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Self-entanglement of a tumbled circular chain
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The spontaneous knotting of linear chains has been well studied, but little attention has been given to the
self-entanglement of chains with more complex topologies. In this work, we perform experiments with granular
chains that undergo tumbling motion to investigate the self-entanglement of circular chains, which lack the
chain ends essential for forming knots. We study the entanglement probability and types of self-entanglements
formed on linear and circular chains, using the well-studied self-entanglements on a linear chain to frame our
understanding of self-entanglements on a circular chain. We describe a characterization method that views a
self-entangled circular chain as a link of two components and use it to characterize the self-entanglements on
circular chains with known topological descriptors from knot theory. Our experimental results show that an
increase in circular chain length leads to an increase in entanglement probability and entanglement complexity
until a plateau is reached, similar to the trends observed with linear chains. By examining the formation pathway
of several self-entanglements, we infer a general mechanism for the self-entanglement of circular chains.

DOI: 10.1103/PhysRevResearch.1.033194

I. INTRODUCTION

Entanglements are a common occurrence in our everyday
lives. It has been theoretically proven that the knotting prob-
ability of a chain approaches unity as the chain length tends
to infinity [1], hence it is inevitable that entanglements are
present in a wide range of physically relevant systems. From
hair and cords to DNA [2] and protein molecules [3,4], knots
are indeed ubiquitous across length scales. This has led to
entanglements being a subject of considerable interest among
fields in science and engineering.

Although knots are mathematically well defined only in
circular chains [5], linear chains with free ends can contain
localized, unambiguous knots. Unlike knots on closed chains,
knots on open chains can become untangled when a free end
loops through the knot. Similarly, the ends of an open, unknot-
ted chain can pass through loops on the same chain to form
a knot. The spontaneous knotting and unknotting of linear
polymer molecules at equilibrium has been reported in a com-
putational study by Tubiana et al. [6]. From an experimental
standpoint, single-molecule experiments have demonstrated
the introduction of knots on polymers using nonequilibrium
methods, including optical tweezers [7,8], electric fields [9],
and compression in nanoconfinement [10]. Tying knots with
optical tweezers results in knots with known topology [7,8],
but this approach is low throughput and challenging. Hence,
experimental studies on knotted polymers typically employ
electric fields [11,12] and compression in nanoconfinement
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[10,13] to induce self-entanglements. Such methods, however,
cannot generate knots of known topology and the entangle-
ments formed are not resolvable by conventional fluorescence
microscopy.

Given the challenge of investigating entanglements on the
molecular scale, researchers have studied macroscopic model
systems, which allow easier control and direct visualization,
to gain insight into the physics of entanglements. Raymer and
Smith [14] studied the formation of knots on string tumbled
inside a rotating box and proposed a model based on random
braid moves of the free ends to describe the observed distribu-
tion of knot types. Studies with entangled granular chains have
shown that knots can form on freely hanging chains shaken
vertically at a constant frequency [15], considered the knotting
and unknotting processes on chains placed on horizontal
vibrating plates [16,17], examined the swelling and motion
of knots on chains under tension [18], and investigated the
oscillatory periodic motion of knots sedimenting in a viscous
fluid [19]. Macroscale experiments provide an avenue for
exploring the mechanisms of entanglements and can inform
our understanding of entanglements on the microscale. From
a broader perspective, granular chains can be viewed as a
macroscale polymer system [20,21] and further our under-
standing of fundamental polymer concepts, for instance, the
glass transition [22,23].

Most experimental studies on entangled polymers to date
have focused on linear chains, although there is growing
interest in more complex topologies, such as circular chains
[24–26]. Recently, our group performed single-molecule ex-
periments to compress and induce self-entanglements in cir-
cular DNA with electric fields, with self-entanglements serv-
ing as a minimal system for studying chain entanglements
[27]. Since the conformations of the compressed circular
molecules were not resolvable by fluorescence microscopy,
we probed the nature of the compressed states by studying
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FIG. 1. Schematic for experimental procedure. The chain was placed into a plastic spherical ball mounted onto a motor shaft. The ball was
rotated by a gear motor at a speed controlled by a potentiometer and for a set amount of time. The chain was then carefully transferred onto
a flat surface. Using tweezers, we held either the chain ends (linear) or roughly opposite sides of the chain (circular) and pulled in opposite
directions to extend the chain and evaluate for self-entanglements.

the expansion dynamics of the molecules back to equilibrium.
We found that circular molecules are able to self-entangle, and
strongly entangled circular molecules can remain kinetically
arrested in an entangled state for time scales much longer than
the polymer relaxation time. It might seem counterintuitive
that circular molecules are able to self-entangle; while linear
molecules can self-entangle by weaving chain ends through
loops along the same chain to form intramolecular knots,
circular molecules do not have chain ends.

To further investigate the physics of entanglements on cir-
cular chains, we implement a macroscopic system that enables
us to directly see chain conformations. In this work, we per-
form experiments with granular chains that undergo tumbling
motion to study self-entangled circular chains. We investigate
the entanglement probability and types of self-entanglements
formed on linear and circular chains, with entanglements
on the linear chain providing a framework for understand-
ing entanglements on its circular counterpart. By treating a
self-entangled circular chain as a link of two components,
we can use topological descriptors from knot theory—the
Alexander-Briggs knot notation, Dowker-Thistlethwaite code,
and linking number [28]—to characterize self-entanglements
on circular chains.

II. EXPERIMENTAL METHOD

The experimental system consists of a two-part plastic
spherical ball (diameter = 50 mm) mounted onto the shaft
of a gear motor, the speed of which is controlled by a
potentiometer. Each chain is a series of nickel-plated metal
beads (diameter = 2.4 mm, mass = 32 mg) loosely connected
by metal rods and a clasp at the end that allows the chain
to be closed (DREAMZE, #4336832517). The length of the
chain is adjusted by connecting together different numbers
of repeat units (mers), with one mer containing 185 beads
and measuring 61 cm in length when fully extended. The
flexibility of the chain can be gauged by the minimum chain
length needed to form a closed loop ξ = 2π/θmax = 7, where
θmax is the maximum bond angle [22,23].

The experimental procedure is summarized in Fig. 1. A
granular chain was placed into the spherical ball and the ball
was rotated for 10 s at a speed of 3.6 rotations per second

about the horizontal axis perpendicular to the direction of
gravity, causing the chain to undergo a tumbling motion [see
Supplemental Material (SM) for Movies S1–S3 [29]). The
rotation of the ball was started and stopped manually with
an on/off switch. After rotation was stopped, the chain was
carefully removed from the ball and placed onto a flat surface.
We then picked out either the chain ends (linear) or roughly
opposite sides of the chain (circular) with tweezers and pulled
the chain horizontally in opposite directions to extend the
chain and enable direct observation of any entanglements,
similar to protocols used in computational [30] and experi-
mental studies of knot formation [9,10]. If the chain contained
self-entanglements, we gently spread the chain apart near the
entanglement to allow all chain crossings to be seen. The
entanglement was then digitally photographed. Both linear
and circular chains were studied, and the length of the chain
was varied from 1 to 3.5 mers. For each set of parameters, we
conducted 60 trials and calculated the resulting probability of
entanglement.

From a mathematical standpoint, the topological state of a
linear chain is not rigorously defined, as the free ends of the
chain can thread through loops and change the chain topology.
The ends of the chain have to be joined to form a closed loop
for topological classification, and this was facilitated by ex-
tending the free ends of a linear chain outward from the center
of mass of the chain in the experiments. On the other hand,
the topological state of a circular chain cannot be changed
without opening the chain, accordingly the circular chains in
our experiments remained unknotted throughout the tumbling
process. Nevertheless, we observed self-entanglements on the
tumbled circular chains that, akin to knots on linear chains,
would tighten upon pulling on opposite sides of the chain.
Such self-entanglements on circular chains include known
entanglements, such as slipknots. See SM [29] for a discussion
on ensuring the experimental protocol had minimal influence
on the measured entanglement probability.

III. RESULTS AND DISCUSSION

A. Entanglement probability

Figure 2 shows the probability of entanglement as a func-
tion of chain length for linear and circular chains. For both
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FIG. 2. Probability of entanglement as a function of chain length
for linear and circular chains rotated at 3.6 rotations per second for
10 s. Each data point represents the probability of chain entanglement
over 60 trials. Error bars represent standard error.

chain topologies, the probability of entanglement increases
sharply with an increase in chain length until it reaches a
plateau. This result is consistent with computational stud-
ies that demonstrated the probability of not forming a knot
for self-avoiding walks decreases exponentially with contour
length [31,32]. The observed probability of entanglement,
however, does not approach unity as has been proven math-
ematically [1]. This phenomenon was similarly observed
in previous experimental investigations into the knotting of
macroscale linear chains [14,17]. Hickford et al. [17] found
that the knotting time for granular chains is independent of
chain length, while the unknotting time increases significantly
with chain length. The balance of the knotting and unknotting
processes then gives rise to the knotting probability within a
finite time. Raymer and Smith [14] varied several parameters
in experiments with tumbling string and observed that the
knotting probability saturated at different values depending
on agitation time and string flexibility, which suggests that the
knotting probability tends to 100% with long string length,
prolonged agitation time, and high string flexibility. While we
did not vary chain flexibility, we note that increasing tumbling
time led to a substantial increase in entanglement probability
for both linear and circular chains (see Table S1 in SM [29]),
suggesting that the formation of entanglements is kinetically
limited in our experiments.

Given that the extension of a circular chain is half that
of its linear counterpart, one might expect the curves of
entanglement probability for linear and circular chains to
overlap when plotted against effective contour length (see
SM for rescaled curves). However, with the entanglement
probabilities reaching different saturation values at long chain
lengths (≈60% for linear versus ≈50% for circular), it is
worth noting that the entanglement probabilities for linear and
circular chains do not collapse onto a master curve.

B. Classification of knots on linear chains

One of the central questions in knot theory is the classifica-
tion of knots. To determine whether two knots are equivalent,
knot invariants can be calculated from the corresponding knot
diagrams, i.e., projections of the knot onto a plane. Commonly

used knot invariants are the Alexander, Jones, and HOMFLY
polynomials [28]. An alternative to computing knot invariants
is to obtain the algebraic Dowker-Thistlethwaite code of the
knot and determine the knot type from lookup tables [33].

The advantage of implementing macroscale systems is
the ability to directly visualize the chain conformation and
identify the types of self-entanglements formed [14,15]. To
determine the types of knots formed on linear chains in this
study, we calculate the Dowker-Thistlethwaite code for the
knot and compare it against a lookup table of prime knots with
up to 15 crossings [34] . For each knot, we connect the chain
ends and draw a knot diagram with an arbitrary orientation.
We traverse the knot diagram from a random starting point
and label each crossing point in ascending order, adding a
negative sign to an even number if the corresponding strand
is an over-crossing. Each crossing is encountered twice and
hence labeled by a pair of integers, one odd and one even.
The Dowker-Thistlethwaite code for the knot is obtained as
the sequence of even integers associated with the odd integers
in ascending order [33].

Figure 3 shows several examples of knots on linear chains
and identification of the knot types via calculation of the
Dowker-Thistlethwaite code. We identify ≈92% of the knots
formed on linear chains in this study (163 out of 178) as prime
knots with minimal crossing numbers between 3 and 15. At
least half of the unclassified knots can be visually identified to
be composite knots (e.g., 31#31 and 31#41) and the remaining
knots contain a substantial number of crossings, which makes
visualization difficult (see Fig. S3 in SM). We highlight that
a large majority of the knots formed are prime knots, a
finding consistent with the results of the study by Raymer
and Smith, in which ≈96% of all knots were classified to
be prime knots [14]. Among the prime knots formed, the
most commonly observed knot was the 31 knot, followed by
the 41 and 52 knots. Between the two knots with a minimal
crossing number of 5, the 52 knot was observed much more
frequently than the 51 knot (≈12% vs ≈3% of all knots).
Interestingly, several computational studies investigating the
probabilities of knot types in different random-walk models
have reported the probability of the 52 knot to be higher than
that of the 51 knot [35–38]. We conjecture that our exper-
imental setup might lead to the favored formation of twist
knots over torus knots; the flexibility of the chain coupled
with the rotating motion of the ball encourages the chain to
continuously twist itself as it tumbles, which facilitates the
formation of twist knots. It should be noted that there is no
apparent bias favoring the formation of chiral versus achiral
knots, or left versus right enantiomers of a chiral knot (see
SM [29]).

C. Topological characterization of self-entanglements
on circular chains

While knots have been well studied and can be classified
using knot invariants, self-entanglements on closed, unknotted
chains have received little attention. In this work, we seek to
characterize self-entanglements on unknotted circular chains,
i.e., circular entanglements, using known topological descrip-
tors from knot theory. Figure 4 depicts the characterization
method used for self-entanglements on circular chains in this
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FIG. 3. Identification of knot types (a) 31, (b) 52, (c) 84, and (d) 10159 on linear chains using algebraic descriptors of knots. Each knot was
digitally photographed (top) and the Dowker-Thistlethwaite code can be determined from the knot diagram (bottom).

work. The characterization method is broadly inspired by the
analysis of protein structures for the presence of slipknots,
which recognizes that the configuration of a slipknot contains
knotted subchains although the whole chain is unknotted
[39,40]. Similarly, a self-entangled circular chain is unknot-
ted as a whole, but parts of the chain can contain knotted
structures. A self-entanglement on a stretched circular chain
(Fig. 1) can be viewed as a tangle with two strands and
four ends [41]. To obtain a proper topological link, we close
each curve with an auxiliary arc, analogous to the procedure
used to convert a pair of open chains into a physical link
[42]. Starting from any end, we can traverse a strand until
another end is reached and connect these two ends to form a
closed loop. The same process can be repeated with the other
strand and its two ends. With this, a circular entanglement
can be viewed as a link of two components and we can then
determine the knot type on each component, as well as the
linking number of the link. We note that links constructed
from the circular entanglements are more complex than the
topologically classified two-component links described by the
Alexander-Briggs notation.

We demonstrate how self-entanglements on circular chains
can be characterized using as an example the most commonly

observed self-entanglement, shown in Fig. 4(a), which one
might recognize as a slipknot. We start with the top right end
and walk along the black strand in a clockwise direction until
we arrive at the top left end. Joining the two ends to form a
closed loop, we identify the black curve to be a 31 knot. The
identification of more complex knot types can be achieved via
calculation of the Dowker-Thistlethwaite code. Next, we start
at the bottom left end and traverse the opposite red strand in
a clockwise direction to reach the bottom right end. Closing
the ends into a loop, we identify the red curve to be a 01

knot, or an unknot. We can then use a link invariant—the
linking number Lk—to describe how the two components are
linked. The linking number is an approximate measure of
how many times one component winds around another and
is computed as half the sum of signs of crossings between
the two components [43]. We consider the absolute value of
the linking number, which is independent of the choice of
orientations of the two curves. The linking number of the
black and red components in Fig. 4(a) is determined to be 1.
We label this self-entanglement as (31, 01, 1), where the first
two terms are the knot types of the two curves as denoted by
the Alexander-Briggs notation and the third term is the linking
number of the components.

FIG. 4. Characterization method for circular entanglements demonstrated with (a) (31, 01, 1) and (b) (01, 01, 1 or 2). A circular
entanglement (top) is viewed as a link of two components (bottom), which allows the determination of the knot type on each component
and the linking number of the link. Since the components in the link are closed with auxiliary arcs and not strictly closed curves, the linking
number can take on two possible values in certain cases.
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FIG. 5. Examples of circular entanglements characterized by the characterization method.

Since there must be an even number of crossings between
two components of a link, the linking number is always an
integer. In the case of self-entanglements on circular chains,
however, because the opposing strands are not strictly closed
curves and instead closed with auxiliary arcs, one component
does not necessarily cross the other an even number of times.
Figure 4(b) shows an example of a circular entanglement that
cannot be characterized by a single linking number. Following
the characterization protocol, we identify the black and red
curves to be 01 knots. The two components cross each other
five times, which results in a linking number of either 1 or 2,
depending on the sign of the nonexistent crossing.

Using the characterization method, we are able to char-
acterize 96% of the self-entanglements formed on circular
chains in this study (118 out of 123). The rest of the circular
entanglements contain a large number of crossings, which
makes visualization difficult (see Fig. S4 in SM). Among
the characterized self-entanglements, the identified knot types
on individual curves have minimal crossing numbers ranging
from 0 to 12 and the links have linking numbers between 0
and 5. Note that a linking number of 0 does not necessarily
mean the components are unlinked; the Whitehead link is
an example of linked curves that have a linking number of
0. The most commonly observed circular entanglement was
(31, 01, 1), followed by (41, 01, 1), accounting for 37% and
9% of the circular entanglements respectively. The frequent
occurrence of (31, 01, 1) suggests that it is the simplest self-
entanglement that can be formed on circular chains. We point
out that 4% of the circular entanglements consist of multiple
entanglements, such as a pair of (31, 01, 1) on the same chain,
that can be seen as being analogous to composite knots on
a linear chain. Figure 5 shows various self-entanglements
on circular chains and how they are characterized by our
characterization method. Through the utilization of simple
topological descriptors from knot theory, we can characterize
complex self-entanglements with many crossings, for exam-
ple (73, 01, 5) and (946, 01, 0). Furthermore, we find that it
is possible to distinguish between circular entanglements that

appear to be similar, such as (31, 01, 1) and (31, 01, 2), as well
as (52, 01, 1) and (52, 01, 2).

Since the characterization method is based on envisioning
the self-entanglement as a tangle with two opposing strands,
we imagine that the way in which the circular chain was
extended to allow for visualization of the entanglement can
affect the precise characterization of a complex entanglement.
We highlight that the goal of the characterization method is
not to fully classify self-entanglements on circular chains,
but to be used as a way to systematically gauge the com-
plexity of a circular entanglement. Indeed, the characteriza-
tion method is unable to uniquely classify different types
of circular entanglements. Figure 6 shows an example of
two noticeably different circular entanglements that have the
same characterization. Both entanglements contain 31 and 01

knots on the individual curves and the linking number of the
link is 1, yet one readily observes the distinction between
the entanglements. It is possible to employ more topological
descriptors to achieve a more fine-grained characterization of
the entanglements. For example, we can exploit the concept of
writhe from the mathematical description of supercoiled DNA
[44] to distinguish between the two entanglements shown in
Fig. 6. However, for the purpose of this study, the character-
ization method at present suffices to broadly categorize the
circular entanglements observed and give a rough measure of
the complexity of circular entanglements generated in the ex-
periments. While the method is not a mathematically rigorous
classification scheme, it can form a conceptual foundation for
thinking about self-entanglements on circular chains and to be
further built upon.

D. Types of self-entanglements

Having systematically characterized the self-
entanglements formed on linear and circular chains, we
now consider the types and complexity of self-entanglements
formed as the chain length is varied. For this analysis,
we ignore composite and unidentifiable entanglements.
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FIG. 6. Two distinct circular entanglements that have the same characterization.

Figure 7(a) shows the number of different types of
entanglements observed on linear and circular chains as
a function of chain length, normalized by the total number of
unique entanglements observed across all experiments for the

FIG. 7. (a) Fractional number of unique entanglements observed
as a function of chain length for linear and circular chains. (b) Left
axis: Mean minimal crossing number as a function of chain length
for linear and circular chains. Right axis: Mean linking number as
a function of chain length for circular chains (blue diamond). The
linking numbers of circular entanglements with ambiguous linking
numbers are reported as the average of the possible linking numbers.
Error bars represent standard error.

corresponding chain topology. For both linear and circular
chains, we observe an increase in the number of unique
entanglements with chain length until a plateau is reached,
similar to the saturation of knotting probability at long chain
lengths.

A standard measure of knot complexity is the minimal
crossing number of the knot. To gauge the complexity of
a circular entanglement, we sum up the minimal crossing
numbers of the knots identified on opposing strands of the
entanglement. For example, we consider the minimal crossing
number of (31, 01, 1) to be 3. In Fig. 7(b), we plot the
mean minimal crossing number as a function of chain length
for linear and circular chains. The mean minimal crossing
number for both linear and circular chains rises sharply with
increasing chain length and plateaus at long chain lengths,
akin to the number of unique entanglements observed and
entanglement probability. Like knots formed on linear chains,
self-entanglements formed on circular chains become more
complex as the chain length becomes longer. While the mean
minimal crossing number exhibits a dependence on chain
length, the mean linking number for circular chains [Fig. 7(b)]
does not vary significantly across chain length. This is perhaps
unsurprising, as the linking number is a simple invariant that
gives only a rough measure of how two components are linked
together. It is easy to see that two curves can wind about
each other in both directions and negate the sum of crossing
signs, which is why a linking number of 0 does not indicate
the components are disjointed. Hence, we highlight that the
linking number is a useful tool for characterizing circular
entanglements, but it does not necessarily reflect complexity
of the entanglement. See SM [29] for histograms of minimal
crossing number and linking number for self-entanglements
on linear and circular chains of various chain lengths.

E. Mechanism for self-entanglement of circular chains

The ability of circular chains to self-entangle in the absence
of chain ends motivates us to conjecture the mechanism of
forming self-entanglements on circular chains. To gain insight
into the possible entanglement mechanisms, we consider in
detail pathways to form several simple self-entanglements
on circular chains (Fig. 8). As shown in Figs. 8(a) and 8(b),
the formation of the simplest and most commonly observed
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FIG. 8. Examples of possible pathways for forming self-
entanglements on circular chains. (a) (31, 01,1); (b) (41, 01,1);
(c) (51, 01,2).

self-entanglements—(31, 01, 1) and (41, 01, 1)—involves
twisting of the chain and passing of a double-folded segment
through another double-folded segment on the same chain.
The configuration in which a double-folded segment opens
up and penetrates another double-folded segment on the
same chain is known as self-threading, and threadings
have been reported to slow down ring polymer dynamics
both computationally [45–47] and experimentally [27]. It
is interesting to observe the disparity in occurrences of
(31, 01, 1) and (41, 01, 1) despite the degree of similarity
in entanglement pathways, with the only difference being
a loop threaded under or over through another loop. In an
investigation into knot formation on freely hanging chains
shaken vertically, Belmonte et al. [15] found that the 41 knot
occurs more frequently than the 31 knot, a result of the 31

knot untying more easily. We recognize that the probability
of a given entanglement occurring depends on not only the
entanglement pathway, but also the untangling dynamics.

The least complex circular entanglements result from
a combination of twisting and threading of the chain,
which suggests that the formation of more complex self-
entanglements is built upon a series of twists and threadings.
We delve into the formation pathway of a more complex self-
entanglement (51, 01, 2), depicted in Fig. 8(c). The first half
of the pathway is the same as that for (31, 01, 1), and the sec-
ond half involves a double-folded segment weaving through

another double-folded segment within the growing tangle.
With the addition of one self-threading, the circular entangle-
ment becomes moderately complex compared to (31, 01, 1).
We can imagine that a combination of just a few chain twists
and threadings is sufficient to build up to a complex circular
entanglement. While the entanglement pathways illustrated in
Fig. 8 may not represent the only ways in which the given
self-entanglements can form on circular chains, the possible
mechanisms shed light on what gives rise to circular entan-
glements. In our recent experimental study on self-entangled
circular DNA [27], we postulated that the self-entangled states
were induced by self-threadings, but were unable to confirm
this by direct visualization of individual molecules given the
length scales involved. The possibility that circular molecules
can self-entangle by forming double-folded knots was deemed
negligible due to the energetically unfavorable configuration
of having two halves of the chain align together [48]. Our
hypothesis is supported by the results of the current study,
which suggests that circular entanglements originate from a
series of chain twists and self-threadings.

IV. CONCLUSION

In this work, we studied the self-entanglement of circular
chains using a macroscale system of granular chains tumbled
in a rotating ball. We investigated the probability of forming
self-entanglements on circular chains and found that the en-
tanglement probability increases sharply with chain length un-
til it reaches a plateau at long chain length, much like the en-
tanglement probability on linear chains. Using a characteriza-
tion method based on treating a self-entangled circular chain
as a link of two components, we were able to characterize the
majority of circular entanglements formed with known topo-
logical descriptors from knot theory. We used the sum of mini-
mal crossing numbers of knots on the two curves comprising a
circular entanglement as a measure of entanglement complex-
ity and observed an increase in entanglement complexity with
an increase in chain length for circular chains, similar to the
trend seen with linear chains. By hypothesizing how the sim-
plest self-entanglements form on circular chains, we acquired
an understanding of the mechanism for forming circular en-
tanglements. Self-entanglements on circular chains generally
arise from a series of twisting and threading of the chain, with
just a few twists and threadings sufficient to induce a complex
self-entanglement.

The results of this study highlight the advantages of im-
plementing macroscale systems to probe microscale systems.
Previous single-molecule DNA experiments performed by
our group [27] concluded that circular molecules can self-
entangle and remain in an entangled state for long time scales,
but due to the resolution limit of the optical system, the
nature of the self-entangled states could only be inferred from
relaxation dynamics. With a macroscale system of granular
chains, we are able to directly visualize the chain conforma-
tion and examine the self-entanglements on circular chains.
Furthermore, it is much easier to control and systematically
vary experimental parameters with macroscale systems in
comparison to microscale experiments. Indeed, macroscale
systems have gained recent interest as tools to explore a
wide range of topics in polymer physics [18,49]. Looking
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forward, we hope that this work motivates further studies
into the entanglements of macroscale chains, for example,
the untangling dynamics of self-entanglements on circular
chains or self-entanglements on chains with other complex
topologies.
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