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Stability analysis of numerically exact time-periodic breathers in the
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We describe a framework for numerical calculation of time-periodically oscillating (breather) solutions to
the discretized Lugiato-Lefever equation (LLE), as well as their linear stability as obtained from numerical
Floquet analysis. Compared to earlier approaches, our work allows for the following conclusions: (i) The
complete families of solutions are obtained also in regimes of instability; (ii) analysis of Floquet spectra and
the corresponding eigenvectors show clearly the nature of the various Hopf and period-doubling bifurcations;
(iii) properties of breather solutions to the continuous LLE are connected to corresponding oscillating solutions
of the discrete LLE, which is of interest in its own right modeling coupled nonlinear cavities. In particular, we
show that the oscillating discrete cavity solitons found in earlier work can be viewed as lattice versions of the
continuous LLE breathers, as there is a smooth continuation in parameter space connecting them. Moreover,
we confirm the existence of stable breathers at large detunings that was recently observed experimentally and
describe their appearance from bifurcations.
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I. INTRODUCTION

Breathers are spatially localized nonlinear waves, with en-
ergy oscillating periodically in time. One of the paradigmatic
continuous-wave equations for studying breathers in conser-
vative systems is the integrable nonlinear Schrödinger (NLS)
equation, with applications in many branches of physics (see,
e.g., [1,2] and references therein). As these NLS breathers,
known as Kuznetsov-Ma (KM) breathers [3,4], appear on
top of a modulationally unstable nonzero background, they
are unstable for infinite-size systems, but may be sufficiently
stabilized for smaller systems, e.g., using periodic boundary
conditions, so as to allow for their experimental observation
in optical fibers [5].

Breathers also appear in time-periodically driven dissi-
pative systems, typically arising from Hopf bifurcations of
stationary dissipative solitons. Adding driving and damping
terms to the NLS equation yields the Lugiato-Lefever equa-
tion (LLE) [6], which has become the paradigmatic equation
for studying various nonlinear phenomena in optical cavities
with dissipation [7–9]. In contrast to the conservative KM
breathers, the nonzero background of the LLE breathers may
be stabilized by dissipation, and there have been several
experimental works in recent years confirming their existence
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as attractors for suitable parameter values and initial condi-
tions, for macroscopic fiber cavities [10,11], and for optical
microresonators [12–18].

On the other hand, there is currently also a large amount
of interest in studying light propagation in spatially discrete
systems [19], where the discretized version of the LLE ap-
pears as a model for coupled Kerr-nonlinear cavities [20–22].
Analogously to the cavity solitons of the continuous LLE,
this model supports localized stationary modes also far away
from its continuum limit, discrete cavity solitons, which were
also shown to destabilize via Hopf bifurcations into oscillating
solitons for certain parameter regimes [21].

It should be noted that previous numerical work investigat-
ing breathers in continuous as well as discrete LLEs was done
by direct integration of the equations of motion, starting from
suitable initial conditions yielding breathers as dynamical
attractors. A disadvantage of this method is that it never con-
verges to unstable breathers, and therefore it does not allow for
continuation of breather families through regimes of instabil-
ities. For example, breathers appearing from subcritical Hopf
bifurcations of a stationary solution could not be followed to
the bifurcation point. On the other hand, there are many exist-
ing continuation methods for calculating time-periodic orbits
in dissipative systems to numerical precision by Newton-type
iterations (see, e.g., [23]), and with a sufficiently accurate
solution, linear stability analysis can be effectively performed
through numerical Floquet analysis. This program has been
carried out in many contexts for conservative systems and
in particular used for determining the existence and stability
properties of breathers in the discrete [24] as well as the
continuous [1] NLS equation. For dissipative systems this
type of analysis becomes numerically more challenging, as
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there are no longer continuous families of solutions with
different time periods for given parameter values but rather
solutions appearing at isolated points, with periods that have
to be determined from the necessity to have balance between
energy input and dissipation over one period. Nevertheless, a
detailed investigation along these lines of regimes of existence
and stability for time-periodic solutions of the parametrically
driven and damped continuous NLS equation was reported
in a series of papers [25–27]. However, here we perform the
study for the LLE equation and explicitly for a lattice model,
comparing solutions in the strongly discrete and continuum
regimes.

In the present paper we employ a Newton algorithm for
calculating time-periodic breathers of the discrete LLE to
numerical precision and investigating their linear stability
through Floquet analysis. Our aim here is not to provide
detailed charts of existence and stability, as done for the
parametrically driven damped NLS equation in [25,26], as this
would require extensive computational resources. Rather, we
wish to present the numerical framework and to show with a
number of examples the relation between breathers in discrete
and continuum systems. The outline of the paper is as follows.
In Sec. II we present the continuous and discrete LLEs and
discuss relations between their parameters. The numerical
methods used for calculation and linear stability analysis of
the breathers are described in Sec. III. In Sec. IV examples
of our numerical results are presented: Sec. IV A shows the
reproduction of the continuum breather stability regime for
weak driving; Sec. IV B analyzes the continuation of the con-
tinuum breather towards weaker coupling; Sec. IV C shows
the transition into the regime of period-doubling instability
for the continuum breather with increasing driving; Sec. IV D
illustrates the continuation of strongly discrete oscillating
cavity solitons into continuum LLE breathers; and Sec. IV E
confirms and explains the existence of stable LLE breathers
in a regime of large detuning, which was recently observed
experimentally [11]. Finally, some concluding remarks are
presented in Sec. V.

II. MODELS

The dynamics of the temporal dissipative cavity Kerr soli-
tons in microresonators can be described using the damped-
driven continuous nonlinear Schrödinger equation frequently
referred to as the Lugiato-Lefever equation, with periodic
boundary conditions:

i∂τ� = −β2

2
∂2
φ� − (i − α)� − |�|2� + i f . (1)

Here τ is rescaled time and the spatial variable φ measures
the azimuthal angle of a ring resonator in a coordinate system
moving with the group velocity [7,9]. Its discrete counterpart,
modeling an array of coupled Kerr-nonlinear cavities, can be
expressed as (with notation analogous to that in Ref. [21])

i∂t un + C(un+1 + un−1 − 2un) + (iκ + 	)un

+ γ |un|2un = E0. (2)

If viewed as a spatial discretization of (1) with N grid points
spaced an angular distance 	φ, then n = φ

	φ
, C = β2

2(	φ)2 , and

N = 2π
	φ

. Thus, for sufficiently large C and sufficiently many
lattice sites N , solutions to Eq. (2) (with γ = κ = 1) should
approach solutions to Eq. (1) in a continuum limit, with 	 →
−α and E0 → i f (the latter being equivalent to letting � →
iu; the phase of the driving term is arbitrary and can always
be made real and positive by phase rotation of � or u).

Note that Eq. (1) has been rescaled to have unity coeffi-
cients in front of dissipative and nonlinear terms (note though
that the relative signs between these coefficients cannot be
scaled away, but here have been assumed to be identical, from
the particular physical setup considered). If the continuous
equation (1) is considered for an infinite spatial interval, the
dispersion coefficient β2 may also be rescaled to unity by
rescaling the spatial coordinate φ; however, for a finite system
such a rescaling will change also the boundary conditions,
and therefore we are left with three independent parameters
β2, α, and f . Also, the discrete equation (2) may be rescaled
to have κ = 1 and γ = ±1, with the free parameters C, 	,
E0, and sgn(γ ). Explicitly, the rescaling amounts to setting
C′ = C/κ , 	′ = 	/κ , E ′

0 = E0

√
|γ |/κ3, u′

n = √|γ |/κun, and
t ′ = κt and dropping the primes. In addition, we may, by the
staggering transformation un → (−1)nun, restrict considera-
tion to C > 0.

III. NUMERICAL METHODS

There are many different, more or less sophisticated, ways
to numerically obtain time-periodic solutions to continuous
nonlinear dissipative wave equations such as (1). See in
particular Ref. [23], which also contains many references to
other earlier methods. Here, in order to directly connect results
from continuous and discrete models, we take a slightly
different route and instead use as a starting point the Newton
method used previously to calculate breathing solutions in
conservative and nondriven, discrete nonlinear Schrödinger
equations. The method was briefly described in Sec. 4.1 of
Ref. [24]. Here we need to amend the method since for the
damped-driven system, there is no continuous family of time-
periodic solutions that can be continued versus the time period
T , but rather isolated solutions with fixed, unknown time
periods that have to be obtained as outcome from the Newton
iteration. This feature was added with inspiration from works
by Zemlyanaya and co-workers on the parametrically driven
nonlinear Schrödinger equation (see, e.g., [25,26] and in
particular [27] for details about their numerical scheme).

Briefly, we split the complex field un into real and imag-
inary parts un = xn + iyn and thus, for a system of N lattice
sites, we obtain 2N coupled ordinary differential equations.
We are looking for time-periodic solutions to (2) with un-
known period T , un(t + T ) = un(T ). Since T is unknown, it is
more convenient to rescale the time coordinate as t̃ = t/T . We
thus look for solutions with unity time period, xn(1) = xn(0)
and yn(1) = yn(0), to the rescaled equations (below overdots
indicate derivatives with respect to t̃)

ẋn = −TC(yn+1 + yn−1 − 2yn) − T κxn

− T 	yn − T γ
(
x2

n + y2
n

)
yn,

ẏn = TC(xn+1 + xn−1 − 2xn) − T κyn + T 	xn

+ T γ
(
x2

n + y2
n

)
xn − T E0. (3)
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Linearizing the oscillation amplitudes around the exact time-
periodic solution xn → xn + ξn and yn → yn + ηn yields

ξ̇n = −TC(ηn+1 + ηn−1 − 2ηn) − T κξn − T 	ηn

− T γ
[(

x2
n + 3y2

n

)
ηn + 2xnynξn

]
,

η̇n = TC(ξn+1 + ξn−1 − 2ξn) − T κηn + T 	ξn

+ T γ
[(

3x2
n + y2

n

)
ξn + 2xnynηn

]
. (4)

By simultaneous numerical integration from 0 to 1 of Eqs. (3)
with initial conditions {xn(0), yn(0)} corresponding to a trial
solution assumed to be close to the sought-after time-
periodic solution, i.e., fulfilling xn(1) ≈ xn(0) and yn(1) ≈
yn(0), and Eqs. (4) for 2N independent initial conditions for
{ξn(0), ηn(0)}, we obtain the 2N × 2N Floquet matrix T0

defined by ({ξn(1)}
{ηn(1)}

)
= T0

({ξn(0)}
{ηn(0)}

)
. (5)

The standard Newton iteration scheme [24] then amounts to
solving the system of 2N linear equations

(1 − T0)δu =
({xn(1) − xn(0)}

{yn(1) − yn(0)}
)

(6)

for the corrections δu to the initial vector ({xn(0)}
{yn(0)}) at each

iteration step, and the norm of the vector on the right-hand
side of (6) measures the accuracy of the obtained solution
at that step. Now, to obtain also the additional unknown T ,
we consider variations T → T + δT in (3) and obtain, for
the change of the amplitude vector at the final time [note
that (3) is linear in T ], δxn(1) = ∂xn(1)

∂T δT = 1
T ẋn(1)δT and

δyn(1) = ∂yn(1)
∂T δT = 1

T ẏn(1)δT . Thus, we add one additional
column to the matrix 1 − T0 in (6), and since our sought
solution should fulfill also ẋn(1) = ẋn(0) and ẏn(1) = ẏn(0),
the additional column can be taken as − 1

T ({ẋn(0)}
{ẏn(0)}).

We now have 2N equations for 2N + 1 unknowns. How-
ever, this is not a major problem since for any time-periodic
trajectory there is always an additional degeneracy corre-
sponding to the choice of origin of time. Thus, we may
arbitrarily, according to our wishes, impose an additional
condition, e.g., that ẋn0 (0) = 0 for some suitable chosen site
n0 or that xn0 (0) = 0 (of course one has to be careful then
that the chosen trajectory actually runs through the origin).
Both these have been implemented and tested, and the (2N +
1) × (2N + 1) matrix can in general be inverted as required
for the Newton iteration. However, it seems slightly preferable
numerically to avoid adding this additional condition and in-
stead use standard routines for singular-value decomposition
to replace the matrix inverse with the pseudoinverse of the
2N × (2N + 1) matrix. (The particular scheme used here is a
slight modification of a code originally developed in [28].)

Having converged (typically after five to six iterations) to a
solution with desired accuracy (typically 10−11 with standard
double-precision FORTRAN), linear stability analysis is then
immediate by diagonalization of the matrix T0 as obtained by
integrating the linearized equations for the converged solution.
Linear stability is equivalent to having all eigenvalues inside
(or on, for marginal stability) the unit circle. For the numeri-
cal integration, we generally use a Bulirsch-Stoer algorithm,

FIG. 1. Real parts of Floquet eigenvalues versus frequency de-
tuning 	 when C = 75, E0 = 4, and N = 121 sites.

which empirically has been seen to perform well for these
types of applications.

As we will mainly consider breather solutions that are
spatially symmetric, we need only apply the Newton scheme
to the N + 2 independent unknown variables, while for the
Floquet stability analysis perturbations on 2N independent
variables need to be considered. If the oscillating solutions
are asymmetric in space (as some of the solutions discussed
for the discrete model in [21]), the computational time will
evidently be longer.

IV. RESULTS

For the continuous case, there are many papers show-
ing various existence and bifurcation diagrams for solitons,
breathers, etc., e.g., [29–32]. In particular, we may refer
to Fig. 9 in [31], which indicates a regime B where time-
periodic localized breathers appear as stable attractors for the
infinite LLE. A similar picture can be seen in Fig. 16 of
Ref. [32] for the ring geometry. For the discrete case, the
only paper that we are aware of explicitly showing existence
and stability regimes for time-periodic solutions as attractors
is [21], where Fig. 1 shows intervals in C for small and
moderate values of C (not close to the continuous limit), only
for one specific set of fixed values for 	 and E0. Here we
will show with a number of examples how the knowledge
of the complete Floquet eigenspectrum helps to interpret and
understand the dynamics in various regimes and how oscillat-
ing solutions in the discrete and continuous models may be
connected.

A. Continuum regime: Continuation versus frequency
detuning for weak driving

As our first example we show in Fig. 1 results from the
stability analysis for a family of breathers close to the contin-
uum limit for a rather weak driving, E0 = 4, continued versus
the frequency detuning. (In the continuum limit, the smallest
possible value of the driving where localized breathers in
an infinite system are observed is E0 ≈ 2.65 [31].) In this
regime, the breather family is always stable between its lower
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FIG. 2. (a) Real parts of Floquet eigenvalues versus coupling constant C when 	 = −7.0, E0 = 4, and N = 121 sites. The figure is cut
at the lower boundary, and the two strongly unstable eigenmodes for 22 � C � 49 have extrema with eigenvalues of approximately −4 and
−7, respectively. (b) Time period T versus C. The lower branch corresponds to the family continued from larger C while the upper branches
correspond to the bifurcating breather families, which are always unstable. Also shown are snapshots for C = 40 of (c) breather intensity
|un|2, and two corresponding eigenmodes of the linearized problem with eigenvalues on the negative real axis: (d) antisymmetric unstable and
(e) symmetric stable (which will however destabilize for slightly smaller C).

and higher limits of existence (at 	 ≈ −8.5 and 	 ≈ −4.8,
respectively, for E0 = 4) signaled by eigenvalue collisions
at +1 in Fig. 1. The lower limit corresponds to the point
where the breather Hopf bifurcates from the stationary cavity
soliton, while the upper limit corresponds to a transition to a
regime of spatiotemporal chaos as discussed in [31] (dotted
line in Fig. 9 of Ref. [31]). The breather dynamics for these
parameter values is analogous to Fig. 11 in [31].

Note that there is almost a period-doubling bifurcation
around 	 = −6, signaled by an eigenvalue approaching (but
not reaching) −1; this is also consistent with Fig. 9 of
Ref. [31], indicating that a period-doubled state would appear
as an attractor for a slightly larger value of E0 (cf. Sec. IV C).
Note also the two eigenvalues that stay close to +1 dur-
ing the continuation. One of them corresponds to the time
translation along the periodic orbit and thus should exist for
any time-periodic solution; its closeness to +1 can be used
as a measure of the accuracy of the numerically obtained
solution. Typically, its deviation from 1 is of the order of
10−6 if the solution is obtained with accuracy 10−11. The other
eigenvalue corresponds to the spatial translation, which is an
exact continuous symmetry for the continuous equation but
not for the discrete one. Thus, the closeness of this eigenvalue
to +1 can be used as a measure of the accuracy of the discrete
model in approximating the continuous one. Here, for C = 75
the maximum deviation is around 15%, which as shown below

could be improved considerably by increasing C to approx-
imately 100 (however, with the consequence that boundary
effects increase due to the broadening of the solution with C,
unless also the number of sites N is increased, which however
increases the computational time considerably).

B. Continuation of continuum breather
towards smaller coupling

As a second example, we show in Fig. 2 a continuation
of the family of continuous breathers above for 	 = −7
versus coupling constant C. First, as discussed above, note in
Fig. 2(a) how the translational eigenvalue closely approaches
+1 as C approaches approximately 100. Second, note how
this localized eigenvalue, as C decreases, seemingly moves
through the band corresponding to small-amplitude tail oscil-
lations and reappears for C � 50 on the negative real axis,
where it passes through −1 and gives rise to a period-doubling
bifurcation where a stable asymmetrically oscillating soliton
should appear. This discreteness-induced instability seems
analogous to the oscillations in the Peierls-Nabarro barrier
found in [21] in a different parameter regime (see Sec. IV D
below). Third, as C is further decreased an additional period-
doubling instability appears, this time corresponding to spa-
tially symmetric oscillations as indicated by the eigenmode
structure [Fig. 2(e)]. Fourth, the continuation for decreasing
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FIG. 3. (a) Real parts of Floquet eigenvalues versus driving strength E0 when 	 = −7.0, C = 99, and N = 121 sites. (b) Snapshots for
E0 = 4.01 (solid) and E0 = 6 (dashed) of breather intensity |un|2. (c) Unstable eigenmode for E0 = 4.5.

C is lost at a saddle-node bifurcation approximately at C �
21.96 [eigenvalue collision at +1 in Fig. 2(a)].

During the continuation towards smaller coupling, the
time period slowly increases as shown in the lower branch
of Fig. 2(b), where we also included a continuation of the
bifurcating solution branches continued from the bifurcation
point C � 21.96. As can be seen, this snaking solution branch,
which is always unstable, corresponds to breathers with larger
period. It is also worth remarking that there is a tiny regime
of stability for the lower branch very close to the bifurcation
point, for 21.96 � C � 22, as seen from Fig. 2(a), where the
two unstable eigenvalues again cross −1.

C. Increasing driving in the continuous regime

As a third example, we show in Fig. 3 the continuation for
increasing driving strength E0 of a breather in the continuous-
like regime (C = 99) for 	 = −7. As mentioned above, we
now catch the period-doubling instability indicated in Fig. 9
of Ref. [31] roughly at E0 � 4.5, and the corresponding oscil-
lation mode is spatially symmetric around the breather center
as shown in Fig. 3(c). As can be seen from the snapshots
[Fig. 3(b)], a further increase of E0 results in a reshaping
and considerable broadening of the (unstable) breather, which
now more resembles a multibreather complex. Evidently,
this state is more strongly affected by the boundaries. The
continuation is finally lost in a bifurcation at E0 = 6.2244 . . .,
which again should be connected to the transition to the
regime of spatiotemporal chaos [31], as discussed above for
the continuation towards smaller frequency detuning.

D. Continuation of strongly discrete breathers

As a fourth example we show in Fig. 4 the continuation
versus coupling constant C for a highly discrete breathing
soliton, with parameter values chosen as in Ref. [21]. This
breather Hopf bifurcates from the stationary discrete soliton at
C � 2.3, as shown in Fig. 1 of Ref. [21]. The period-doubling
instability here appears around C � 7, which coincides with
the point denoted by CB3 in Ref. [21]. As can be seen in
Fig. 4(c), the corresponding unstable eigenmode is antisym-
metric around the breather center, which causes its motion in
the lattice as found in [21]. As indicated in [21], this is related
to the period-doubled solution itself being unstable at this
parameter value. The breather restabilizes again at C � 10.5
(point CB1 in [21]), slightly before it again merges with the
stationary discrete soliton at C � 10.7 [eigenvalue reaching
+1 in Fig. 4(a)].

Note that the parameter values used above for the strongly
discrete system, E0 = 2.0 and 	 = −3.0, correspond to driv-
ing and frequency detunings below the lower limit for the
existence of breathers in the continuum regime, which ac-
cording to Fig. 9 of Ref. [31] are E0 ≈ 2.65 and |	| ≈
3.5. To search for a strongly discrete breather which can be
directly continued to a continuum breather, we first continue
the solution above towards larger E0 and |	|. As shown in
Fig. 5, for E0 = 3.0 and 	 = −4.0 there is indeed a smooth
continuation in C from C ≈ 2.4, where the breather Hopf
bifurcates from a strongly discrete cavity soliton and then
smoothly transforms to a continuumlike soliton for large C,
indicated by the translational eigenvalue smoothly approach-
ing 1 for C � 50. Comparing Fig. 5 with the corresponding
continuation of the continuumlike breather for larger driving

FIG. 4. (a) Real parts of Floquet eigenvalues versus coupling constant C when 	 = −3.0, E0 = 2.0, and N = 121 sites. (b) Snapshot for
C = 10 of (unstable) breather intensity |un|2. (c) Unstable eigenmode for C = 10.
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FIG. 5. (a) Real parts of Floquet eigenvalues versus coupling constant C when 	 = −4.0, E0 = 3.0, and N = 121 sites. (b) Snapshots of
breather intensity |un|2 for C = 2.5 (solid line, strongly discrete) and C = 50 (dashed line, continuum-like). (c) Time period T versus C.

and detuning in Fig. 2, the instability scenario is qualitatively
similar with two period-doubling instabilities corresponding
to symmetry-breaking and symmetry-conserving eigenmodes,
respectively. However, while the continuation towards smaller
C in Fig. 2 is interrupted at the bifurcation point at C ≈ 21.96
where the slope of the curve showing the time period versus
C becomes infinite, the corresponding curve for the smaller
driving and detuning in Fig. 5(c) instead reaches a maximum
T ≈ 2.92 for C ≈ 10.6 and then again decreases until the
strongly discrete breather reaches the point where it bifurcates
from the stationary discrete cavity soliton.

Thus, to summarize this section, a major conclusion is that
the oscillating discrete cavity solitons found in [21] are indeed
lattice versions of the breather solitons of the continuous
LLE, as there is a smooth continuation in parameter space
connecting them.

E. Breathers at large detunings

Our last example considers a regime of large detuning and
driving where, somewhat unexpectedly, stable breathers were
found recently, experimentally as well as in direct numerical
simulations for the continuous LLE [11]. With our notation,
the regime studied in [11] corresponds to E0 = 20

√
5 ≈ 45

and −90 � 	 � −80. However, as can be inferred, e.g., from
Fig. 13 of Ref. [29], for such large values of E0, stable
stationary cavity solitons should exist for −π2E2

0 /8 � 	 �
−(E0/0.08

√
2)2/3, where the lower limit corresponds to the

existence threshold [33] and the upper limit to the instability
threshold through Hopf bifurcation. Thus, for E0 = 45, stable
stationary solitons exist for −2500 � 	 � −54 and so there
is a regime of coexistence between the stable stationary soli-
ton and stable breather, the origin of which was unclear in
Ref. [11].

Attempting to reproduce the breather from [11] within the
framework of the discrete model (2), we first note that very
large values of C are needed in this regime to get close to
a continuumlike breather, due to its large amplitude. Specif-
ically, with 	 = −85 we could obtain a breather for C =
500, but suffering from discreteness-induced period-doubling
instabilities analogous to those discussed in Secs. IV B
and IV D. Increasing to C = 700 a stable breather is indeed
obtained, and below we will illustrate the continuation of this
breather versus detuning. However, the consequence of using
such large values of C is that the solution will broaden sig-
nificantly, and finite-size effects will no longer be negligible.

Thus, we stress that, although we obtain for our rather small
finite system a similar existence region for a stable breather
as in [11], the detailed nature of the bifurcations limiting its
existence may differ for larger systems.

In Fig. 6 we illustrate the continuation of the breather
found for E0 = 45, C = 700, and N = 121 sites versus fre-
quency detuning. For these parameter values, the existence
regime is bounded by two saddle-node bifurcations, at 	 ≈
−96.93 and 	 ≈ −54.75. The breather remains stable for
	 � −81.6, where a weak Hopf instability appears, and it be-
comes strongly unstable through period doubling when 	 �
−80.9, as illustrated by the large negative (real) eigenvalue
in Fig. 6(a). The solutions bifurcating with the breather at the
saddle-node bifurcations [blue and green lines in Fig. 6(b)] are
always unstable. As can be seen from Fig. 6(b) (purple line),
the time period for the stable breather increases monotonically
with increasing 	 and continues to increase also in its unstable
regime. In the inset of Fig. 6(b) we have superposed the plot of
the time period around the upper bifurcation point with a plot
of twice the period of the stable fundamental breather, which
was found to exist for −56 � 	 � −52 for the parameter
values used. Thus, although the solution continued from larger
negative 	 apparently does not directly bifurcate with the
stable breather, the relation between their periods approaches
2 in this regime.

As a final illustration, we show in Fig. 7 the resulting
dynamics for a few oscillations of breathers at different lo-
cations in Fig. 6. Figure 7(a) shows the stable breather at
large negative 	, which essentially reproduces the dynamics
from Fig. 4 in Ref. [11]. Notice that each amplitude peak
is in fact a double peak. Moving into the unstable regime
of the purple branch in Fig. 6(b), the period increases and
the double-peaked feature is lost, as shown in Fig. 7(b).
Figures 7(c) and 7(d) illustrate two other solutions for the
same parameter values (here 	 = −55.8). Figure 7(c) shows
the stable breather [yellow dots in the inset in Fig. 6(b)] with
a period very close to half that of the breather on the purple
branch. As can be seen, this solution has much smaller os-
cillation amplitude and much smaller peak amplitude and, in
contrast to the other solutions which have visible oscillations
also in the tails, its oscillations outside the central region
are negligible. Finally, Fig. 7(d) corresponds to the unstable
solution on the blue branch of Fig. 6, which is characterized
by considerably larger tail oscillations. A similar scenario
was also seen for the parametrically driven and damped NLS
equation (see Fig. 3 of [25]).
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FIG. 6. (a) Real parts of Floquet eigenvalues versus frequency detuning 	 when E0 = 45, C = 700, and N = 121 sites. (b) Time period T
versus 	. The purple line corresponds to the continuation in (a), the blue line to the bifurcating solution at 	 ≈ −96.93, and the green line
to the bifurcating solution at 	 ≈ −54.75. The inset in (b) shows magnification around the bifurcation point 	 ≈ −54.75, where yellow dots
indicate twice the period of the fundamental stable breather existing at these parameter values. (The intersections with the dotted line do not
correspond to bifurcations.)

Note that the regime of large detuning and driving studied
here is, by the rescalings mentioned in Sec. II, equivalent to
a regime of small damping. Thus, one may anticipate that
some of these solutions could be considered as dissipative
counterparts to breather solutions of the conservative NLS

equation. In [16], the KM breather of the NLS equation
was used to derive an approximate ansatz for a dissipative
LLE breather, for the case when the amplitude oscillations
of the background are small compared to the main breather
peak amplitude. A distinguishing feature of this ansatz is

FIG. 7. Initial dynamics of breathers at various positions in Fig. 6. (a) Stable breather on the purple branch at 	 = −85. (b) Unstable
breather on the same branch at 	 = −55.8. Also shown are breathers for the same parameter values but corresponding to (c) the stable
breather with half the period [yellow dots in the inset in Fig. 6(b)] and (d) the unstable breather on the blue branch. All parameter values are
the same as in Fig. 6.
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that the dissipative breather frequency becomes identical to
the detuning, i.e., T = 2π/|	|, which was also seen in [16]
to be close to (but slightly larger than) numerically as well
as experimentally determined frequencies. For our solutions
illustrated in Figs. 6 and 7 we observe the same tendency for
the time period of the fundamental stable breather [Fig. 7(c)],
i.e., T � 2π/|	|, while the periods of the other solutions
are approximately twice this value. Whether there indeed
exists a smooth continuation in parameter space between the
conservative KM breather and the fundamental dissipative
LLE breathers is a more challenging numerical issue, which
is left for future work.

V. CONCLUSION

We have implemented a Newton-type algorithm for cal-
culating time-periodic breather solutions to the discrete LLE
and used numerical Floquet analysis to investigate the linear
stability properties of the breather families resulting from
continuation versus frequency detuning, driving, and coupling
constant, in various regimes of parameter space. A major aim
of this work has been to unify previously existing results for
the discrete and continuous LLEs into a common framework,
and as we find a smooth continuation between strongly dis-
crete and continuumlike breathers with increasing coupling
constant, we may conclude that the oscillating discrete cavity
solitons from [21] are indeed lattice versions of the continuum
LLE breathers. In general, having access to the full spectrum
of Floquet eigenvalues provides a deeper understanding of the
various instability mechanisms and bifurcations than earlier
studies relying on direct numerical simulations could provide.
As a particular example of this, we considered the regime
of large detuning and driving with coexistence between sta-
tionary solitons and breathers recently found experimentally
in [11]. Our results (for a finite ring with large coupling
constant) not only confirm the existence of linearly stable
breathers in this regime, but also show the fate of this family
when continued versus detuning: Its existence regime is lim-
ited by two saddle-node bifurcations with unstable breathers

and its stability regime is limited from one side by Hopf and
period-doubling instabilities.

As pointed out in the Introduction, obtaining a detailed
existence and stability chart for breathers in the full three-
parameter space of the discrete LLE would require extensive
computational efforts and is left for future work. We have also
left a number of other interesting issues unexplored. For ex-
ample, it would be straightforward to use the same techniques
to analyze also the properties of asymmetrically oscillating
breathers; however, as we pointed out, computational times
would increase considerably. Another interesting issue would
be to systematically follow the sequence of period-doubled
oscillating breathers with increasing periods; however, this
also would require longer computational times. Moreover, an
important issue is the dependence of system size. Here we
chose for numerical convenience a rather small system with
121 sites; this could certainly be enlarged but again with the
consequence of rapidly increasing computational times. In
the strongly discrete limits, we are confident that our results
approximate those of an infinite system with good accuracy,
but as we indicated, there are several regimes close to the
continuous limit where the oscillations near the boundaries
are considerable. Obtaining reliable predictions for the infi-
nite systems in these regimes would require studying some
sequence of increasing lattice sizes; however, these issues are
left for future consideration.
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