requires n±
to be positive integers. We consider the case of even n±, so
that Ek = E−k satisfies time-reversal symmetry. When at least
one of n± is greater than two, this energy dispersion has a
high-order VHS at k = 0, which is defined as a point where
the Hessian matrix Di j = ∂ki∂k j Ek fulfills det Di j = 0.

The energy dispersion (5) follows the scaling relation

Ek = bEk′ with k′ = (k+/b1/n+ , k−/b1/n− ). (7)

It then follows from Eqs. (4) and (7) that the DOS satisfies

D(E ) =
{

D+E−ε (E > 0),
D−(−E )−ε (E < 0),

(8)

where the DOS singularity exponent ε is

ε = 1 − d+
n+

− d−
n−

. (9)

Throughout this work, we consider the case ε > 0. For exam-
ple, the high-order VHS introduced in the preceding section
corresponds to the case of d+ = d− = 1, n+ = 2, n− = 4, so
that ε = 1

4 .
We calculate the prefactors D± for the dispersion (5)

explicitly and find

Ds = D0 sin

(
πds

ns

)
(s = ±), (10a)

with the common factor

D0 = 4�(ε)

π (4π )d/2

∏
s=±

�(ds/ns)

nsA
ds/ns
s �(ds/2)

. (10b)

We note that in calculating the DOS, the d-dimensional
momentum integral over k ∈ (−∞,∞)d is convergent for
all E �= 0. Also, note that D+ �= D− for d+/n+ �= d−/n−. It
describes the asymmetry in the DOS above and below E =
0. This is a feature of the high-order saddle points defined
by Eq. (5), distinct from conventional saddle points in two
dimensions, where the logarithmically divergent DOS peak is
symmetric.

We also find it useful to consider another generalization

Ek = A+k2
+ − A−(k2

−)2, (11)

with d+ = 1 and d− = 2 − 4ε. The original problem in two
dimensions corresponds to ε = 1

4 , while the generalized prob-
lem is defined in 3 − 4ε dimensions, in a similar spirit as
Wilson-Fisher theory in 4 − ε dimensions. Now, the DOS
D(E ) has a power-law divergence at E = 0 for ε > 0 with the
same form as Eq. (8), but the coefficients are replaced with

D+ = 1

(2π )d/2

√
2

π

�(ε)

�(1 − ε)

1

A1/4
+ Ad−/4

−
, (12a)

D− = D+ cos(πε). (12b)

The nontrivial interacting fixed point to be shown later is
controlled by the smallness of ε. For the model defined by
Eq. (5), the exponent can be any rational number between
0 < ε < 1. By choosing positive integers n± and d± judi-
ciously, we can make ε arbitrarily small in high-dimensional
crystals, while keeping the energy-momentum dispersion an
analytic function.

We now introduce our model of interacting electrons near
a high-order VHS:

Ĥ =
∫

dd r
[
c†

rσ

(
E−i∂r − μ

)
crσ + gn̂r↑n̂r↓

]
(13)

with the density operator n̂rσ = c†
rσ crσ . g denotes the cou-

pling constant for the contact interaction between electrons
with opposite spins and the summation over the spin index
σ =↑(+), ↓(−) is implicit. The corresponding action is given
by

S =
∫ 1/T

0
dτ

∫
dd r

[
ψ̄σ

(
∂τ + E−i∂r − μ

)
ψσ + gψ̄↑ψ̄↓ψ↓ψ↑

]
(14)

with the fermionic field ψσ . We set kB = h̄ = 1 throughout
the paper. Here, we formulate the model at temperature T .
Temperature T is regarded as the system size Lβ ≡ 1/T in the
imaginary-time direction. Later, we shall consider the effects
of other interactions and external fields.

From the action, we define the noninteracting Green’s
function

G0(k, ωn) = 1

iωn − Ek
, (15)

with the fermionic Matsubara frequency ωn = (2n + 1)πT
(n: integer). The partition function Z is expressed as

Z =
∫

Dψ̄ Dψ e−S. (16)

We are interested in thermodynamic quantities such as spe-
cific heat. These are obtained from the free-energy density

F = −T

V
lnZ, (17)

where V is the volume of the system.
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III. MEAN-FIELD ANALYSIS

We first consider the effect of interaction in Eq. (13) at
T = 0 with a mean-field approximation. We assume repulsive
interaction (g > 0) and minimize the energy expectation value
〈�0|Ĥ |�0〉 with the variational wave function given by

|�0(E↑, E↓)〉 =
∏
σ

∏
k∈W (Eσ )

c†
kσ

|0〉. (18)

This wave function has two independent variational parame-
ters E↑ and E↓, corresponding to Fermi energies for spin-up
and -down electrons, respectively. W (Eσ ) denotes the region
in the momentum space where the energy Ek is below the
variational parameter Eσ : W (Eσ ) = {k|Ek � Eσ }. We note
that for g < 0 the system becomes unstable against pairing
and hence the variational wave-function (18) is inapplicable.

The variational wave function |�0〉 gives the exact ground
state at g = 0 by choosing the two variational parameters
E↑ = E↓ = μ. For g �= 0, the energy expectation value be-
comes

〈�0|Ĥ |�0〉 =
∑

σ

[∫
k∈W (Eσ )

Ek − μn(Eσ )

]
+ gn(E↑)n(E↓),

(19)

where the electron density for spin σ at an energy Eσ is given
by

n(Eσ ) =
∫

k∈W (Eσ )
1 =

∫ Eσ

−�

dE D(E ). (20)

We introduce a lower bound in the energy integral, i.e.,
the UV cutoff �(> 0), which corresponds to the inverse of
the microscopic lattice scale. Since D(E ) > 0, the electron
density n(Eσ ) is a monotonic function of Eσ . The one-to-one
correspondence allows an inverse function of n(Eσ ); we define
nσ ≡ n(Eσ ) − n(0) to write Eσ as a function of nσ :

Eσ (nσ ) =
⎧⎨
⎩
(

1−ε
D+

nσ

) 1
1−ε (nσ � 0),

−( 1−ε
D−

(−nσ )
) 1

1−ε (nσ < 0).
(21)

Now we can write the energy expectation value 〈�0|Ĥ |�0〉
as a function of nσ :

〈�0|Ĥ |�0〉 =
∑

σ

∫ Eσ (nσ )

−�

dE D(E )E − μ(n↑ + n↓)

+ g[n↑ + n(0)][n↓ + n(0)]

=
∑

σ

[�(nσ ) − μ̃nσ ] + gn↑n↓ + const, (22)

where we introduce

�(nσ ) =
∫ Eσ (nσ )

0
dE D(E )E , (23)

μ̃ = μ − gn(0). (24)

It is convenient to express the energy expectation value with
the dimensionless quantities defined by

ḡ = gD(�), n̄σ = nσ

�D(�)
, μ̄ = μ̃

�
, D̄r = D−

D+
.

(25)
Then, we obtain

〈�0|Ĥ |�0〉 = �2−εD+Ē (n̄↑, n̄↓) + const, (26)

where the dimensionless function

Ē (n̄↑, n̄↓) =
∑

σ

[�̄(n̄σ ) − μ̄n̄σ ] + ḡn̄↑n̄↓ (27)

is to be minimized by varying n̄↑ and n̄↓. The function �̄(n̄σ )
is given by

�̄(n̄σ ) =
⎧⎨
⎩

(1−ε)
2−ε
1−ε

2−ε
n̄

2−ε
1−ε
σ (n̄σ � 0),

(1−ε)
2−ε
1−ε

2−ε
D̄

− 1
1−ε

r (−n̄σ )
2−ε
1−ε (n̄σ < 0).

(28)

The electron densities n̄↑ and n̄↓ are order parameters in
the mean-field analysis. Instead of n̄↑ and n̄↓, we use

n̄C = n↑ + n↓, n̄M = n↑ − n↓, (29)

where they correspond to the order parameters for charge
and magnetization, respectively. The values of n̄C and n̄M

are obtained by minimizing the function Ē (n̄↑, n̄↓) with the
chemical potential μ̄ and the coupling constant ḡ given. The
numerical result for ε = 1

4 and D̄r = 1/
√

2 is shown in Fig. 3.
We find discontinuities in n̄C and n̄M at the same μ̄ and ḡ,
which characterizes a first-order phase transition and defines
a critical value of the coupling constant ḡc(μ̄). Finite magne-
tization n̄M above ḡc characterizes a ferromagnetic state with
the spin-rotational symmetry broken. The phase boundary in
the numerical result well obeys ḡc(μ̄) ∝ D−1(μ̄), as expected
from Stoner criterion for ferromagnetism.

IV. ENERGY-SHELL RG ANALYSIS

The mean-field analysis in the previous section leads to
a first-order transition to ferromagnetism with discontinuous
changes of the charge density and magnetization. The ferro-
magnetic region shrinks and the discontinuity at the transition
weakens as the interaction decreases. Nonetheless, in the
mean-field theory, this transition occurs with infinitesimal
repulsive interaction at μ̄ = 0 because of the divergent DOS
at VHS. However, this is an artifact of the mean-field analysis
that neglects long-wavelength fluctuations, which becomes
increasingly important as the first-order transition becomes
weaker. In this section, we perform an energy-shell RG analy-
sis to study the role of these fluctuations near high-order VHS
(|μ̄| 
 1) with weak repulsion (ḡ 
 1).

A. Formalism at zero temperature

Here, we adopt the Wilsonian approach to the RG equa-
tions for the action (14). For clarity, we consider first the
action at T = 0, where we will find fixed points. Then,
the Matsubara frequency becomes continuous ωn → ω, and
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FIG. 3. Mean-field results of the order parameters for (a) charge n̄C and (b) magnetization n̄M by changing μ̄ and ḡ. We set ε = 1
4 and

D̄r = 1/
√

2. We find discontinuities approximately along ḡc(μ̄) ∝ D−1(μ̄) and ferromagnetic states when the interaction is stronger than ḡc.
(c) The line cut with a fixed ḡ shows that discontinuities in n̄C and n̄M occur at the same μ̄.

the action is written with frequency ω and momentum k as

S =
∫

dω

2π

∫
k

⎡
⎣ψ̄σ (k)(−iω + Ek − μ)ψσ (k)

+ g

⎛
⎝ 4∏

j=1

∫
dω j

2π

∫
k j

⎞
⎠(2π )d+1δ(k1 + k2 − k3 − k4)

× ψ̄↑(k1)ψ̄↓(k2)ψ↓(k3)ψ↑(k4)

⎤
⎦. (30)

We introduce the shorthand notation k = (k, ω).
We impose a UV energy cutoff � on this action to remove

unphysical UV divergences that appear in electron density
of the ground state, etc. We note that the UV cutoff here is
imposed on energy, but not on momentum directly. The region
in k space with |Ek| � � still extends to infinity. Importantly,
this UV cutoff does not affect universal scaling properties of
IR fixed points in the analysis of high-order VHS, as we shall
show. The UV cutoff merely appears in the prefactors of IR
scaling functions.

We use two different energy cutoff schemes in this paper:
an energy shell with a hard cutoff and a soft energy cutoff.
The former scheme allows the Wilsonian RG approach, which
offers a rather simple analysis and understanding. The latter
requires a field-theoretical analysis, which is apparently com-
plicated, but high-order perturbative corrections become more
tractable.

This section focuses on the energy-shell RG scheme, which
imposes a constraint on momentum integrals. By converting
the momentum integral to an energy integral with the help of
the DOS, we write the momentum integral with the cutoff �

as ∫ �

k
F (Ek) =

∫ �

−�

dE D(E )F (E ) (31)

for an arbitrary function F . We denote the action with the
energy cutoff � as S�, obtained by replacing the momen-
tum integral

∫
k by

∫ �

k . The UV energy cutoff designates an
unbounded region in k space, reflecting the extended Fermi

surface with scale invariance (Fig. 4). Note that frequency
integrals still range from −∞ to +∞. In a high-order VHS,
divergences of momentum integrals arise from a singularity at
k = 0 but not k → ∞. We will show that this simplifies the
energy-shell RG analysis, which includes only the UV energy
cutoff �. This is in contrast to a conventional VHS with a
logarithmic divergence of the DOS [19,20]; it additionally
requires a UV momentum cutoff. A further discussion can be
found in Sec. VIII.

We now sketch how an RG transformation works with
the energy-shell RG scheme. To access the IR behavior, we
progressively eliminate UV modes and focus more on remain-
ing modes. In the energy-shell RG scheme, we first split the
energy range into two parts; one corresponds to lower energies
Ek ∈ [−�/b,�/b] and the other to higher energies Ek ∈
[−�,−�/b) ∨ (�/b,�] (b > 1). Accordingly, the fermion

FIG. 4. Energy contour plot for Ek = k2
x − k4

y . The thick line is
the Fermi surface at the Van Hove energy, which is scale invariant.
The colored region has the energy inside the cutoff �, where the
red (blue) area corresponds to E > 0 (E < 0). At every RG step of
the energy-shell RG scheme, high-energy modes within the energy
shell shown in darker colors are integrated out. In the field-theory
approach, all states below the cutoff � are integrated over at once.
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field ψ is decomposed as

ψσ (k) = ψ<
σ (k) + ψ>

σ (k), (32)

where ψ<
σ represents the low-energy modes and ψ>

σ the high-
energy modes. We write a momentum integral in the same
way: ∫ �

k
=
∫ <

k
+
∫ >

k
. (33)

Due to this division, the action is decomposed into the three
parts as

S�[ψ] = S<[ψ<] + S>[ψ>] + S<>[ψ<,ψ>]. (34)

The first term S<[ψ<] consists only of the low-energy modes
ψ> and the second term S>[ψ>] of the high-energy modes
ψ>. The last term S<>[ψ<,ψ>] describes the coupling of the
low- and high-energy modes, which arises when the interac-
tion is finite (g �= 0). To obtain the effective action without the
high-energy modes, we need to integrate out the high-energy
modes:

S�/b[ψ<]

= S<[ψ<] − ln

(∫
Dψ̄>Dψ>e−S>[ψ>]−S<>[ψ<,ψ>]

)

= S<[ψ<] − ln

(∫
Dψ̄>Dψ>e−S<>[ψ<,ψ>]

)
+ const.

(35)

Now the high-energy modes are eliminated and the new
action has the smaller cutoff �/b. One may be tempted to
compare S�[ψ] and S�/b[ψ<] to look into low-energy prop-
erties. However, it is like “comparing apples to oranges” [67]
as the two actions are defined in different domains. For a fair
comparison, we should make a change of variables (k, ω, and
ψ) to restore the cutoff �. This procedure, called rescaling,
completes the RG step. It results in the change of parameters
in the model, which is described by RG equations.

The RG equations describe the flow of the parameters
under a scale transformation. When the parameters do not
change under a scale transformation, the system reaches an
RG fixed point and exhibits scale-invariant properties. Away
from a fixed point, the parameters flow. If the flow converges
to a fixed point in its vicinity, then the fixed point is called a
stable fixed point. If the parameters flow away from a fixed
point, then it is an unstable fixed point. The RG equations
also tell us how various susceptibilities and correlation lengths
diverge as the critical point is approached, and the scaling
properties of correlation functions at the critical point.

B. Tree-level analysis

The mixing term S<> can be calculated by expanding
the logarithm in powers of the coupling constant g. We first
consider the zeroth-order contribution in g. Since the remain-
ing terms are described by tree diagrams without loops, the
approximation is referred to as the tree-level analysis.

At tree level, the effective action with the cutoff �/b
becomes S�/b[ψ<] = S<[ψ<]. To compare with S�[ψ], we
need to change the variables to put the cutoff �/b back to �.

Now, we change the variables so that the energy satisfies the
relation

Ek′ = bEk. (36a)

For the energy dispersion given by Eq. (5), this immediately
leads to rescaling of the momentum

k′
+ = b1/n+k+, k′

− = b1/n−k−, (36b)

while the coefficients do not change:

A′
+ = A+, A′

− = A−. (36c)

To retain the form of the action, we also need to rescale
the field ψ , frequency ω, chemical potential μ, and coupling
constant g to be

ψ ′ = b−(3−ε)/2ψ<, (37a)

ω′ = bω, (37b)

μ′ = bμ, (37c)

g′ = bεg. (37d)

When we look at the parameters of the model, the chemical
potential μ and the coupling constant g change after a RG
step, whereas the coefficients of the energy dispersion A±
do not. The flow of a parameter under an infinitesimal scale
transformation (b → 1) is described by a differential equa-
tion, namely, the RG equation. For μ and g, the RG equations
are obtained from Eqs. (37c) and (37d):

dμ

dl
= μ,

dg

dl
= εg (38)

with l = ln b.
In the present case, we find the noninteracting fixed point

at μ = g = 0 in Eq. (38), where the partition function takes
a functional form of the Gaussian integral. If the parameters
are away from the fixed point, they grow as l increases, i.e., in
low energies, and flow away from the fixed point. Therefore,
the fixed point at μ = g = 0 is unstable and both μ and g are
relevant perturbations to the unstable fixed point.

So far we have only considered the contact interaction.
However, electron-electron interactions can take a more com-
plicated form. Other types of interactions will be generated
under RG even if not present initially, and thus their effects
should be considered as well. In general, a finite-range in-
teraction can be expanded in powers of spatial derivatives,
with contact interaction being the lowest-order term. The
next leading term g−(ψ̄↑∂r−ψ̄↓)(ψ↓∂r−ψ↑) contains two spa-
tial derivatives, and has a different scaling relation: g′

− =
bε−2/n−g−, which has a much smaller exponent than ε for the
contact interaction. As an example, for the energy dispersion
(3) in two dimensions, we have ε = 1

4 and n− = 4, so that g−
is irrelevant. It is therefore legitimate to retain only the contact
interaction in RG analysis.

C. One-loop analysis

In the presence of interaction, elimination of the high-
energy modes gives rise to corrections in the effec-
tive action through the mixing of low- and high-energy
modes in S<>[ψ<,ψ>]. When depicted diagrammatically,
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FIG. 5. Diagrammatic representation of perturbative corrections.
The solid lines with arrows are the noninteracting electron propaga-
tors G0. Each vertex corresponds to the contact interaction with the
coupling constant g. (a) Self-energy � to one-loop order. The first
term represents the Hartree term and the second shows the one-loop
correction linear in the chemical potential μ. (b) Correction to the
coupling constant δg. There are particle-particle (left) and particle-
hole (right) contributions. (c) One-loop correction to the pairing field
�. (d) Two-loop correction to the self-energy, which gives rise to the
finite field renormalization, and thus to the anomalous dimension.

S<>[ψ<,ψ>] involves diagrams with loops, corresponding
to integrations of the high-energy modes. We here consider
perturbative corrections to one-loop order.

The effective action (35) can be calculated perturbatively
with respect to the coupling constant g when it is small. We
also treat the chemical potential μ as a perturbation as we are
interested in critical phenomena where there is no characteris-
tic scale in the system. Including perturbative corrections, we
write the action in the form

S�/b[ψ<] =
∫

dω

2π

∫ <

k
ψ̄<

σ (k)(−iω + Ek− μ+ �)ψ<
σ (k)

+ (g + δg)

⎛
⎝∏

j

∫
dω j

2π

∫ <

k j

⎞
⎠

× (2π )d+1δ(k1 + k2 − k3 − k4)

× ψ̄<
↑ (k1)ψ̄<

↓ (k2)ψ<
↓ (k3)ψ<

↑ (k4) + · · · ,

(39)

where δg is a correction to the coupling constant and (· · · )
consists of interactions with derivatives that may be generated
after integrating out the high-energy modes. As we have
discussed above, finite-range interactions are irrelevant, so
that we can safely neglect them.

Perturbative corrections to the lowest order, namely, to
one-loop order, are diagrammatically depicted in Figs. 5(a)
and 5(b), corresponding to � and δg, respectively. We find that
the one-loop corrections to the self-energy � and the coupling
constant δg can be written as

� = g�H − gμ�ph, (40a)

δg = −g2(�pp + �ph). (40b)

We emphasize that the all loop corrections should be evaluated
at zero external frequency and momentum. The one-loop
corrections are obtained to O(l ) as

�H =
∫

dω

2π

∫ >

k
G0(k, ω) � −lcH�D(�), (41a)

�pp =
∫

dω

2π

∫ >

k
G0(k, ω)G0(−k,−ω) � lcppD(�),

(41b)

�ph =
∫

dω

2π

∫ >

k
G0(k, ω)G0(k, ω) = 0, (41c)

where D(�) is the DOS at the cutoff energy and the dimen-
sionless constants cH and cpp are

cH = 1

2

(
1 − D−

D+

)
, (42a)

cpp = 1

2

(
1 + D−

D+

)
. (42b)

We can see that the particle-hole contribution vanishes iden-
tically after the frequency integration, i.e., at T = 0 there is
no particle-hole screening coming from states near the cutoff
energy �. On the other hand, the particle-particle loop has a
finite contribution. The Hartree contribution �H can be finite
only when the DOS is asymmetric on the electron and hole
side (D+ �= D−), leading to a finite cH at most of order ε.

There is no frequency or momentum dependence in the
self-energy to one-loop order, so that the self-energy only
renormalizes the chemical potential μ. The field renormal-
ization or renormalization of the energy dispersion does not
appear at one-loop order. They appear at two-loop order from
the diagram shown in Fig. 5(d), which will be examined with
the field-theory approach in Sec. VI.

With the one-loop corrections obtained, the new parame-
ters μ′ and g′ after rescaling are

μ′ = b(μ − �) � b[μ + lcH�gD(�)], (43a)

g′ = bε (g + δg) � bεg[g − lcppg2D(�)], (43b)

which lead to the RG equations for the chemical potential
μ and the coupling constant g. It is convenient to define the
dimensionless chemical potential μ̄ and coupling constant ḡ
as

μ̄ = μ

�
, ḡ = gD(�). (44)

Then, we obtain RG equations for μ̄ and ḡ as

dμ̄

dl
= μ̄ + cHḡ, (45a)

dḡ

dl
= εḡ − cppḡ2. (45b)

Since we are interested in the low-energy behavior, we
consider the RG flow by increasing l . The RG flow is shown in
Fig. 6. From the RG equations (45) for the coupling constant
ḡ and the chemical potential μ̄, we find two fixed points

ḡ∗
1 = 0, μ̄∗

1 = 0 (46)

ḡ∗
2 = ε

cpp
, μ̄∗

2 = −εcH

cpp
. (47)
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FIG. 6. RG flow of the chemical potential μ̄ and the coupling
constant ḡ. There are two fixed points: the fixed point with ḡ∗

1 = 0
corresponds to the noninteracting fixed point and the other with
ḡ∗

2 = ε/cpp to the nontrivial interacting fixed point. The interacting
fixed point is stable along a line that connects the two fixed points,
whereas the noninteracting fixed point is unstable on the plane. ḡ∗

2

is a positive number of order ε, i.e., the interacting fixed point has
weak repulsive interaction with its strength controlled by the DOS
singularity exponent ε. We assume D+ > D− for the RG flow, which
makes the DOS larger on the electron side. In such a case, the
interacting fixed point is shifted from zero to be μ̄ = O(ε2) < 0.
Note that the coupling constant ḡ monotonically grows when the
interacting is attractive (ḡ < 0).

ḡ∗
1 = μ̄∗

1 = 0 corresponds to the noninteracting fixed point.
The new fixed point at ḡ∗

2 > 0, μ̄∗
2 < 0 is the nontrivial in-

teracting fixed point with finite repulsive interaction, whose
strength is of order ε. The smallness of the coupling constant
allows a controlled analysis by the DOS singularity exponent
ε about the interacting fixed point.

We can find the similarity to the φ4 theory in the structure
of the RG equation (45): the coefficient of the quadratic
term rφ2 corresponds to the chemical potential μ̄ and the
quartic interaction term φ4 to the coupling constant ḡ. From
this viewpoint, our theory can be regarded as the fermionic
analog of the φ4 theory. Like the Wilson-Fisher fixed point,
our perturbative RG analysis is analytically controlled thanks
to the smallness of the coupling constant on the order of ε

at the interacting fixed point. While the φ4 theory in three
dimensions corresponds to ε = 1 in Wilson-Fisher RG, in our
theory for high-order VHS in two dimensions ε takes the value
of 1

4 , given by the DOS exponent.
In the φ4 theory, the RG flow of r describes the phase

transition between ordered and disordered states: the RG flow
to r � 0 corresponds to the disordered state and r 
 0 to
the ordered state, where the field φ has a finite expectation
value associated with spontaneous symmetry breaking. The
parameter r is analogous to the chemical potential μ in the
present fermionic model, where μ � 0 yields the electron
Fermi surface and μ 
 0 the hole Fermi surface. The sign
change of μ thus describes a topological transition between
electron and hole Fermi liquids, which involves a change of
Fermi surface topology without symmetry breaking.

Note that at the interacting fixed point μ̄∗
2 is nonzero

when there is a finite contribution from the Hartree term
cH �= 0 due to the asymmetry of DOS at E > 0 and E < 0:
D(±|E |) = D±|E |−ε with D− �= D+. This means that in the
presence of repulsive interaction, the chemical potential at
which scale-invariant Fermi surface appears is shifted from
the noninteracting case, similar to the deviation of r at Wilson-
Fisher fixed point from the mean-field value. For small ε, it
follows from the expressions for D± that μ̄∗

2 is at most of
order ε2.

D. Relevant perturbations

We have identified the two fixed points: the noninteracting
and interacting fixed points. With the chemical potential tuned
at the fixed points, the noninteracting fixed point at ḡ∗

1 is
an unstable fixed point and the interacting fixed point at ḡ∗

2
is a stable fixed point. The chemical potential is a relevant
perturbation around both fixed points. We have included the
chemical potential even in the analysis of the simplest case
above as it can be generated by interaction due to the absence
of particle-hole symmetry in the single-particle DOS.

In addition to the chemical potential, we consider other rel-
evant perturbations to the fixed points, including the magnetic
field h and the s-wave pairing field �. Those relevant pertur-
bations add the following terms to the action at criticality:

−μψ̄ψ, h(ψ̄↑ψ↑ − ψ̄↓ψ↓), �ψ̄↑ψ̄↓ + �∗ψ↓ψ↑. (48)

Finite temperature is also a relevant perturbation. Its effect is
taken account of via Matsubara frequencies; see Appendix A.
We further consider other relevant perturbations. For an
energy dispersion E−i∂r = −∂2

x − ∂4
y , i.e., Ek = k2

x − k4
y , the

fermion bilinear terms with derivatives ∂x, ∂y, ∂2
y , ∂3

y , ∂x∂y are
also relevant perturbations.

Perturbations to the system are subject to symmetry con-
straints: particle conservation forbids the pairing term, spin-
rotational symmetry nonzero h, and reflection symmetry odd-
derivative terms in x or y. With all three symmetries present,
only two terms μψ̄ψ and ψ̄∂2

y ψ are allowed as perturbations
to the system with Ek = k2

x − k4
y ; see Fig. 2. This means that

we need to tune two parameters to reach the critical metallic
state governed by the interacting RG fixed point shown earlier.

In our RG analysis so far, the starting point is the single-
particle dispersion at the high-order VHS, where the term
ψ̄∂2

y ψ is absent. To one-loop order, this term is not generated
from the interaction since the self-energy � is independent of
momentum. However, it may be generated at higher-loop or-
der. As we shall show later, this means that in the presence of
interacting, the critical state is reached when the ψ̄∂2

y ψ term
is present in the single-particle dispersion and its coefficient
is tuned to a particular value.

The pairing field can be introduced by proximity to an
external superconductor, or it can be regarded as a test field for
studying s-wave pairing susceptibility. Likewise, the magnetic
field h can be externally introduced or regarded as a test field
for the spin susceptibility. In this viewpoint, the chemical
potential is conjugate to the particle number, and hence it is
related to the charge compressibility.

Corrections to the perturbations h and � are calculated
similarly as those for μ and g at T = 0. To consider a
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correction to the pairing field �, we include the particle-
particle loop diagram, where the one-loop diagram is shown
in Fig. 5(c). We include the corrections to write the magnetic
field h + δh and the pairing field � + δ�.

Integrating out the high-energy modes is followed by
rescaling. The parameters of the model should be rescaled
at tree level as h′ = bh and �′ = b�. Those parameters are
relevant and thus their values increase as we proceed with RG
steps. When the perturbative corrections are included, the new
parameters after an RG step are

h′ = b(h + δh), �′ = b(� + δ�). (49)

To one-loop order, the correction terms are expressed as

δh = 0, δ� = −g�pp. (50)

The one-loop correction �pp is obtained in Eq. (41b). Then,
the parameters change as

h′ = bh, �′ � b[� − lcppgD(�)]. (51)

With the dimensionless quantities

h̄ = h

�
, �̄ = �

�
, (52)

we reach the RG equations

dh̄

dl
= h̄, (53a)

d�̄

dl
= (1 − cppḡ)�̄. (53b)

We confirm that the perturbations h and � are relevant around
the two fixed points, given in Eqs. (46) and (47). Finite
temperature is also a relevant perturbation, which scales in
the same manner as energy and frequency. All low-energy
fixed points are found at T = 0, and thus we focus on zero
temperature in the main part. The one-loop RG equations at
finite temperature are presented in Appendix A. The physi-
cal consequences, i.e., scaling properties of thermodynamic
quantities, are discussed in the next section.

E. Structure of higher-order RG

So far, we have made the energy-shell RG analysis to one-
loop order. We now illustrate how it works in the case with

higher-order corrections. Again, for clarity we consider here
the minimal case at T = 0 without symmetry-breaking fields.
Inclusion of other relevant contributions such as T , h, and �

is straightforward.
Higher-order perturbative corrections give rise to the fre-

quency and momentum dependence in the self-energy � in
Eq. (39), while the one-loop corrections are independent of
frequency or momentum and depend only on the DOS as
we have seen. We expand the self-energy with respect to
the frequency and momentum to find corrections to the field,
energy dispersion, and chemical potential.

As we shall show later in Sec. VI, the momentum de-
pendence may give corrections to the energy dispersion. In
that case, one has to be wary of the generation of relevant
corrections in the single-particle energy dispersion even when
they are initially absent. We represent such a term as λk̃n,
where the coefficient λ transforms under Eq. (7) as λ′ =
baλ (a > 0). For instance, for the case of Ek = k2

x − k4
y , this

term corresponds to λk2
y (a = 1/2), which is the only relevant

perturbation to the energy dispersion.
In order to keep track of such relevant term(s), we include

λk̃n in the energy dispersion:

Ek = A+kn+
+ − A−kn−

− + λk̃n. (54)

At least one such relevant perturbation term exists for a high-
order VHS and, if present, turns a high-order saddle point
in the noninteracting single-particle dispersion into ordinary
one. For the generalized dispersion (11), there is only one
relevant perturbation to find Ek = A+k2

+ − A−(k2
−)2 + λk2

−
because the original dispersion is rotationally invariant in the
k− submanifold. For other types of dispersion, it is possible
to have multiple relevant terms. An extension to a case with
multiple relevant terms is straightforward.

Then, the expansion of the self-energy is generally given
by

� = �0 + (iω)�ω + δA+kn+
+ − δA−kn−

− + δλk̃n − δμ

+ (high-order terms), (55)

where irrelevant high-order terms are safely neglected. After
integrating out the high-energy modes within the energy shell,
we obtain the effective action

S�/b[ψ<] =
∫

dω

2π

∫ <

k
ψ̄<

σ (k){−iω(1 − �ω ) + (A+ + δA+)kn+
+ − (A− + δA−)kn−

− + (λ + δλ)k̃n − (μ + δμ)}ψ<
σ (k)

+ (g + δg)

⎛
⎝∏

j

∫
dω j

2π

∫ <

k j

⎞
⎠(2π )d+1δ(k1 + k2 − k3 − k4)ψ̄<

↑ (k1)ψ̄<
↓ (k2)ψ<

↓ (k3)ψ<
↑ (k4). (56)

The next step in the energy-shell RG analysis is to rescale
the momentum and restore the energy cutoff �/b to �; see
Eqs. (36a) and (36b). However, the effective action S�/b still
evidently has a different form from S�. To recover the form of
the action, we rescale the other quantities as follows:

ω′ = bω, (57a)

A′
± = (1 − �ω )−1(A± + δA±) ≡ bγA± A±, (57b)

λ′ = ba(1 − �ω )−1(λ + δλ), (57c)

μ′ = b(1 − �ω )−1(μ + δμ) ≡ bγμμ, (57d)

g′ = bε (1 − �ω )2(g + δg), (57e)

ψ ′ = b−(3−ε)/2(1 − �ω )−1/2ψ< ≡ b−(3−ε)/2bγψ/2ψ<.

(57f)
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Here, we introduce the scaling exponents γA± , γμ, and γψ .
Note that there is an ambiguity in defining ω′ and ψ ′ as
the factor (1 − �ω ) can be imposed on either ω′ or ψ ′. We
choose to scale ω linearly in b and hence the factor (1 − �ω )
contributes to the field renormalization.

For γA± �= 0, if we continue to rescale momentum ac-
cording to Eq. (36b) and the coefficients A± according to
Eq. (57b), the cutoff energy �/b is not mapped to �. To
remedy this issue, we rescale momentum as

k′
± = b1/ñ±k± with ñ± = n±

1 + γA±
, (58)

so that Ek′ = bEk is satisfied. In this way, the coefficients A±
do not change under rescaling.

At a fixed point, the parameters in the action are deter-
mined to satisfy scale invariance; i.e., they do not vary under
rescaling [Eqs. (57c)–(57e)]. To reach a fixed point, initial
values of the relevant perturbations μ and λ should be tuned so
that they cease to flow when the coupling constant g reaches
the fixed-point value.

Rescaling of the magnetic field h and the pairing field �

can be considered similarly. Including the field renormaliza-
tion, we obtain

h′ = b(h + δh)(1 − �ω )−1 ≡ bγh h, (59a)

�′ = b(� + δ�)(1 − �ω )−1 ≡ bγ��, (59b)

where we define the exponents γh and γ�. We shall show later
that the Ward identity requires γμ = γh = 1.

V. ANALYSIS

In this section, we combine the results obtained from the
mean-field and RG analyses to present a phase diagram of
interacting electrons near a high-order VHS. We then describe
scaling properties for thermodynamic quantities and correla-
tion functions near the supermetal critical point. In addition,
we discuss the Ward identity, which results from charge
conservation and gives relations among scaling exponents of
electronic specific heat, magnetic susceptibility, and charge
compressibility.

A. Phase diagram

As we have discussed in Sec. II, realization of a high-order
VHS requires tuning of the energy dispersion in addition to
the chemical potential. There is at least one parameter for a
relevant perturbation in the energy dispersion to be tuned; see
Sec. IV D. Therefore, to present a global phase diagram near
high-order VHS, we need three axes for the coupling constant
g, the chemical potential μ, and a tuning parameter λ of the
energy dispersion. All those three are relevant perturbations at
noninteracting fixed point; we use dimensionless parameters
defined by ḡ = g/�ε , μ̄ = μ/�, and λ̄ = λ/�a.

We now incorporate the results from the mean-field anal-
ysis (Fig. 3) and the RG analysis (Fig. 6). The mean-field
analysis is expected to be qualitatively correct for relatively
large ḡ, while the RG analysis is valid for small μ̄ and ḡ. Based
on these considerations, we propose a global phase diagram of
interacting electrons near high-order VHS shown in Fig. 7.

For large ḡ, mean-field calculation reveals that an itinerant
ferromagnetic metal exists over a wide range of chemical
potential, and the ferromagnetic transition is first order. Due
to the finite correlation length, we expect these results to be
qualitatively correct and continue to hold in the presence of a
small λ.

On the other hand, for small ḡ, there is no spontaneous
symmetry breaking or long-range order. When the DOS is
not divergent, the system is either an electron or a hole Fermi
liquid depending on the sign of μ̄. These two Fermi-liquid
states are indistinguishable by symmetry but differ in the
Fermi-surface topology. A transition between electron and
hole Fermi liquids, i.e., a Lifshitz transition, occurs as the
chemical potential crosses the VHS. This transition occurs on
a surface in the three-dimensional phase diagram.

Our RG analysis reveals that by tuning both μ and λ, a mul-
ticritical line on the Lifshitz transition surface can be reached,
where the system displays various divergent susceptibilities
and scale-invariant Fermi surface. We coin a term, supermetal,
to describe such an unusual metallic state. At the end of this
multicritical line g = μ = λ = 0, the noninteracting superme-
tal exhibits divergent charge, spin, and pairing susceptibilities
determined by the power-law divergent DOS. In contrast, for
g �= 0, the interacting supermetal displays universal critical
properties governed by the nontrivial interacting fixed point,
located at ḡ∗ = ε/cpp, μ̄∗ = 0, λ̄∗ = 0 to first order in ε. As
we shall show in the next subsection, at this fixed point, while
the charge compressibility and spin susceptibility diverge, the
s-wave pairing susceptibility remains finite. We shall also
show later by a two-loop RG calculation that the electron
Green’s function has the scaling form G(ω) ∝ 1/|ω|1−η with
η > 0, thus establishing the non-Fermi-liquid nature of an
interacting supermetal.

The interacting fixed point is stable along the multicritical
line and unstable in two other directions. One of the unsta-
ble directions (roughly speaking λ̄) lies within the Lifshitz
transition surface, while the other direction (roughly speaking
μ̄) drives the system into electron or hole Fermi liquid. Note
that a finite λ̄ converts a high-order VHS to a conventional
VHS (λ̄ > 0) or splits it to two conventional VHS points
(λ̄ < 0). For the latter case for Eq. (3), over a finite range of
the chemical potential (Fig. 2) there is an extra small pocket
around k = 0 in addition to large Fermi surfaces.

Since the relevant perturbations μ and λ introduce an
intrinsic momentum scale to the system, the resulting Fermi
liquids may be unstable to superconductivity at very low
temperature via the Kohn-Luttinger mechanism associated
with nonanalyticity of susceptibility at momentum 2kF [68].
This scenario is neglected in the phase diagram (Fig. 7). In
contrast, being a quantum critical state of metal at T = 0,
the interacting supermetal is immune from the Kohn-Luttinger
mechanism since its Fermi surface is scale invariant without
any intrinsic scale.

Finally, we conjecture how the ferromagnetic transition at
large ḡ and μ̄ and the Lifshitz transition at small ḡ and μ̄ meet
together. A plausible scenario is that the multicritical line of
supermetal meets the first-order ferromagnetic transition line
at a tricritical point between electron Fermi liquid, hole Fermi
liquid, and ferromagnetic metal. The nature of this tricritical
point is an interesting open question.
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FIG. 7. Schematic phase diagrams. There are two tuning parameters to realize a high-order VHS: the dimensionless chemical potential μ̄

and the perturbation to the high-order VHS λ̄. The two-dimensional diagram (a) shows a cut of a generic three-dimensional diagram (b) to
include a scale-invariant line. The line with arrows depicts the RG flow and the system is scale invariant along the line, where susceptibilities
show power-law divergence. The interacting and noninteracting fixed points lie on the line. They are multicritical points in this phase space.
Small ḡ does not cause symmetry breaking or a long-range order, so that electron and hole Fermi-liquid states are separated by planes [red
and blue in (b), respectively], which include the scale-invariant line. The parameter λ̄ can split the VHS, which yields an electron or hole
pocket in the course of a transition from the electron Fermi liquid to the hole Fermi liquid. Lifshitz transitions occur on the planes that separate
the Fermi-liquid states. A first-order phase transition occurs for large ḡ [above the double line in (a) and the green plane in (b)], to trigger a
broken-symmetry state with ferromagnetism. The scale-invariant line terminates with the first-order transition at a critical endpoint.

B. Scaling analysis

1. Generic case

Scale invariance at the fixed points enables us to extract
various scaling relations. Since the partition function Z is in-
variant under the scale transformation, the free-energy density
F , defined in Eq. (17), reflects the scaling of the factor T/V :

F ′ = b1+d+/ñ++d−/ñ−F, (60)

where the volume V scales according to Eq. (58) and temper-
ature scales the same manner as energy and frequency. For
convenience, we rewrite the exponent as

1 + d+
ñ+

+ d−
ñ−

= 2 −
(

ε − d+γA+

n+
− d−γA−

n−

)
≡ 2 − ε̃.

(61)

By explicitly showing the parameters of F , we obtain the
scaling relation of the free-energy density

F (μ, h,�; T ) = b−2+ε̃F (bγμμ, bγh h, bγ��; bT ). (62)

Here, the scaling exponents γA± , γμ, γh, and γ� correspond to
the values at a fixed point ḡ∗. We later see γμ = γh = 1, but
we keep them in the following scaling analysis. The coupling
constant g itself does not appear in the scaling relation of the
free-energy density F , but the effect is imprinted on γ� and ε̃

as the fixed-point properties. We shall see that γA± are at most
of order ε2 at the interacting fixed point and thus ε̃ is also a
small positive quantity.

We then consider the critical exponents of the charge
compressibility κ , magnetic susceptibility χ , heat capacity per
unit volume CV , and s-wave pairing susceptibility χBCS. From
Eq. (62), we find

κ = −
(

∂2F

∂μ2

)
T

∼
{

T −(ε̃+2γμ−2),

|μ|−(ε̃+2γμ−2)/γμ ,
(63)

χ = − lim
h→0

(
∂2F

∂h2

)
T

∼
{

T −(ε̃+2γh−2),

|μ|−(ε̃+2γh−2)/γμ ,
(64)

CV

T
= −

(
∂2F

∂T 2

)
V

∼

⎧⎪⎪⎨
⎪⎪⎩

T −ε̃ ,

|μ|−ε̃/γμ ,

|h|−ε̃/γh ,

|�|−ε̃/γ�,

(65)

χBCS =
(

∂2F

∂�∂�∗

)
T

∼
{

T −(ε̃+2γ�−2),

|�|−2+(2−ε̃)/γ� .
(66)

We also examine the pair correlation function

C(r, τ ) = 〈(ψ↑ψ↓)(r, τ )(ψ̄↓ψ̄↑)(0, 0)〉
− 〈(ψ↑ψ↓)(r, τ )〉〈(ψ̄↓ψ̄↑)(0, 0)〉, (67)

with 〈O〉 = ∫
Dψ̄ Dψ Oe−S/Z . From the comparison be-

tween χBCS and C(r, τ ), we obtain the scaling form

C(r+, r−, τ ) = ν2(2−ε̃−γ� )ĉ(r+ν1/ñ+ , r−ν1/ñ− , τν), (68)

where ν is an arbitrary energy scale and ĉ is a scaling function.
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The field renormalization with the exponent γψ appears in
the two-point correlation function G(r, τ ). We shall show the
derivation later with the field-theory approach. In the critical
region, the exponent γψ can be replaced with a constant
η = γψ (ḡ∗); the scaling form is given by

G(r+, r−, τ ) = ν1−ε̃+ηĝ(r+ν1/ñ+ , r−ν1/ñ− , τν), (69a)

or its Fourier transform is

G(k+, k−, ω) = ν−(1−η)ĝ′
(

k+
ν1/ñ+

,
k−

ν1/ñ−
,
ω

ν

)
, (69b)

where ĝ and ĝ′ are scaling functions. Particularly, we see the
frequency dependence G(k = 0, ω) ∝ 1/|ω|1−η, which differs
from the noninteracting correlation function G(k = 0, ω) ∝
1/|ω| with finite η. η corresponds to the anomalous dimension
and specifies the non-Fermi-liquid behavior.

2. One-loop results

To one-loop order, we find from the RG equations (45a)
and (53) the exponents at the fixed points

γμ = 1, γh = 1, (70)

γ� = 1 − cpp(0)ḡ∗
j

=
{

1 (noninteracting fixed point),
1 − ε (interacting fixed point)

(71)

with ε̃ = ε. Most exponents in Eqs. (63)–(65) are the same
at the noninteracting and interacting fixed points, which are
identical to those of the DOS in the noninteracting state.
The difference is found when the pairing field � is involved.
The exponent for the pairing field γ� renders different expo-
nents for the pairing susceptibility χBCS:

χBCS ∼
{

T −ε, |�|−ε (noninteracting fixed point),

T +ε, |�|+ε (interacting fixed point).
(72)

The s-wave pairing susceptibility remains finite at the interact-
ing fixed point whereas it diverges at the noninteracting fixed
point. We also find a difference in the pair correlation function

C(r+, r−, τ ) = ĉ(r+ν1/ñ+ , r−ν1/ñ− , τν)

×
{
ν−2(1−ε) (noninteracting fixed point),

ν−2 (interacting fixed point).

(73)

It shows a faster decay at the interacting fixed point, reflecting
the suppressed pairing susceptibility.

C. Ward identity

In Sec. V B 1, we mentioned the relations γμ = 1 and
γh = 1. They result from the conservation laws for charge and
spin. The Ward identity (more generally the Ward-Takahashi
identity) describes a conservation law [69,70]. The identity
is regarded as the quantum analog to Noether’s theorem. We
present how the Ward identity works in our present analysis.
The identity should hold even after an RG analysis, and thus
it can be used to check the validity of an RG scheme, or

specifically a choice of a cutoff. It also gives relations between
the exponents for thermodynamic quantities (63)–(65).

Now, we investigate the structure of the self-energy and
vertex corrections. To be concrete, we look into the expansion
of the self-energy (55) to find a relation between �ω and δμ.
The Ward identity concludes

�ω = −δμ

μ
(74)

at T = 0. The identity is based on charge conservation or the
U(1) gauge invariance; the action and correlation functions are
invariant under the transformations ψ �→ eiθ (r,τ )ψ and ψ̄ �→
ψ̄e−iθ (r,τ ) with a smooth scalar function θ (r, τ ). In the present
model, charge conservation holds for each spin separately,
thus leading to

�ω = −δh

h
. (75)

Then, Eqs. (57d) and (59a) yield

γμ = 1, γh = 1. (76)

The result of the energy-shell RG analysis to one-loop order
in Sec. IV satisfies the Ward identity, which means that the
conservation laws are correctly taken account of. We notice
that a frequency shell instead of the energy shell violates the
Ward identity.

Furthermore, Eq. (76) makes some ratios among scaling
relations (63)–(65) constant as functions of temperature T .
One is the Wilson ratio RW between the electronic specific
heat CV and the magnetic susceptibility χ and the other is the
ratio RC between the charge compressibility κ and CV :

RW = T χ (T )

CV (T )
= const, (77a)

RC = T κ (T )

CV (T )
= const. (77b)

In the following, we sketch the derivation of the Ward iden-
tity from the diagrammatic point of view. A detailed derivation
is given in Appendix B. In the present analysis, the Ward iden-
tity relates the frequency derivative of the self-energy and the
vertex function corresponding to the coupling term ασ ψ̄σϕψσ

in the action. ασ is the spin-dependent coupling constant and
the ϕ is a bosonic field. We write the vertex function as
�(2,ασ )

σ (ω + ω′, ω), where we focus only on the frequency de-
pendence. The vertex function modifies the coupling term to
be ασ�(2,ασ )

σ (ω + ω′, ω)ψ̄σ (ω + ω′)ϕ(ω′)ψσ (ω). The deriva-
tion of the Ward identity makes use of the equality G−1

0 (k, ω +
ω′) − G−1

0 (k, ω) = iω′ or, equivalently,

G0(k, ω + ω′)(iω′)G0(k, ω) = G0(k, ω) − G0(k, ω + ω′).

(78)

This equation is diagrammatically shown in Fig. 8(a). It re-
lates the noninteracting vertex function �(2,ασ )

σ (ω + ω′, ω) =
1 and the noninteracting Green’s function G0. Now, we
add corrections to the self-energy, depicted in Fig. 8(b) as
shaded blobs. The dressed vertex function is obtained from
the dressed self-energy by attaching the external scalar field
ϕ to every internal fermion line. As a result, we find the
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FIG. 8. (a) Relation between the bare vertex and the noninteract-
ing Green’s function. (b) Diagrammatic representation of the Ward-
Takahashi identity.

Ward-Takahashi identity

G(k, ω + ω′)(iω′)�(2,ασ )
σ (ω + ω′, ω)G(k, ω)

= G(k, ω) − G(k, ω + ω′). (79)

The full Green’s function G(k, ω) is given by

G(k, ω) = 1

iω − Ek − �(k, ω)
, (80)

with the full self-energy �. Taking the zero-frequency limit
ω′ → 0, we obtain the Ward identity

�(2,ασ )
σ (ω,ω) = 1 − ∂�(ω)

∂ (iω)
. (81)

The vertex function �(2,ασ )
σ (ω,ω) gives the quantum correc-

tion to the coupling ασ to be ασ + δασ = ασ�(2,ασ )
σ (ω,ω). ασ

represents the chemical potential with α↑ = α↓ = −μ and the
magnetic field with α↑ = −α↓ = h. Since the right-hand side
of Eq. (81) is independent of spin σ , we confirm Eqs. (74) and
(75).

VI. FIELD-THEORY APPROACH

This section focuses on the RG analysis from the field-
theory approach. To begin with, we briefly argue the two RG
schemes: the energy-shell RG analysis and the field-theory
approach. We then confirm that the two methods give the same
result at one-loop order. We also perform a two-loop analysis
of the self-energy (two-point function) from the field-theory
approach to show the anomalous dimension and the correction
to the energy dispersion.

A. RG schemes

An objective of RG analyses is to track the flow of pa-
rameters in a theory under a scale transformation. Here, we
illustrate two different RG schemes: the Wilsonian approach,
including the preceding energy-shell RG analysis, and the
field-theory approach. The common feature is to divide the
integration manifold (frequency and momentum in the present

case) into two parts and integrate out modes belonging to one
of them. The two schemes differ in intervals of integrations.
The first scheme involves an integration within a hard shell.
In the energy-shell RG analysis, fluctuations inside the thin
energy shell E ∈ [−�,−�/b) ∨ (�/b,�] are eliminated.
This mode elimination followed by rescaling enables us to
keep track of the change of parameters under a scale trans-
formation. On the other hand, in the field-theory approach,
we integrate out all low-energy fluctuations below the cutoff
�. Then, we deduce the RG flow of parameters by comparing
results at different cutoffs � and �′.

The two schemes have advantages in different aspects.
In the Wilsonian approach, the frequency-momentum space
is progressively integrated over, so the interpretation of the
RG procedure is rather simple. The inclusion of low-energy
modes results in a theory at low energies with different
parameters. In spite of its simple interpretation, higher-loop
calculations are not easy with the Wilsonian approach. In a
one-loop calculation, we have only one shell to be concerned
about. However, higher-loop diagrams consist of many in-
ternal lines (virtual states), so that we have to take care of
shells for each of them. On the other hand, the field-theory
approach does not require such error-prone steps as it deals
with all modes below the cutoff at once. This makes higher-
loop calculations more tractable. Although not as intuitive as
the Wilsonian approach, the field-theory approach leads to
the same results about critical phenomena. More descriptions
about the comparison between the two schemes can be found
in, e.g., Ref. [67]. A brief review of the field-theory approach
is given in Appendix C.

B. Soft cutoff

In the field-theory approach, we calculate the connected
N-point correlation function G(N ) or the one-particle irre-
ducible N-point function �(N ). If we face a UV divergence
in calculating them, we need to cure the divergence to obtain
physically meaningful results. There are several ways to do so;
we here choose to employ the UV energy cutoff � to make a
comparison to the preceding energy-shell RG analysis.

The functions G(N ) and �(N ) can be obtained perturbatively
with the noninteracting Green’s function G0. We introduce
the UV energy cutoff by suppressing the high-energy contri-
butions in G0. We define the noninteracting Green’s function
with the energy cutoff G0�(k, ωn) as

G0�(k, ωn) = G0(k, ωn)K�(Ek) = K�(Ek)

iωn − Ek
, (82)

with the UV energy cutoff factor

K�(E ) = �2

�2 + E2
. (83)

Note that the cutoff factor smoothly varies from 0 to 1 and thus
works as a soft energy cutoff. This is in contrast to the energy-
shell RG analysis, where the interval of an energy integration
is cut off abruptly at �/b and �.

We can interpret the modified Green’s function as a
Green’s function with an energy-dependent quasiparticle
weight K�(E ). The weight fades away in the high-energy limit
E → ±∞ to eliminate UV divergences, while K�(E ) → 1
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for energies much lower than the cutoff �. One may be
tempted to see the modified Green’s function in a different
way. For example, it can be rewritten as

G0�(k, ωn) = 1

iωn − Ek
− 1

iωn − Ek

E2
k

�2 + E2
k

. (84)

It may be viewed as a variation of the Pauli-Villars regular-
ization, where the additional term cures a UV divergence but
vanishes in the limit � → ∞. However, we cannot think of
it as a propagator with a large mass term since we cannot
add a mass term for the electronic energy dispersion which
is continuous and unbounded.

It should be noted that the cutoff factor K�(E ) does not
depend on frequency. It potentially causes a violation of the
Ward identity, which would result in wrong conclusions. For
example, if one chooses a cutoff factor of the form �2/(�2 +
E2 + ω2

n ), it invalidates the Ward identity. The absence of the
frequency in the cutoff factor ensures the Ward identity.

C. Formalities

1. Structure of the RG analysis

To derive RG equations and see scaling properties, we
calculate the one-particle-irreducible N-point function �

(N )
�

with the cutoff � and examine its cutoff dependence. The cut-
off dependence is seen by comparing two N-point functions
at different cutoffs; see Eq. (C13). Specifically, we compare
�

(N )
� to one at a reference point �

(N )
R . The energy scale at the

reference point is referred to as the renormalization scale. The
procedure of fixing the model to the reference is equivalent to
setting the initial parameters in the Wilsonian approach.

We first analyze the case with T = h = � = 0. We impose
the renormalization conditions

�
(2)
R (k) = −iωn + Ek,0 − μ0, (85)

�
(4)
R (k1, k2; k3, k4) = g0, (86)

where the condition for �(4) should be considered at k1 + k2 =
k1 + k3 = k1 + k4 = 0. The subscript 0 denotes quantities at
the renormalization scale. The interaction dresses the two-
and four-point functions and they acquire cutoff-dependent
corrections. We here use the energy dispersion (54), which
includes a relevant perturbation to a high-order VHS, since
such a term could be generated under the RG analysis at
two-loop order or higher; see the discussion in Sec. IV E.
Then, the two- and four-point functions at the cutoff � can
be expressed as

�
(2)
� = −iωnZ−1

ψ + Z−1
A+ A+kn+

+ − Z−1
A− A−kn− + Z−1

λ k̃n − Z−1
μ μ,

(87)

�
(4)
� = Z−1

g g, (88)

where the corrections Zψ , ZA± , Zλ, Zμ, and Zg are calculated
perturbatively. The N-point functions at the renormalization
scale and the cutoff � are related by

�
(N )
R = ZN/2

ψ �
(N )
� . (89)

We note the structure of the RG analysis is general, so that
an analysis of other energy dispersions such as Eq. (11) is
straightforward.

The last equation leads to the RG equations. Since the
left-hand side does not depend on the cutoff �, we obtain the
differential equation

�
d

d�
�

(N )
R = 0, (90)

leading to the Callan-Symanzik equation [71–73]. We obtain
the Callan-Symanzik for the one-particle-irreducible N-point
function[

�
∂

∂�
− β(ḡ)

∂

∂ ḡ
− βμ(ḡ, μ̄)

∂

∂μ̄
− βA+ (ḡ, A±)

∂

∂A+

−βA− (ḡ, A±)
∂

∂A−
− βλ(ḡ, λ̄)

∂

∂λ
− N

2
γψ (ḡ)

]
�

(N )
� = 0.

(91)

The beta functions and γψ are defined by

β(ḡ) = −
(

�
∂ ḡ

∂�

)
ḡ0,μ̄0,A±,0,λ0

, (92a)

βμ(ḡ, μ̄) = −
(

�
∂μ̄

∂�

)
ḡ0,μ̄0,A±,0,λ0

, (92b)

βA± (ḡ, A±) = −
(

�
∂A±
∂�

)
ḡ0,μ̄0,A±,0,λ0

, (92c)

βλ(ḡ, λ̄) = −
(

�
∂λ̄

∂�

)
ḡ0,μ̄0,A±,0,λ0

, (92d)

γψ = −
(

�
∂

∂�
ln Zψ

)
ḡ0,μ̄0,A±,0,λ0

. (92e)

Since the renormalized values are given by

ḡ = ZgZ−2
ψ ḡ0, (93a)

μ̄ = ZμZ−1
ψ μ̄0, (93b)

A± = ZA±Z−1
ψ A±,0, (93c)

λ̄ = ZλZ−1
ψ λ0, (93d)

we can rewrite the beta functions as

β = ḡ

(
ε − �

∂

∂�
ln Zg − 2γψ

)
, (94a)

βμ = μ̄

(
1 − �

∂

∂�
ln Zμ − γψ

)
, (94b)

βA± = A±

(
−�

∂

∂�
ln ZA± − γψ

)
, (94c)

βλ = λ̄

(
a − �

∂

∂�
ln Zλ − γψ

)
. (94d)

Those equations show that the field renormalization gives
additional effects to the beta functions and hence the scaling
properties.
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2. Solutions

The Callan-Symanzik equation can be solved by the
method of characteristics; see Appendix C. The beta functions
describe the RG flows of the parameters:

dḡ

dl
= β(ḡ), (95a)

dμ̄

dl
= βμ(ḡ, μ̄), (95b)

dA±
dl

= βA± (ḡ, A±), (95c)

dλ̄

dl
= βλ(ḡ, λ̄). (95d)

l = ln �0/� denotes the RG scale, measured relative to the
renormalization scale �0. Those RG equations are to be
compared with those obtained by the energy-shell RG analysis
in Sec. IV. In general, they are coupled differential equations
and zeros of the beta functions determine fixed points.

We can write the beta functions βμ, βA± , and βλ around a
fixed point with ḡ∗ as

βμ(ḡ∗, μ̄) = γμ(ḡ∗)μ̄, (96a)

βA± (ḡ∗, A±) = γA± (ḡ∗)A±, (96b)

βλ(ḡ∗, λ̄) = γλ(ḡ∗)λ̄. (96c)

γμ(ḡ∗), γA± (ḡ∗), and γλ(ḡ∗) give the exponents in the scaling
region. Recall that γμ = 1 is required by the Ward identity,
regardless of ḡ. From the beta functions around the fixed point,
we observe the scaling properties

μ̄(l ) ∼ μ̄0el , A±(l ) ∼ A±,0eγA± (ḡ∗ )l , λ̄(l ) ∼ λ̄0eγλ(ḡ∗ )l .

(97)
Since the energy dispersion does not receive correction at
one-loop order, we have γA± (ḡ∗) = O(ε2) and γλ(ḡ∗) = a +
O(ε2).

The shift of the chemical potential and the generation of
the relevant perturbation to the energy dispersion are also seen
from the beta functions. When βμ(ḡ, 0) �= 0, the chemical
potential is displaced from zero under the RG analysis, while
it does not alter the scaling behavior of μ̄. Similarly, a finite
relevant perturbation λ̄ is generated if βλ(ḡ, 0) �= 0, even when
it is initially absent.

The function γψ is ascribed to the anomalous dimension η

when it is computed at a fixed point. To see this, we solve the
Callan-Symanzik equation (91); see Appendix C for details.
The solution of the two-point function is given by

�
(2)
� (e−l/n±k±,0, e−lω0; ḡ(0), μ̄(0), A±(0), λ̄(0))

= e−l�
(2)
� (k±,0, ω0; ḡ(l ), μ̄(l ), A±(l ), λ̄(l ))

× exp

[∫ l

0
dl ′γψ (ḡ(l ′))

]
. (98)

We now examine the behavior in the critical region as a
function of ω, k+, and k−. We assume the two-point function
is a function of A+kn+

+ , A−kn−
− , ω in the scaling region. Since

those three quantities, �, and �
(2)
� have the dimension of

energy, the two-point function can be written as

�
(2)
� (k+, k−, ω; A+, A−) = ��̂

(2)
�

(
A+kn+

+
�

,
A−kn−

−
�

,
ω

�

)
,

(99)

where �̂
(2)
� is a dimensionless scaling function. Here, we do

not need to assume homogeneity for �̂
(2)
� but determine the

exponents for A+kn+
+ /�, A−kn−

− /�, and ω/�, separately. In
Eq. (98), l is an arbitrary quantity; to inspect the scaling
behavior in terms of ω, we set l = ln(ω0/ω) and k+ = k− =
0. The momentum dependence is considered in the same
manner with l = ln(k±,0/k±)n± and Eq. (97). We then find

�
(2)
� (k+, k−, ω) ∝

⎧⎪⎨
⎪⎩

(k
n+/[1+γA+ (ḡ∗ )]
+ )1−η (k− = ω = 0),

(k
n−/[1+γA− (ḡ∗ )]
− )1−η (k+ = ω = 0),

ω1−η (k+ = k− = 0),

(100)

where γψ (ḡ(l )) = η is used. It confirms the scaling relation of
the two-point correlation function (69) along with the relation
G = [�(2)]−1.

D. One-loop calculations (h = � = 0)

We calculate the two- and four-point functions to obtain
the beta functions and γψ (ḡ). This is accomplished by eval-
uating the perturbative corrections to the two- and four-point
functions (Figs. 9 and 10). As the corrections to the coupling
constant g, there are three possible one-loop diagrams shown
in Fig. 10. To determine the perturbative correction δg, all
diagrams should be evaluated with zero-momentum transfer
q = 0, which is required by the renormalization condition
(86). The three one-loop diagrams in Fig. 10(a) correspond
to the BCS, density-density, and exchange channels (from
left to right). Out of the three, the density-density channel
does not contribute because of the Pauli exclusion principle
for the contact interaction. This contribution is allowed when
we assume the density-density interaction in finite range
ψ̄σ ψ̄σ ′ψσ ′ψσ with arbitrary spins σ , σ ′ or when there is an
additional valley of orbital degree of freedom. [For reference,
we note that the three channels are referred to as the BCS, ZS
(zero sound), and ZS′ in Ref. [67]; or s, t , and u channels with
the Mandelstam variables.]

To one-loop order, the two- and four-point functions give
corrections to the chemical potential and the coupling con-
stant, but not to field or the energy dispersion as we have seen
in the energy-shell RG analysis. One-loop diagrams can be
represented by �H, �pp, and �ph like Eq. (40). Then, the two-
and four-point functions become

�
(2)
� = −iωn + Ek − μ + g�H − gμ�ph, (101)

�
(4)
� = g − g2(�pp + �ph), (102)

which lead to

Z−1
ψ = 1, Z−1

A± = 1, Z−1
λ = 1, (103a)

Z−1
μ = 1 − g

μ
�H + g�ph, (103b)

Z−1
g = 1 − g(�pp + �ph). (103c)
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FIG. 9. Perturbative corrections to connected correlation functions. An directed solid line represents the free electron propagator, or the
noninteracting Green’s function. Shaded blobs involve all possible irreducible diagrams. (. . . ) includes higher-order corrections. (a) Two-point
correlation function G(2) = [�(2)]−1. A dot denotes the perturbation with respect to the chemical potential μ, corresponding an insertion of
−μψ̄ψ . (b), (c) Vertex functions for the magnetic field h and the pairing field �, respectively.

Here, we calculate the perturbative corrections with the soft
cutoff K�. The actual calculations for the beta functions re-
quire the � derivatives instead of the corrections themselves.
We thus obtain the one-loop corrections as follows:

�
∂

∂�
�H = T

∑
ωn

∫
k

G0(k, ωn)�
∂

∂�
K�(Ek)

= T
∑
ωn>0

∫
dE D(E )

−2E

ω2
n + E2

2�2E2

(�2 + E2)2

= −�2
∫

dE D(E ) tanh

(
E

2T

)
E2

(�2 + E2)2

= −[D(�) − D(−�)]�

×
∫ ∞

0
dx

x2−ε

(1 + x2)2
tanh

(
�

2T
x

)

≡ −�D(�)c̃H(T̄ ), (104a)

�
∂

∂�
�pp = T

∑
ωn

∫
k

G0(k, ωn)G0(−k,−ωn)�
∂

∂�
K2

�(Ek)

= T
∑
ωn>0

∫
dE D(E )

2

ω2
n + E2

4�4E2

(�2 + E2)3

= 2�4
∫

dE D(E )
E

(�2 + E2)3
tanh

(
E

2T

)

= 2[D(�) + D(−�)]

×
∫ ∞

0
dx

x1−ε

(1 + x2)3
tanh

(
�

2T
x

)
≡ D(�)c̃pp(T̄ ), (104b)

�
∂

∂�
�ph = T

∑
ωn

∫
k

G2
0(k, ωn)�

∂

∂�
K2

�(Ek)

= T
∑
ωn>0

∫
dE D(E )

−2
(
ω2

n − E2
)

(
ω2

n + E2
)2

4�4E2

(�2 + E2)3

= −�4

T

∫
dE D(E )

E2

(�2 + E2)3

1

cosh2
(

E
2T

)
= −[D(�) + D(−�)]

�

T

×
∫ ∞

0
dx

x2−ε

(1 + x2)3

1

cosh2
(

�
2T x

)
≡ −D(�)c̃ph(T̄ ). (104c)

As a result, we obtain the beta functions (92a) and (92b):

β(ḡ) = εḡ − ḡ2[c̃pp(T̄ ) − c̃ph(T̄ )], (105a)

βμ(ḡ, μ̄) = [1 − c̃ph(T̄ )ḡ]μ̄ + c̃H(T̄ )ḡ. (105b)

Note that the tree-level scaling terms appear from the def-
initions of the dimensionless parameters ḡ0 = g0D(�) and
μ̄0 = μ/�. The beta functions are to be compared with the

FIG. 10. Four-point correlation function. Here, p, k, q denote both frequency and momentum, and s includes a spin σ and valleys/orbitals,
if exist. The four-point function represents the coupling constant for the contact interaction when it is evaluated with q = 0. There are three
one-loop diagrams, which are regarded as the BCS, density-density, and exchange channels (from left to right). Among the three, the density-
density contribution does not exist in the present analysis because of the Pauli exclusion principle for the contact interaction; there is no way
to appropriately assign the spin σ ′′( �= σ, σ ′) under the condition σ �= σ ′. It should be taken account of when the interaction has finite range or
there is an additional valley/orbital degree of freedom.
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result from the energy-shell RG analysis (45). To confirm, we
first evaluate the coefficients c̃H, c̃pp, c̃ph at T = 0:

c̃H(0) =
(

1 − D−
D+

)
π

4
(1 − ε)

1

cos
(

πε
2

) , (106a)

c̃pp(0) =
(

1 + D−
D+

)
π

4

(
1 + ε

2

) ε

sin
(

πε
2

) , (106b)

c̃ph(0) = 0. (106c)

The zeros of the beta function β(ḡ) give the two fixed points

ḡ∗
1 = 0, ḡ∗

2 = ε

c̃pp(0)
(> 0). (107)

We now find the noninteracting and interacting fixed points
from the field-theory approach. Although the value of ḡ∗

2
differs in the two schemes, resulting exponents for the ther-
modynamic quantities are not suffered from the difference
as the exponents are not directly dependent on the coupling
constant ḡ at fixed point. We explicitly confirm this in the next
subsection by calculating the beta functions for the magnetic
field h and pairing field �.

E. RG equations for h and �

The beta functions for the magnetic field h and pairing
field � can be obtained from the corresponding vertex func-
tions �(2,h) and �(2,�), respectively. Perturbative corrections
to them are depicted in Figs. 9(b) and 9(c). We impose the
renormalization conditions

�
(2,h)
R = Zψ�

(2,h)
� = h0, (108a)

�
(2,�)
R = Zψ�

(2,�)
� = �0, (108b)

where the vertex functions with the cutoff � are expressed as

�
(2,h)
� = Z−1

h h, �
(2,�)
� = Z−1

� �. (109)

To obtain the beta functions to one-loop order, it is suffi-
cient to consider the Callan-Symanzik equations without cor-
rections to the energy dispersion and the chemical potential:[

�
∂

∂�
− β(ḡ)

∂

∂ ḡ
− βh(ḡ, h̄)

∂

∂ h̄
− γψ (ḡ)

]
�(2;h) = 0,

(110a)[
�

∂

∂�
− β(ḡ)

∂

∂ ḡ
− β�(ḡ, �̄)

∂

∂�̄
− γψ (ḡ)

]
�(2;�) = 0,

(110b)

where the beta functions for the magnetic field and pairing
field are defined by

βh(h̄) = −
(

�
∂ h̄

∂�

)
ḡ0

, (111a)

β�(ḡ) = −
(

�
∂�̄

∂�

)
ḡ0

. (111b)

Using the relations

h̄ = ZhZ−1
ψ h̄0, �̄ = Z�Z−1

ψ �̄0, (112)

the beta functions become

βh(ḡ, h̄) = h̄

(
1 − �

∂

∂�
ln Zh − γψ

)
, (113a)

β�(ḡ, �̄) = �̄

(
1 − �

∂

∂�
ln Z� − γψ

)
. (113b)

They are related to the exponents γh and γ� when evaluated
at a fixed point:

βh(ḡ∗, h̄) = γh(ḡ∗)h̄, β�(ḡ∗, �̄) = γ�(ḡ∗)�̄. (114)

We calculate the vertex functions for h and � to one-loop
order and find

�
(2,h)
� = h + gh�ph, �

(2,�)
� = � − g��pp. (115)

The vertex functions lead to the beta functions

βh(ḡ, h̄) = [1 − c̃ph(T̄ )ḡ]h̄, (116a)

β�(ḡ, �̄) = [1 − c̃pp(T̄ )ḡ]�̄. (116b)

Now, we confirm by taking T → 0 that the exponent for the
pairing field � is the same independent of the RG schemes.
Particularly at the interacting fixed point, we obtain β�(ḡ∗

2) =
(1 − ε)�̄. This is consistent with the result from the energy-
shell RG analysis. The coefficient c̃pp, which determines the
value of the coupling constant at the interacting fixed point,
does not appear to the exponent of the pairing field.

F. Two-loop calculations

So far we have calculated the perturbative corrections from
the field-theory approach to confirm that the two distinct RG
schemes conclude the same physical results. An advantage of
the field-theory approach is considerable when we deal with
higher-order corrections. In the following, we consider the
two-loop corrections to the two-point correlation function at
T = 0 for the anomalous dimension and the correction to the
energy dispersion.

The field renormalization is seen from the frequency de-
pendence of the self-energy. The linear term �ω in Eq. (55) is
given by

�ω = ∂

∂ (iω)
�(k = 0, ω)

∣∣∣∣
ω=0

≡
∑
j�2

gj�( j)
ω . (117)

We expand � with respect to the coupling constant g. On the
other hand, the zero-frequency part is related to corrections to
the chemical potential and the energy dispersion:

�k ≡ �(k, ω = 0) ≡
∑
j�1

gj�
( j)
k . (118)

The corrections δμ, δA±, and δλ are obtained as

δμ = −�k=0 ≡
∑
j�1

gjδμ( j), (119a)

δA± = ± ∂�k

∂kn±
±

∣∣∣∣
k=0

≡
∑
j�2

gjδA( j)
± , (119b)

δλ = ∂�k

∂ k̃n

∣∣∣∣
k=0

≡
∑
j�2

gjδλ( j). (119c)
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We have used the fact that the one-loop correction, i.e., the
Hartree contribution, does not yield the frequency or momen-
tum dependence.

The renormalization condition (85) requires

Z−1
ψ = 1 − �ω, (120)

Z−1
μ = 1 + δμ

μ
, Z−1

A± = 1 + δA±
A±

, Z−1
λ = 1 + δλ

λ
.

(121)

The field renormalization γψ is expressed from Eq. (92e) as

γψ = �
∂

∂�
ln

⎛
⎝1 −

∑
j�2

gj�( j)
ω

⎞
⎠

= −g2�
∂

∂�
�(2)

ω + O(g3), (122)

and the beta functions for the chemical potential and the
coefficients of the energy dispersions are obtained from
Eqs. (94b)–(94d) as

βμ = −�
∂μ̄

∂�
= μ̄

[
1 + g�

∂

∂�

δμ(1)

μ
+ g2�

∂

∂�

(
δμ(2)

μ
+ �(2)

ω

)
+ O(g3)

]
, (123a)

βA± = −�
∂A±
∂�

= A±

[
g2�

∂

∂�

(
δA(2)

±
A±

+ �(2)
ω

)
+ O(g3)

]
, (123b)

βλ = −�
∂λ̄

∂�
= λ̄

[
a + g2�

∂

∂�

(
δλ(2)

λ
+ �(2)

ω

)
+ O(g3)

]
. (123c)

We now calculate the two-loop correction to the self-energy �(2). For the case of the contact interaction, there is only one
connected two-loop diagram, i.e., the sunrise diagram shown in Figs. 5(d) and 9(a) as the rightmost term. The frequency- and
momentum-dependent contribution appears from this diagram, calculated from

�(2)(k) = −
∫

pql
G0�(p)G0�(q)G0�(l )(2π )d+1δ(p + q − l − k). (124)

We use the shorthand notations p = (p, ωp) and
∫

p = ∫ dωp

(2π )

∫ dd p
(2π )d . Then, we obtain the ω-linear contribution

−�
∂

∂�
�(2)

ω = ∂

∂ (iωk )

∫
pql

(2π )d+1δ(p + q − l − k)
1

iωp − Ep

1

iωq − Eq

1

iωl − El
�

∂

∂�
K�(Ep)K�(Eq)K�(El )

∣∣∣∣
k=0

=
(∫ +

pq

∫ −

l
+
∫ −

pq

∫ +

l

)
(2π )dδ(p + q − l )

1

(Ep + Eq − El )2
�

∂

∂�
K�(Ep)K�(Eq)K�(El )

= 2�−2ε

(∫ +

p̄q̄

∫ −

l̄
+
∫ −

p̄q̄

∫ +

l̄

)
(2π )dδ( p̄ + q̄ − l̄ )

(Ep̄ + Eq̄ − El̄ )2

3E2
p̄E2

q̄ E2
l̄

+ 2
(
E2

q̄ E2
l̄

+ E2
p̄E2

l̄
+ E2

p̄E2
q̄

)+ (
E2

p̄ + E2
q̄ + E2

l̄

)
(
1 + E2

p̄

)2(
1 + E2

q̄

)2(
1 + E2

l̄

)2

≡ D2(�)C(2), (125a)

and the momentum-dependent part

�
∂

∂�
�

(2)
k = −

∫
pql

(2π )d+1δ(p + q − l − k)
1

iωp − Ep

1

iωq − Eq

1

iωl − El
�

∂

∂�
K�(Ep)K�(Eq)K�(El )

∣∣∣∣
ωk=0

= −
(∫ +

pq

∫ −

l
+
∫ −

pq

∫ +

l

)
(2π )dδ(p + q − l − k)

1

Ep + Eq − El
�

∂

∂�
K�(Ep)K�(Eq)K�(El )

= −2�−2ε

(∫ +

p̄q̄

∫ −

l̄
+
∫ −

p̄q̄

∫ +

l̄

)
(2π )dδ( p̄ + q̄ − l̄ − k̄)

Ep̄ + Eq̄ − El̄

3E2
p̄E2

q̄ E2
l̄

+ 2
(
E2

q̄ E2
l̄

+ E2
p̄E2

l̄
+ E2

p̄E2
q̄

)+ (
E2

p̄ + E2
q̄ + E2

l̄

)
(
1 + E2

p̄

)2(
1 + E2

q̄

)2(
1 + E2

l̄

)2

≡ D2(�)C(2)
k . (125b)

Here, we denote the dimensionless quantities by adding bars;
we define ω̄ = ω/�, p̄+ = p+/�1/n+ , and p̄− = p−/�1/n− .
The momentum is scaled by � so that the energy becomes
dimensionless: Ek̄ = Ek/�.

∫ ±
p = ∫

p �(±Ep) stands for the
momentum integral within the positive (negative) energy do-
main. The constraints on the momentum integrals emerge
after the frequency integrals. They can be evaluated by

identifying the position of poles on the complex plane, leading
to the restricted regions of the momentum integrals.

We expect finite results for the two-loop results (125a) and
(125b) at a saddle point of an energy dispersion because of
the constraints on the momentum integrals

∫ ±
pq

∫ ∓
l . The two-

loop contributions vanish at a band edge since there is no sign
change in the energy dispersion.
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Now, we scrutinize the frequency-dependent part �(2)
ω ,

which is responsible to the field renormalization and hence the
anomalous dimension. As we have discussed, the contribution
vanishes at a band edge and thus an anomalous dimension
does not arise. It can be finite only at an energy saddle
point. In addition, it is worth pointing out that the integrand
of Eq. (125a) is guaranteed to be positive. Therefore, if
there exists a finite volume that satisfies the constraint of
the momentum integrals, we find a finite result: C(2) > 0.
The constraints on the momentum integrals can be rephrased
as follows: there exists a momentum l = p + q such that
sgn(El ) = − sgn(Ep) = − sgn(Eq). Such a momentum l in
general exists near a saddle point because the energy disper-
sion near a saddle point comprises two or more filled Fermi
seas and the area is not convex. We do not further evaluate the
expression of the two-loop correction as its value depends on
the explicit form of the energy dispersion.

Equation (125a) defines a numerical factor C(2), which is
independent of the cutoff �. From Eq. (122), we find the field
renormalization

γψ = C(2)ḡ2 + O(ḡ3). (126)

This quantity gives the anomalous dimension when evaluated
at a fixed point. It can be finite at the interacting fixed point to
become

η = C(2)ḡ∗2
2 + O(ḡ∗3

2 )(> 0). (127)

A finite anomalous dimension concludes a non-Fermi-liquid
behavior at the interacting fixed point. This happens at a
saddle point of an energy dispersion with a power-law DOS
singularity.

The uniform component of Eq. (125b) adds a correction to
the beta function for the chemical potential (105b), but it does
not change the structure of the RG flow for small ḡ. Here,
we focus on the momentum dependence, which is absent to
one-loop order. Similarly to C(2), it becomes finite only at a
saddle point of an energy dispersion but not at a band edge.
The momentum dependence of C(2)

k leads to the beta functions

βA± = A±

[
ḡ2

(
± 1

A±

∂C(2)
k

∂ k̄n±
±

∣∣∣∣∣
k=0

− C(2)

)
+ O(ḡ3)

]
, (128a)

βλ = λ̄

[
a + ḡ2

(
1

λ̄

∂C(2)
k

∂ ˜̄kn

∣∣∣∣∣
k=0

− C(2)

)
+ O(ḡ3)

]
. (128b)

From Eqs. (96b) and (96c), we can identify the scaling
exponents γA± and γλ. The former affect the exponents of
susceptibilities via Eqs. (58) and (61). We can see that a finite
C(2)(> 0) and hence an anomalous dimension has a negative
contribution to γA± . When γA+ and γA− are negative, we have
ε̃ > ε, leading to stronger divergences with respect to T , μ,
and h; see Eqs. (63)–(65).

When βλ(ḡ, λ̄ = 0) is finite, the relevant perturbation to the
energy dispersion λk̃n is generated under the RG analysis. It is
observed if ∂C(2)

k /∂ ˜̄kn|k=0 does not vanish when it is evaluated
with λ = 0. Then, the beta function for λ has the form βλ =
(a + c1ḡ2)λ̄ + c2ḡ2 + O(ḡ3), where c1 and c2 are determined
by Eq. (128b). This is analogous to the shift of the chemical
potential when the Hartree term �H is finite, but it occurs at
different order in ḡ. Generation of λ̄ curves the scale-invariant

line in the phase diagram [Fig. 7(b)] in the λ̄ direction at order
ḡ2, while a change in the μ̄ direction can happen at order ḡ.
Lastly, we note that the discussion from Eq. (125) is general
for any energy dispersion with a power-law divergent DOS,
including Eq. (11) with a relevant perturbation λk2

−.

VII. QUASIPARTICLE DECAY RATE

The preceding RG analyses focused on the real part of
the self-energy or equivalently the two-point function. They
give rise to the corrections to the action, which are captured
through the RG equations. On the other hand, the imaginary
part of the self-energy describes the damping of the quasi-
particle, which is the focus of this section. It is generated by
the interaction in the present model. Unlike the real part of
the self-energy, the imaginary part can be calculated without
a cutoff; we do not employ an RG method in this section, but
integrate over the entire frequency and momentum space at
once.

We calculate the quasiparticle decay rate �(k, ω), obtained
from the retarded self-energy as

�(k, ω) = − Im �R(k, ω). (129)

The retarded self-energy �R(k, ω) is calculated from the
self-energy �(k, ωn), with the analytic continuation of the
Matsubara frequency to the real frequency: iωn = ω + iδ (δ:
infinitesimal positive quantity). In the presence of the contact
interaction, a finite imaginary part of the self-energy �R

emerges at two-loop order and higher. The one-loop correc-
tion, or the Hartree term �H, does not yield a finite imaginary
component. Here, we consider the two-loop diagram (the
sunrise diagram) [Fig. 5(d)] to calculate the quasiparticle
decay rate �. Like Eq. (124), it is given by

�(2)(k, ωn)

= −T
∑
ωp

T
∑
ωq

T
∑
ωl

∫
pql

G0(p, ωp)G0(q, ωq)G0(l, ωl )

× (2π )d

T
δ(ωp + ωq − ωl − ωn)δ(p + q − l − k),

(130)

but we do not need a cutoff for the imaginary part.
The calculation of �(2) is standard and can be found in,

e.g., Ref. [74]; we also show the derivation in Appendix D
and just present the result here. The quasiparticle decay rate to
two-loop order is given by �(2) after the analytic continuation:

�(k, ω) = −g2 Im �(2)R(k, ω)

= π

4
g2 cosh

( ω

2T

)

×
∫

pq

δ(ω − Ep − Eq + Ep+q−k)

cosh
( Ep

2T

)
cosh

( Eq

2T

)
cosh

(Ep+q−k

2T

) . (131)

This relation holds for an arbitrary energy dispersion Ek.
We extract the temperature dependence by introducing

dimensionless quantities in terms of temperature T : we define
p̃± = p±/T 1/n± , so that the energy dispersion satisfies Ep̃ =
Ep/T . Here, we are interested in the low-frequency limit
with ω 
 T . By substituting k = 0 and ω = 0, we obtain the
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temperature dependence [4]

� = π

4
g2T 1−2ε

∫
p̃q̃

δ(Ep̃ + Eq̃ − Ep̃+q̃)

cosh
(E p̃

2

)
cosh

(Eq̃

2

)
cosh

(E p̃+q̃

2

)
∝ T 1−2ε . (132)

The integral gives a finite constant without a cutoff.
In the Fermi-liquid theory, when the temperature is much

smaller than the Fermi energy εF � T , the decay rate is pro-
portional to T 2. This result relies on the existence of the Fermi
surface with finite DOS. On the other hand, the decay rate
Eq. (132) is distinct from the Fermi-liquid results, reflecting
the divergent DOS at μ = 0. The behavior is different also
from the case for a conventional VHS with a logarithmic DOS,
which shows a (marginal) Fermi-liquid behavior [23–26]. We
note that the result does not depend on whether the power-law
divergent DOS is located at a saddle point or a band edge of
the energy dispersion. This is in contrast to the anomalous
dimension, which can only be found at a saddle point as we
have discussed in Sec. VI F.

VIII. SUMMARY AND DISCUSSIONS

We now summarize our main results, compare supermetal
with normal metal and other non-Fermi-liquid systems, and
discuss experimental signatures of supermetal.

A. Summary

We have analyzed electron interaction effects near a high-
order VHS with a scale-invariant Fermi surface with a power-
law divergent DOS. Scale invariance of the system allows an
RG analysis to search for fixed points and a scaling analysis
of thermodynamic quantities and correlation functions around
the fixed points.

The one-loop RG analysis finds that electron interaction
around high-order VHS offers a fermionic analog of the
φ4 theory. We have identified the two RG fixed points: the
noninteracting and interacting fixed points. The latter is an
analog of the Wilson-Fisher fixed point in the φ4 theory. Like
the φ4 theory, the noninteracting fixed point is unstable and
the interacting fixed point is stable in terms of the RG flow of
the coupling constant.

We performed a controlled RG analysis up to two-loop
order about the interacting fixed point owing to the smallness
of the DOS singularity exponent ε. We reveal that the quantum
critical metal at the interacting fixed point is a non-Fermi
liquid that exhibits a finite anomalous dimension of electrons,
and power-law divergent charge and spin susceptibilities. We
term such a metallic state with various divergent susceptibil-
ities but yet without a long-range order as a supermetal. In
this regard, the noninteracting fixed point can be viewed as a
noninteracting supermetal and the interacting fixed point as an
interacting supermetal.

A supermetal appears at the topological transition between
electron and hole Fermi liquids. An interacting supermetal is a
multicritical state reached by tuning two parameters: chemical
potential and detuning of energy dispersion from high-order
saddle point. Combining the RG and mean-field analyses, we
conjecture a global phase diagram where a supermetal is at the

border between electron/hole Fermi liquids and on the verge
of becoming ferromagnetic.

B. Comparison with normal metal and other non-Fermi liquids

It is worth drawing a comparison between a supermetal
and a normal metal. Being at finite density, a normal metal
is characterized by a Fermi surface with a characteristic mo-
mentum scale. The RG theory of metals with a closed Fermi
surface, commonly referred to as Shankar’s RG [67], requires
a judicious RG procedure that only considers electrons within
a small energy shell around the Fermi surface. Then, Fermi
liquid appears as the RG fixed point in the limit that the energy
range is taken to zero. It is characterized by an infinite number
of marginal coupling constants, i.e., Landau forward scatter-
ing parameters in all angular momentum channels. Moreover,
this Fermi-liquid fixed point is only stable when BCS interac-
tions in all angular momentum channels are repulsive [68].

These behaviors of a normal metal should be contrasted
with the case of a supermetal. Our theory is formulated with
a large UV energy cutoff on the order of bandwidth. The
supermetal fixed point is characterized by a single coupling
constant, the contact interaction, with all other interactions be-
ing irrelevant and without suffering from the Kohn-Luttinger
instability to superconductivity.

We have shown that a high-order saddle point with re-
pulsive interaction exhibits the non-Fermi-liquid behavior.
Non-Fermi liquids are realized also in, e.g., one-dimensional
systems, other kinds of quantum critical metals, and doped
Mott insulators. In a one-dimensional electronic system, there
is no quasiparticle, but instead, collective charge and spin
waves are the elementary excitations [29–31]. Electron in-
teraction as a forward scattering renormalizes the velocities
of the charge and spin modes separately, thus leading to a
non-Fermi liquid.

Great efforts have been devoted to search for generalized
Luttinger liquids in dimensions greater than one. While sig-
nificant progress has been made in quasi-one-dimensional
systems [75,76], to our knowledge results are limited on
Luttinger-liquid-type behavior in metals with truly two-
dimensional Fermi surface.

Another situation for a non-Fermi liquid arises around
a quantum critical point where strong electron interaction
drives a phase transition from a metallic state to a symmetry-
breaking ordered state at T = 0 [32–35]. Seminal works by
Hertz [36], Moriya [37], and Millis [38] deal with the quantum
critical phenomenon in itinerant magnets, which describe the
coupling between electrons with a finite Fermi surface and
bosonic fluctuations of an order parameter near a magnetic
transition. In their theories, low-energy modes of electrons are
integrated out to yield a nonlocal singular effective action for
bosonic modes. This challenging problem has invoked intense
work and considerable progress [39–47].

Non-Fermi liquids have also been proposed in doped Mott
insulators close to near superconductivity [57,58], electronic
liquid-crystal phases, [59–61,77,78], fractionalized electron
systems [62,63,79], and near superconductor-insulator transi-
tion [80–84].

Unlike these non-Fermi liquids, the supermetal we found
near a high-order VHS is obtained under weak electron
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interaction. It relies on the singular DOS instead of singular
interaction. This feature enabled us to develop an analytically
controlled theory of supermetal with local interaction, using a
small parameter, i.e., the DOS exponent.

Quantum criticality in nodal semimetals also hosts a non-
Fermi liquid [48,49]. The vanishing DOS allows unscreened
long-range Coulomb interaction, which is dressed by the gap-
less electron spectrum. Possible platforms include graphene
[50–52], pyrochlore iridates [53,54], and topological phase
transition in two dimensions [55,56]. The RG procedure for
semimetals has a similar spirit as ours for supermetal, both of
which are Wilson-Fisher type instead of Shankar type. Unlike
semimetals though, a supermetal has divergent DOS at Fermi
level and an extended Fermi surface.

We also note that a saddle point of an energy dispersion
in two dimensions Ek = k2

x − k2
y gives a conventional VHS

with a logarithmic divergence mentioned above. This is also
scale invariant; however, it requires an additional care in an
RG analysis [19,20]. As we mentioned in Sec. IV, momentum
integrals in a perturbative RG calculation suffer from a singu-
larity at k → ∞. This cannot be regularized by the UV energy
cutoff � since every energy contour extends to k → ∞, so
that a UV momentum cutoff is needed in addition. This is
also related to the nonanalyticity of the DOS. As a result, the
UV cutoff is not eliminated from RG equations. It occurs as
a sequel that the low-energy physics is affected by the UV
scale �.

We have listed several other non-Fermi-liquid systems.
Supermetal fixed points are regarded as multicritical points
in the phase space spanned by the coupling constant, the
chemical potential, and a parameter for the energy dispersion
(Fig. 7). Importantly, our present analysis does not suffer from
the difficulties related to a closed Fermi surface, the presence
of a length scale, a logarithmic DOS, and a singular bosonic
fluctuation. A small DOS singularity exponent guarantees that
only the short-range interaction is relevant.

C. Discussion

Our analysis is for the case of a single high-order VHS
in the Brillouin zone at the energy range in focus. In reality,
materials may have multiple high-order VHS points at the
same energy in the Brillouin zone, related by symmetry.
In that case, additional interactions involving different VHS
should be included and their presence may lead to symmetry-
breaking instabilities [4], as opposed to quantum criticality.
However, for a certain parameter range before an ordering
instability takes place, there could exist a scaling region
where thermodynamic or transport quantities follow scaling
properties. For example, when temperature T and the carrier
density n are control parameters, a physical quantity Q follows
the scaling relation

Q(T, n) = T aF̂ (nT −(1−ε) ) (133)

around the noninteracting fixed point, where the exponent a is
determined by a dimensional analysis of Q and F̂ is a scaling
function.
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APPENDIX A: ONE-LOOP ENERGY-SHELL RG
ANALYSIS AT FINITE TEMPERATURE

We work on the RG equations at finite temperature T �= 0
with the energy-shell RG analysis to one-loop level. Tempera-
ture has a dimension of energy, so that it is one of relevant
perturbations. The one-loop corrections �H, �pp, and �ph,
shown in Eq. (41) at T = 0, should be calculated at T �= 0.
To order l , we obtain

�H = T
∑
ωn

∫ >

k
G0(k, ωn) � −lcH(T̄ )�D(�), (A1a)

�pp = T
∑
ωn

∫ >

k
G0(k, ωn)G0(−k,−ωn) � lcpp(T̄ )D(�),

(A1b)

�ph = T
∑
ωn

∫ >

k
G0(k, ωn)G0(k, ωn) � −lcph(T̄ )D(�),

(A1c)

where we introduce the dimensionless temperature T̄ = T/�.
Again, all quantities are evaluated at zero external frequency
and momentum, so that the results depend only on the
DOS. The temperature-dependent dimensionless coefficients
cμ, cpp, and cph are

cH(T̄ ) = 1

2

(
1 − D−

D+

)
tanh

(
1

2T̄

)
, (A2a)

cpp(T̄ ) = 1

2

(
1 + D−

D+

)
tanh

(
1

2T̄

)
, (A2b)

cph(T̄ ) = 1

2T̄

(
1 + D−

D+

)
1

2 cosh2
(

1
2T̄

) . (A2c)

Unlike the calculation at T = 0, �ph becomes finite for T �=
0, while the correction to the field or the energy dispersion
remains absent to one-loop order.

In the analysis at zero temperature, we rescale the fre-
quency as Eq. (37b). At finite temperature, rescaling of the
Matsubara frequency leads to rescaling of temperature [38].
Temperature obeys the same scaling relation as that for the
frequency: T ′ = bT .

Including the temperature-dependent factors cμ(T̄ ),
cpp(T̄ ), and cph(T̄ ), we obtain the changes of the parameters
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at an RG step as

T ′ = bT, (A3a)

μ′ � b[μ + lcH(T̄ )g�D(�) − lcph(T̄ )gμD(�)], (A3b)

h′ = b[h − lcph(T̄ )ghD(�)], (A3c)

�′ � b[� − lcpp(T̄ )g�D(�)], (A3d)

g′ � bε{g − lg2[cpp(T̄ ) − cph(T̄ )]D(�)}. (A3e)

Then, we reach the RG equations

dT̄

dl
= T̄ , (A4a)

dμ̄

dl
= [1 − cph(T̄ )ḡ]μ̄ + cμ(T̄ )ḡ, (A4b)

dh̄

dl
= [1 − cph(T̄ )ḡ]h̄, (A4c)

d�̄

dl
= [1 − cpp(T̄ )ḡ]�̄, (A4d)

dḡ

dl
= εḡ − [cpp(T̄ ) − cph(T̄ )]ḡ2. (A4e)

Since temperature T is relevant and its fixed point is located
at T = 0, the fixed points of the parameters are found at T =
0, as we discussed in the main part. The RG equations are

consistent with the beta functions derived by the field-theory
approach in Secs. VI D and VI E.

APPENDIX B: WARD-TAKAHASHI IDENTITY

1. Derivation

We show the derivation of the Ward-Takahashi identity,
based on a diagrammatic discussion by Peskin and Schroeder
[86]. It consists of two parts: equalities for a through-going
line from an initial state to a final state and an internal loop.
Suppose that we calculate a diagram with the same numbers
of incoming and outgoing electron lines. Then we can de-
compose the diagram into lines that connect an incoming and
an outgoing line, and internal loops. For the present analysis
with the contact interaction, we choose each decomposed
diagram to include only one spin species. We set T = 0 in
the following discussion.

To derive the Ward-Takahashi identity, we insert an ex-
ternal line for the bosonic field ϕ(k) with k = (k, ωk ). The
coupling between an electron and the bosonic field is given by

ασ ψ̄σ (p + k)ϕ(k)ψσ (p), (B1)

where we introduce the spin-dependent coupling constant ασ .
Step 1. For a line connecting an initial state and a final state,

the corresponding equation contains a product of the noninter-
acting Green’s functions. When we consider an electron line
with (M + 1) electron line segments, the product is written as

Lσ
M (p′, p; {q}) = G0(p′)G0(pM−1)G0(pM−2) . . . G0(p2)G0(p1)G0(p), (B2)

with pJ = pJ−1 + qJ , p0 = p, pM = p′, and {q} = (q1, q2, . . . , qM ) [Fig. 11(a)]. Remember that all connected line segments
have the spin index σ .

Now we insert a vertex to the Jth line, connecting a bosonic line carrying momentum and frequency k [Fig. 11(b)]. We denote
it as Lσ

M,J (p′, p; {q}; k), given by

Lσ
M,J (p′, p; {q}; k) = G0(p′ + k)G0(pM−1 + k) . . . G0(pJ + k)G0(pJ )G0(pJ−1) . . . G0(p1)G0(p). (B3)

For k = (0, ωk ), the following equality holds:

G−1
0 (p + k) − G−1

0 (p) = iωk (B4)

or, equivalently,

G0(p + k)(iωk )G0(p) = G0(p) − G0(p + k). (B5)

Using the equality, we obtain

(iωk )Lσ
M,J (p′, p; {q}; k) = G0(p′ + k)G0(pM−1 + k) . . . [G0(pJ ) − G0(pJ + k)]G0(pJ−1) . . . G0(p1)G0(p). (B6)

If we insert a vertex on the (J − 1)st line, we then have

(iωk )Lσ
M,J−1(p′, p; {q}; k) = G0(p′ + k)G0(pM−1 + k) . . . G0(pJ + k)[G0(pJ−1) − G0(pJ−1 + k)] . . . G0(p1)G0(p). (B7)

We find a cancellation of the second term in the brackets in
Eq. (B6) by the first term in the brackets in Eq. (B7) when we
sum the two. Summing all possible insertions of vertices, we
find

(iωk )
M∑

J=0

Lσ
M,J (p′, p; {q}; k)

= Lσ
M (p′, p; {q}) − Lσ

M (p′ + k, p + k; {q}). (B8)

Step 2. We apply a similar argument for an internal loop.
The difference from the discussion for a line is that internal
frequency and momentum that run through the loop have to
be integrated out. Thus, the equation corresponding to the loop
diagram is given by

Rσ
M ({q}) =

∫
p

L̃σ
M (p; {q}). (B9)

033206-23



HIROKI ISOBE AND LIANG FU PHYSICAL REVIEW RESEARCH 1, 033206 (2019)

FIG. 11. Diagrammatic representations for (a) Lσ
M (p′, p; {q}),

(b) Lσ
M,J (p′, p; {q}; k), and (c) Rσ

M ({q}). (d) Decomposition of a
sunrise diagram for �

(2)
↑ . It consists of a line L↑ and a loop R↓.

The wavy lines represent a bosonic field; in the present case, internal
wavy lines can be regarded as a Hubbard-Stratonovich field for the
contact interaction.

It is diagrammatically depicted in Fig. 11(c). Here, the loop
consists of M electron lines and all lines have the same
spin index σ . L̃σ

M (p; {q}) is defined from Lσ
M (p′, p; {q}), by

imposing p = p′ and removing one G0(p) to close the loop.
We then insert a vertex on the Jth electron line and write it

as

Rσ
M,J ({q}; k) =

∫
p

L̃σ
M,J (p, {q}; k), (B10)

where L̃σ
M,J is defined from Lσ

M,J in the same way as L̃σ
M from

Lσ
M . The summation of all possible insertions of vertices yields

a similar equation as Eq. (B8), but it vanishes as the frequency
and momentum are conserved along the loop:

(iωk )
M∑

J=1

Rσ
M,J ({q}; k) =

∫
p

[
L̃σ

M,J (p; {q}) − L̃σ
M,J (p + k; {q})

]
= 0. (B11)

Step 3. By combining the results of Steps 1 and 2, we
deduce the Ward-Takahashi identity. We introduce the N-point
function �(N )({p′}, {p}) and the associated vertex function
�(N,ασ )({p′}, {p}; k), which is obtained by attaching an ex-
ternal bosonic line with frequency and momentum k to the
N-point function �(N ). {p} stands for the set of frequencies and
momenta (p1, . . . , pN ). Frequency and momentum should be
conserved before and after the process:

∑
p′

J = ∑
pJ for �(N )

and
∑

p′
J = ∑

pJ + k for �(N,gσ ).
The N-point function can be decomposed into N/2 lines Lσ

and loops Rσ . [For example, Fig. 11(d) shows a decomposition
of a sunrise diagram for a two-point function (N = 2) into
L↑ and R↓.] Internal frequencies and momenta {q} are to

be integrated out. Therefore, from Eqs. (B8) and (B11), we
obtain

−(iωk )�(N,ασ )({p′}, {p}; k)

=
N∑

J=1

[
�(N )({p′}σJ,−k, {p}) − �(N )({p′}, {p}σJ,+k )

]
. (B12)

We use the notation {p}σJ,+k = (p1, . . . , pJ + k, . . . , pN ),
where the addition of k occurs only when pJ is associated with
an electron with spin σ . {p}σJ,+k reflects the spin-dependent
coupling ασ . The sign (−1) on the left-hand side is solely
up to the definition of the vertex function. Equation (B12)
is the Ward-Takahashi identity for the N-point function. For
the present model, internal bosonic lines mediate the contact
interaction and external lines represent an external field as a
perturbation, such as the chemical potential (α↑ = α↓ = −μ)
and the magnetic field (α↑ = −α↓ = h).

Here, we considered the case where the external bosonic
field carries finite frequency only, so that the right-hand side
of Eq. (B4) is simply proportional to the frequency. The
extension to a case with a finite momentum is straightforward,
but the right-hand side becomes not as simple as that for
frequency, which depends on the energy dispersion.

2. Ward identity for two-point functions

The Ward-Takahashi identity originates from conservation
laws: the expression (B12) obeys due to the charge conser-
vation for each spin. The identity yields a relation between a
self-energy and a vertex function, thus leading to a relation
between the field renormalization and an exponent for a
thermodynamic quantity. We can see this from a two-point
function (N = 2). The Ward-Takahashi identity for N = 2 is
written as

(iωk )�(2,ασ )
σ (p + k, p; k) = �(2)

σ (p + k) − �(2)
σ (p), (B13)

where the subscript σ is added to show the external lines
correspond to electrons with spin σ . The two-point function
is written with the self-energy �σ as

�(2)
σ (p) = −iωp + Ep + �σ (p). (B14)

Therefore, in the limit ωk → 0, we obtain the Ward identity,
which relates the vertex function �(2,ασ )

σ and the self-energy
�σ :

�(2,ασ )
σ (p, p; 0) = 1 − ∂�σ (p)

∂ (iωp)
. (B15)

APPENDIX C: BRIEF REVIEW OF THE FIELD-THEORY
APPROACH TO RG ANALYSES

Here, we describe a field-theory approach to RG equations,
in light of the Wilsonian approach. We derive the Callan-
Symanzik equation and the beta functions, which show how
scale-dependent parameters affect physical quantities. We
partly owe the following descriptions to Refs. [85–88].

For the sake of clarity, we consider a theory with a scalar
field φ and a set of dimensionless parameters {ḡρ}, where we
write the action as S[φ; ḡ]. The partition function is given by

Z =
∫

Dφ e−S[φ;ḡ]. (C1)
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When the model suffers from UV divergences, i.e., perturba-
tive loop corrections have UV divergences, we need to cure
them to extract meaningful information. Those UV diver-
gences can be regularized by removing UV modes from the
model. To this end, we decompose the field φ depending on
the energy range to which they contribute: φ�

�′ accounts for
the energy between �′ and �. Then, we redefine the partition
function as

Z�0 [ḡ0] =
∫

Dφ
�0
0 e−S�0 [φ

�0
0 ;ḡ0]. (C2)

It does not obviously have a UV divergence because no UV
modes are included. Here, the energy scale �0 works as a
UV energy cutoff. (This is equivalent to impose the effective
action to be finite at �0 without a cutoff. To this end, divergent
counterterms should be introduced to cure UV divergences.)

The scale �0 is an arbitrary energy scale to regularize UV
divergences. The next thing we should check is how a change
of the characteristic energy scale affects the theory. To see it,
we define the effective action at an energy scale �(< �0) as

Seff
� [Z1/2

� φ�
0 ; ḡ(�)] = − ln

[∫
Dφ

�0
� e−S�0 [φ�

0 +φ
�0
� ;ḡ0]

]
. (C3)

We require that the effective action Seff have the same form as
the action S. Then, the partition function can be written as

Z�0 [ḡ0] =
∫

Dφ�
0 Dφ

�0
� e−S�0 [φ�

0 +φ
�0
� ;ḡ0]

=
∫

Dφ�
0 e−Seff

� [Z1/2
� φ�

0 ;ḡ(�)]

≡ Z�

[
Z1/2

� φ�
0 ; ḡ(�)

]
. (C4)

This is simply rewriting of the partition function with the ef-
fective action at the scale �. We relate the partition functions
at different scales to find

Z�

[
Z1/2

� φ�
0 ; ḡ(�)

] = Z�′
[
Z1/2

�′ φ�′
0 ; ḡ(�′)

]
. (C5)

This equality tells us that we have the same partition function
defined at different energy scales � and �′, together with the
changes of the weight Z and the parameters ḡρ .

We then aim to calculate the N-point correlation function
with the cutoff � and the parameters ḡρ (�):〈

φ�
0 (k1) . . . φ�

0 (kN )
〉
�;ḡ(�)

= 1

Z�

[
φ�

0 ; ḡ(�)
] ∫ Dφ�

0 φ�
0 (k1) . . . φ�

0 (kN )e−Seff
� [φ�

0 ;ḡ(�)].

(C6)

When all momenta ka correspond to energies below � and
�′, we find φ�

0 (ka) = φ�′
0 (ka), which enables us to relate the

N-point correlation functions at different scales as

Z−N/2
�

〈
φ�

0 (k1) . . . φ�
0 (kN )

〉
�;ḡ(�)

= Z−N/2
�′

〈
φ�′

0 (k1) . . . φ�′
0 (kN )

〉
�′;ḡ(�′ ). (C7)

We now write this relation using the connected N-point corre-
lation function G(N ):

Z−N/2
� G(N )

�;ḡ(�)({ka}) = Z−N/2
�′ G(N )

�′;ḡ(�′ )({ka}). (C8)

The scale dependence of this equality can be written in the
form of a differential equation:[

�
∂

∂�
− βρ (ḡ)

∂

∂ ḡρ

+ N

2
γ (ḡ)

]
G(N )

�;ḡ(�)({ka}) = 0. (C9)

Note that the repeated index is summed over. This equa-
tion is called the Callan-Symanzik equation [71–73] for the
connected N-point correlation function G(N ) with the beta
functions βρ and the field renormalization γ defined by

βρ (ḡ) = −
(

�
∂ ḡρ

∂�

)
ḡρ,0

, (C10a)

γ (ḡ) = −
(

�
∂

∂�
ln Z�

)
ḡρ,0

. (C10b)

The correlation functions are obtained from perturbative
calculations. Actually, it is rather straightforward to calculate
the one-particle-irreducible N-point function �(N ) instead of
the N-point correlation function G(N ). When a model involves
a quartic interaction φ4 without a cubic term φ3, �(2) and �(4)

are given by

�(2)(k) = [G(2)(k)]−1, (C11)

�(4)(k1, k2, k3, k4) = G(4)(k1, k2, k3, k4)

G(2)(k1)G(2)(k2)G(2)(k3)G(2)(k4)
.

(C12)

For the definition of �(N ) from the effective action, see
Refs. [85–88]. Roughly speaking, �(N ) corresponds to the
coefficient of the φN term in the effective action. Again,
using the fact that φ�

0 (ka) = φ�′
0 (ka) holds when the energy

corresponding to the momentum ka is smaller than � and �′,
we find the relation

ZN/2
� �

(N )
�;ḡ(�)({ka}) = ZN/2

�′ �
(N )
�′;ḡ(�′ )({ka}). (C13)

It results in the Callan-Symanzik equation for �(N ):[
�

∂

∂�
− βρ (ḡ)

∂

∂ ḡρ

− N

2
γ (ḡ)

]
�

(N )
�;ḡ(�)({ka}) = 0. (C14)

So far, we have compared G(N ) or �(N ) at different cutoffs
� and �′, so that the dependence on � is explicit. However,
this comparison is still theoretical; i.e., this is a comparison of
different systems. Our aim is to compare the two theories with
the same cutoff �. For this sake, we rescale the coordinate to
change the cutoff. Suppose we have the scaling relations

�′ = b�, (C15a)

k′
j = bdk j k j, (C15b)

φ�′
0 (k′) = bdφ φ�

0 (k), (C15c)

where k j is a component of k = (k, ω) and dO denotes the
scaling (energy) dimension of O. Those relations lead to

�
(N )
�′;ḡ(�′ )({k′

a}) = bd
�(N ) �

(N )
�;ḡ(�′ )({ka}). (C16)

Rescaling the momentum forces the cutoff �′ back to � with
the overall factor bd

�(N ) , but this process does not alter the
dimensionless parameters ḡρ . From Eqs. (C13) and (C16), we
find the relation

�
(N )
�;ḡ(�)({b−dk j ka, j}) = ZN/2

�/b;ḡ(�/b)

ZN/2
�;ḡ(�)

b−d
�(N ) �

(N )
�;ḡ(�/b)({ka, j}).

(C17)
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Importantly, this equation compares the N-point function �(N )

with the same cutoff � but at different momenta and parame-
ters. The interpretation of the scale-dependent parameters can
be found from this equation: the parameters ḡρ (�/b) describe
the physics at scale k j/bdk j .

This procedure actually illustrates rescaling in the Wilso-
nian RG scheme. We rewrite Eq. (C17) as

�
(N )
�;ḡ(�/b)({ka, j}) = ZN/2

�;ḡ(�)

ZN/2
�/b;ḡ(�/b)

bd
�(N ) �

(N )
�;ḡ(�)({b−dk j ka, j}),

(C18)

which can be interpreted in the following way. We integrate
out fluctuations between the range of (�/b,�] (correspond-
ing to ZN/2

�;ḡ(�)/ZN/2
�/b;ḡ(�/b)) and rescale the field and parameters

(multiplying the factor bd
�(N ) ) to obtain the new action with a

different coupling constant but with the same cutoff �.
We can also write the Callan-Symanzik equation to

describe the momentum dependence, instead of the cutoff
�. We differentiate Eq. (C17) with respect to b and then set
b = 1 to obtain[

dkj ka, j
∂

∂ka, j
+ βρ (ḡ)

∂

∂ ḡρ

−d�(N ) + N

2
γ (ḡ)

]
�

(N )
�;ḡ({ka, j}) = 0.

(C19)

Equivalently, we can introduce a factor b to scale all momenta
bdk j ka, j at once, so the Callan-Symanzik equation becomes[

b
∂

∂b
+ βρ (ḡ)

∂

∂ ḡρ

− d�(N ) + N

2
γ (ḡ)

]
�

(N )
�;ḡ({bdk j ka, j})=0.

(C20)

The Callan-Symanzik equation can be solved by the
method of characteristics. With a parameter l , we obtain the
differential equations

db

dl
= b, (C21a)

dḡρ

dl
= βρ (ḡ), (C21b)

d�
(N )
�;ḡ({bdk j ka, j})

dl
=
[

d�(N ) − N

2
γ (ḡ)

]
�

(N )
�;ḡ({bdk j ka, j}).

(C21c)

The solution to the first equation is straightforward:

b(l ) = el , (C22a)

with the initial condition b(0) = 1. We write the solution to
the second formally as

ḡρ (l ) =
∫ l

0
dl ′βρ (ḡ(l ′)). (C22b)

Also, the formal solution to the third equation is

�
(N )
�;ḡ(l )({edk j l ka, j})

= ed
�(N ) l�

(N )
�;ḡ(0)({ka, j}) exp

[
−N

2

∫ l

0
dl ′γ (ḡ(l ′))

]
. (C22c)

Changing ka, j to e−dk j l ka, j , we can express the N-point func-
tion as

�
(N )
�;ḡ(0)({e−dk j l ka, j})

= e−d
�(N ) l�

(N )
�;ḡ(l )({ka, j}) exp

[
N

2

∫ l

0
dl ′γ (ḡ(l ′))

]
. (C23)

This equation describes the parameters ḡρ effectively behave
as if they are ḡρ (l ) with small momenta e−dk j l ka, j (l > 0).

Before concluding this Appendix, we note that γ cor-
responds to the anomalous dimension. Let us consider the
two-point function �(2), which corresponds to the inverse of
the two-point correlation function. At a fixed point, the beta
function vanishes, and hence both ḡ and γ are constant; we
write them as ḡ∗ and η, respectively. Here, we consider the
frequency dependence and we hence choose k j = ω0. Since
dω = 1, we obtain

�
(2)
�;ḡ∗ (e−lω0) = e−d

�(2) l�
(2)
�;ḡ∗ (ω0)eηl . (C24)

As l is arbitrary, we set l = ln(ω0/ω) to find

�
(2)
�;ḡ∗ (ω) = ωd

�(2) −ηω
η

0�
(2)
�;ḡ∗ (ω0) ∝ ωd

�(2) −η. (C25)

A naive power counting predicts �(2) ∝ ωd
�(2) , but actually it

behaves differently with the exponent d�(2) − η. The deviation
η corresponds to the anomalous dimension.

APPENDIX D: TWO-LOOP SELF-ENERGY FOR THE QUASIPARTICLE LIFETIME

The quasiparticle damping is captured by a finite imaginary part of the self-energy �. In a series of perturbative expansions,
the lowest-order correction appears at second order, which is diagrammatically shown in Fig. 5(d). The result is shown in
Eq. (130) and here we calculate it explicitly.

We first perform the Matsubara summations. With the standard procedure, we can convert the summations into the contour
integrals on the complex plane to obtain

�(2)(k, ωn) = − 1

(2π )2

∫
pql

(2π )dδ(p + q − l − k)
∫ ∞

−∞
dωpdωl

{
G0(p, ωn − iωp)

[
Im GR

0 (q, ωl ) Im GR
0 (l, ωp + ωl )

− Im GR
0 (q, ωl − ωp) Im GR

0 (l, ωl )
]

coth

(
ωp

2T

)
tanh

(
ωl

2T

)
+ Im GR

0 (p, ωp)
[
G0(q, ωn + iωp − iωl ) Im GR

0 (l, ωl )

+ Im GR
0 (q, ωl ) · G0(l,−ωn − iωp − iωl )

]
tanh

(
ωp

2T

)
tanh

(
ωl

2T

)}
. (D1)
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We define the noninteracting retarded (advanced) Green’s function GR
0 (GA

0 ) as

GR/A
0 (k, ω) = 1

ω − Ek ± iδ
. (D2)

The retarded function is obtained by the analytic continuation iωn = ω + iδ. We insert
∫

dωqδ(ωp + ωq − ωl − ω) to write
the self-energy �(2)R in a symmetric form:

�(2)R(k, ω) = − 1

(2π )2

∫
pql

(2π )dδ(p + q − l − k)
∫ ∞

−∞
dωpdωqdωlδ(ωp + ωq − ωl − ω)

×
{

GR
0 (p, ωp) Im GR

0 (q, ωq ) Im GR
0 (l, ωl ) coth

(
ωl − ωq

2T

)[
tanh

(
ωq

2T

)
− tanh

(
ωl

2T

)]

+ Im GR
0 (p, ωp) · GR

0 (q, ωq ) Im GR
0 (l, ωl ) tanh

(
ωp

2T

)
tanh

(
ωl

2T

)

+ Im GR
0 (p, ωp) Im GR

0 (q, ωq ) · GA
0 (l, ωl ) tanh

(
ωp

2T

)
tanh

(
ωq

2T

)}
. (D3)

Now, we take the imaginary part to obtain

Im �(2)R(k, ω) = 1

(2π )2
cosh

( ω

2T

) ∫
pql

(2π )dδ(p + q − l − k)
∫ ∞

−∞
dωpdωqdωlδ(ωp + ωq − ωl − ω)

× Im GR
0 (p, ωp) Im GR

0 (q, ωq ) Im GR
0 (l, ωl )

1

cosh
( ωp

2T

)
cosh

( ωq

2T

)
cosh

(
ωl
2T

)
= −π

4
cosh

( ω

2T

) ∫
pq

δ(ω − Ep − Eq + Ep+q−k)

cosh
( Ep

2T

)
cosh

( Eq

2T

)
cosh

(Ep+q−k

2T

) , (D4)

where we use the relation Im GR
0 (k, ω) = − Im GA

0 (k, ω) = −πδ(ω − Ek).

APPENDIX E: SUSCEPTIBILITIES
AT A HIGH-ORDER VHS

A divergent DOS D(E ) accompanies divergent susceptibil-
ities. Here, we consider the noninteracting susceptibilities in
the particle-hole and particle-particle channels, χph and χpp,
respectively:

χph(q, ω; T ) =
∫

p

f (ξp+q) − f (ξp)

ω + iδ − ξp+q + ξp
, (E1)

χpp(q, ω; T ) =
∫

p

f (ξp+q) − f (−ξ−p)

ω + iδ − ξp+q − ξ−p
, (E2)

where f (ξ ) = (eξ/T + 1)−1 is the Fermi-Dirac distribution
and ξp = Ep − μ. In the following, we focus on the static
susceptibilities (ω = 0). At μ = 0, the noninteracting suscep-
tibilities follow the scaling relations for momentum q and
temperature T , described by

χph(q, ω = 0; T ) = ν−εχ̂ph

(
qn+

+
ν

,
qn−

−
ν

,
T

ν

)
, (E3)

χpp(q, ω = 0; T ) = ν−εχ̂pp

(
qn+

+
ν

,
qn−

−
ν

,
T

ν

)
, (E4)

where χ̂ph and χ̂pp are the scaling functions. Those scaling
behaviors of the noninteracting susceptibilities lead to the

approximate relations

χph(q, ω = 0; T ) ∼ max(T −ε, q−εn+
+ , q−εn−

− ), (E5)

χpp(q, ω = 0; T ) ∼ max(T −ε, q−εn+
+ , q−εn−

− ). (E6)

Although the explicit forms depend on the specific form
of the energy dispersion, the temperature dependence reflects
only the DOS (8):

χph(T ) = T −ε (D+ + D−)(21+ε − 1)�(1 − ε)[−ζ (−ε)],

(E7)

χpp(T ) = 1

ε
T −ε (D+ + D−)(21+ε − 1)�(1 − ε)[−ζ (−ε)],

(E8)

where ζ (s) is the Riemann zeta function. We see that χpp is
larger than χph by the numerical factor 1/ε.

For the case of a high-order VHS with a power-law di-
vergent DOS, differences between χph and χpp appear as the
prefactors of the terms T −ε , q−εn+

+ , q−εn−
− as we have shown

in Eqs. (E7) and (E8). This is in contrast to the conventional
VHS with a logarithmically divergent DOS; while χph has
a logarithmic divergence reflecting the DOS, χpp exhibits a
double-logarithmic divergence. The additional logarithm in
the BCS channel appears in the presence of time-reversal
symmetry, which can be regarded as the Fermi surface nesting
with itself.
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