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In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas

D. Huber,1,* H.-W. Hammer,1,2,† and A. G. Volosniev1,3,‡

1Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

3Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria

(Received 28 August 2019; published 16 December 2019)

We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We
consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity
interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have
equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction,
such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of
the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We
interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and
refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no
in-medium bound states. Second, we construct an effective model to describe these interactions, and compare
its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal
masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the
Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the
absence of the Fermi gas.
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I. INTRODUCTION

An environment with mobile impurity atoms is a cherished
model system in quantum physics. It is a test bed for intro-
ducing and testing quasiparticle concepts, e.g., polarons and
bipolarons, which naturally appear when studying the move-
ment of electrons in crystals [1–3], 3He atoms in superfluid
4He [4], or even protons in neutron matter [5]. Nowadays,
these concepts can be examined using quantum simulators
based upon ultracold atoms [6–11]. An important topic that
can be addressed with cold-atom systems is the physics of
impurity-impurity correlations induced by a medium [12–23].
This topic is relevant for basic research, and in applications
motivated by bound states of dressed electrons and their
relation to high-Tc superconductors [24].1
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1Experiments with ultracold atoms can give important insight into
the physics of induced attractive potentials between dressed elec-
trons. However, atoms interact via short-range potentials limiting the
relationship between impurities in cold atoms and dressed electrons.
For example, the predicted abrupt change of the mean distance
between two polarons across the unbound polarons–to–bipolaron

In this paper, we calculate the ground-state energy of a one-
dimensional (1D) Fermi gas with two bosonic impurities; see
Fig. 1. One-dimensional geometries typically enhance interac-
tion effects [27] opening up the possibility of observing bound
states supported by the induced attraction.2 Another feature
that separates one spatial dimension from higher dimensions
is the long-range tail of correlations. For example, Friedel
oscillations [29] decay as ∼1/rD, where D is the dimension of
space. These enhanced correlations may be useful to simulate
many-body phenomena beyond short-range physics typical
for cold atoms.

Our paper is organized as follows. We start by introducing
the Hamiltonian of our 1D model in Sec. II. In Sec. III,
we study impurity-impurity correlations in the limiting case
of equal masses, M = m. All interactions are identical and
parametrized by Dirac delta functions. The fermions do not
interact among each each other due to the Pauli exclusion
principle. The system is solvable by the Bethe ansatz, which
is a common starting point for analyzing cold-atom systems
in 1D geometries [30–32]. In Sec. IV, we go on to discuss
effective models for describing two impurities in a medium
and benchmark them against the Bethe ansatz results. After-
ward, we use the effective models to investigate nonintegrable
systems; our focus is on the appearance of in-medium bound
states. We discuss the transition from unbound impurities to

transition [25] most probably cannot be simulated in these experi-
ments because the Coulomb interaction is an important ingredient
for observing this effect [26].

2Note that any attractive potential supports at least one bound state
in the 1D world [28].
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FIG. 1. An illustration of the system: Two bosonic impurities
in a one-dimensional Fermi gas. Periodic boundary conditions are
employed; i.e., the system lives on a ring of radius R. The mass of an
impurity (fermion) is denoted by M (m).

bound impurities, which can be tested in cold-atom experi-
ments, for example, by measuring the spectroscopic response
or by studying the collapse dynamics [23] in imbalanced
Bose-Fermi mixtures. Finally, Sec. V contains a summary of
our results and an outlook.

II. FORMULATION

We consider two bosonic impurities interacting via a
zero-range potential with Nf spinless (fully spin polarized)
fermions. For convenience, we assume that Nf is an odd
number. This assumption does not limit the generality of our
results as we are interested in the limit Nf → ∞. Note that
the bosons may, in principle, possess spin quantum numbers.
However, the bosonic spin part of the wave function is not
important for our discussion, since we focus on the ground
state. It is only necessary that the wave function be symmetric
with respect to the exchange of the spatial coordinates of the
impurity atoms. The particles are confined to a ring of radius
R; see Fig. 1. The Hamiltonian for the system reads

H = Hf + Hb + Vf b, (1)

where Hf describes fermions:

Hf = −
Nf∑
j=1

h̄2

2m

∂2

∂X 2
j

, (2)

with m the fermion mass. Hb describes the impurity bosons:

Hb = − h̄2

2M

∂2

∂Y 2
1

− h̄2

2M

∂2

∂Y 2
2

+ gIIδ(Y1 − Y2), (3)

where M is the boson mass, and gII is the strength of the
boson-boson interaction. The interaction between fermions
and bosons is written as

Vf b = g
∑
i, j

δ(Yi − Xj ), i = 1, 2; j = 1, . . . , Nf , (4)

where g is the corresponding interaction strength. We solve
the Schrödinger equation Hψ = εψ for the ground state for
different Nf and sizes L = 2πR of the system. Then, we
extrapolate the energies to the thermodynamic limit, Nf , L →
∞, assuming a fixed density of the Fermi gas, Nf /L = ρ.
For convenience, we introduce the dimensionless quantities
y j = Yjρ, x j = Xjρ, l = Lρ, cII = mgII/(h̄2ρ), c = mg/
(h̄2ρ), and ε = 2mε/(h̄2ρ2).

Note that working with a finite number of particles allows
us also to study the transition of the energy from a few-
to many-body limits, an exciting research venue, which can
be addressed with cold atoms [33–35]. We observe that the
ground-state energies of systems with Nf on the order of
10–20 particles can be accurately described using the results
derived in the thermodynamic limit.

III. SOLVABLE LIMITS

A. Bethe-ansatz-solvable case

First, we consider the most symmetric case: cII = c and
m = M, whose Hamiltonian we write as

hBA = −
N∑

j=1

∂2

∂x2
j

+ 2c
N∑

j<l

δ(x j − xl ), (5)

where N = Nf + 2; we set xN−1 = y1 and xN = y2 to explic-
itly demonstrate the particle exchange symmetry. The ground
state of hBA with fermions at the coordinates (x1, . . . , xNf )
and bosons at (xN−1, xN ) can be studied experimentally with
SU(3)-symmetric fermions, e.g., with 173Yb [36]. Indeed, the
ground state of SU(3) fermions with the particle decompo-
sition Nf + 1 + 1 has a bosonic symmetry for the exchange
of the particles in the 1 + 1 subsystem. To understand this,
note that (i) the particles in the 1 + 1 subsystem are distin-
guishable particles and, hence, there exist no a priori sym-
metry requirements for their exchange; (ii) the Hamiltonian
hBA commutes with the particle exchange operator; (iii) the
bosonic symmetry leads to the lowest energy. Furthermore,
we expect that the ground-state energies of isotopic systems
with a small mass imbalance, e.g., 6Li-7Li and 39K-40K
(cf. [37,38]), can be accurately described by Eq. (5).

The spectrum of the Hamiltonian hBA can be found using
the Bethe ansatz (BA) [39]. Let us briefly summarize this
approach. For every ordering of particles (e.g., for x1 < x2 <

· · · < xN ), the wave function is written as a sum of the plane
waves ei

∑
j k j x j . For this wave function to fulfill the boundary

conditions at xi = 0, xi = l , and xi = x j for all i and j, the
quasimomenta k j must satisfy the BA equations

eik j l = k j − 	1 + ic
2

k j − 	1 − ic
2

k j − 	2 + ic
2

k j − 	2 − ic
2

, 1 � j � N ;

N∏
j=1

k j −	1+ ic
2

k j −	1− ic
2

=1,

N∏
j=1

k j −	2+ ic
2

k j −	2− ic
2

=1; (6)

where the bosonic and fermionic symmetries have already
been implemented [40–42]. 	1 and 	2 are to be determined
together with the set {k j}. Once the BA equations are solved,
the energy of the system is determined as ε = ∑N

j=1 k2
j . Note

that the number of unknowns in Eqs. (6) for the ground
state can be reduced to (Nf + 3)/2 from Nf + 4. Indeed, the
total (angular) momentum must be zero in the ground state,∑

j k j = 0. This together with the fact that the wave function
is real makes the quasimomenta appear in pairs (we exemplify
this below). In addition, one can show that 	1 = −	2.

To solve Eq. (6) for the ground state, we apply Newton’s
method, which requires an accurate initial estimate of k j and
	 j . For c → 0, we obtain this estimate directly from the BA
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equations (see Appendix A):

k1 �
√

3c

l
, k2 � −

√
3c

l
, k3 � 0,

k j � k(0)
j + 2c

k(0)
j l

, for 4 � j � N ; (7)

	1 �
√

c

l
, 	2 � −

√
c

l
,

where k(0)
j are the quasimomenta at c = 0. Note that in Eq. (7)

the quasimomenta are related pairwise, e.g., k1 = −k2, as
has already been mentioned. The only nonpaired quasimo-
mentum is k3 = 0. Estimate (7) allows us to calculate {ki}
and obtain solutions for weak interactions, |c| � 1. We then
follow the solutions as c is changed in small steps. An initial
guess for moderate interactions is obtained from a Taylor
series constructed using solutions at smaller values of |c|; see
Appendix B.

We solve Eq. (6) for a sequence of Nf and extrapolate
to the thermodynamic limit. To this end, we subtract from
the energy the zero-interaction offset and fit the difference
with ε(c) − ε(0) = ε∞ + A1/N + A2/N2, where ε∞, A1, and
A2 are fitting parameters. It is straightforward to argue for
the form of the fitting function, ε∞ + A1/N + A2/N2, in the
case of strong interactions (c → ±∞) for which the energies
can be calculated using a noninteracting Fermi gas. We do not
attempt to validate the fitting function for finite values of c,
since we observe that the form of the function is not important
for our analysis (see Appendix C).

To investigate induced correlations in the thermodynamic
limit, we introduce the “in-medium binding energy” E =
ε∞ − 2E , where E is the energy gain for immersing one im-
purity in a Fermi gas [43,44] (see Appendix D). The quantity
2E describes the energy of two noncorrelated impurities. E is
presented in Fig. 2. Note that E cannot be positive, since any
induced correlations between impurities must vanish when
they are far apart. If E = 0 the two impurities are not corre-
lated, in general; they are infinitely far from each other. In this
case, we say that there is no in-medium bound state, whereas
if E < 0 then there is at least one. Next, we analyze cases with
c < 0 and c > 0 separately.

Repulsive interactions, c > 0. We calculate the energy for
c � 2 and find that E = 0 (within numerical accuracy), which
means that there are no in-medium bound states. In principle,
an in-medium bound state is possible for two impurities that
repel each other without the Fermi gas. This can happen if the
energy cost of embedding an impurity in the medium is larger
than the cost of bringing the impurities close together. Our
calculations show that an in-medium bound state does not ap-
pear when cII = c > 0. For c → 0 it can easily be understood
that E = 0, since the impurity-impurity interaction without
the Fermi gas scales as c [see Eqs. (3) and (5)], whereas the
induced impurity-impurity interaction is expected to scale as
c2 (see Sec. IV). Therefore, the interaction volume, i.e., the
space integral of the effective impurity-impurity interaction,
is necessarily a small positive quantity for c → 0, which does
not allow for the existence of a bound state [28,46].

In the limit of strong interactions some extra insight can
also be gained. For c → ∞ the important degrees of freedom

FIG. 2. The (blue) dots show the in-medium binding energy of
two bosonic impurities in a Fermi gas for the Bethe-ansatz-integrable
case; the size of the dots can be used as an estimate for an error
from the fitting procedure used to obtain the thermodynamic limit
(see Appendix C). The solid (blue) curve is added to guide the eye.
The dashed (orange) curve shows the binding energy of two bosons
without the Fermi gas. We interpret the gap between the dashed
curve and the dots as a manifestation of attractive impurity-impurity
interactions mediated by the Fermi gas. For comparison, we also
present the ground-state energy of two bosons and one fermion [45];
see the solid (black) curve.

are spins [47–50], which allows one to map the Hamiltonian
hBA onto an XX spin chain [51] with constant coefficients,

hBA → −J

2

∑ (
σ i

xσ
i+1
x + σ i

yσ
i+1
y

)
, (8)

where σ i
x and σ i

y are the Pauli matrices acting on the spin at site
i; J is an exchange coefficient proportional to 1/c; see [52] for
the derivation in a homogeneous environment. The system in
Fig. 1 with c → ∞ is then identical to a linear spin chain with
two spin deviates (magnons) for which a bound state is not
expected [53].

Attractive interactions, c < 0. Figure 2 shows that for c<0
there is an in-medium bound state whose energy is below
the ground-state energy of the Hamiltonian that describes
two bosons without the Fermi gas, i.e., Hb from Eq. (3).
This lowering of the energy is a manifestation of the induced
impurity-impurity correlations, which we interpret in Sec. IV
using an effective impurity-impurity potential. Since we are
interested in interactions mediated by the Fermi gas, we do
not discuss in this paper the limit c → −∞, which implies
the formation of a tightly bound trimer (in analogy to trions in
SU(3) symmetric Fermi gases [31]). This trimer is supported
by the fundamental (not induced) interaction, and hence is
beyond the scope of this paper. For the sake of discussion,
we present the energy of a trimer in Fig. 2. We expect that
this energy, −2c2, determines the behavior of the system as
c → −∞. In the rest of the paper, we only explore c � −2.

B. Two static impurities

Before we discuss effective models that describe two mo-
bile impurities in a sea of fermions, we consider two static
impurities M → ∞—another analytically solvable limit of
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FIG. 3. The energy of a Fermi gas with two static impurities. The
dots show our results for c = −0.5. The curve shows the fit to the
long-range tail [54,55] B cos(Ar + δ)/r for c → 0, where A, B, and δ

are fitting parameters. Note that the fit is accurate almost everywhere,
except the region of r → 0, where the exact result must be used. The
inset presents the integral of EBO over the entire space.

the Hamiltonian (1). The solution is obtained by solving the
one-body problem: one particle in a ring with a potential due
to the two impurities fixed at −r/2 and r/2,

hBO = − ∂2

∂x2
+ 2c

[
δ

(
x − r

2

)
+ δ

(
x + r

2

)]
, (9)

where the subscript emphasizes the connection to the Born-
Oppenheimer (BO) approximation, which will be employed
below. The spectrum of hBO depends on the distance r.
We calculate this dependence only for attractive interactions,
i.e., c < 0; the repulsive case can be calculated in a similar
manner. To obtain the ground-state energy of the Fermi gas,
εBO(c, r), we add the energies of the lowest Nf eigenstates of
the Hamiltonian hBO (see Appendix E). The thermodynamic
limit is calculated by extrapolating the results for systems
with different values of Nf and l and a fixed ratio Nf /l .
We observe that already for Nf � 19 the energy for small
values of r can be used (for our discussion) as the energy
in the thermodynamic limit. The solution for r → ∞ can be
obtained by fitting to the known form of the tail [54,55].

Figure 3 illustrates the energy EBO(r) = εBO(c, r) −
εBO(0, r) − 2Estatic for c = −0.5 (we assume that gII = 0 for
the sake of discussion). Estatic is the energy gain for immersing
a single static impurity in a Fermi gas [56]:

Estatic(c) =
(

π + c2

π

)
arctan

(
c

π

)
+ c − c2

2
. (10)

The quantity EBO has a deep minimum at r = 0 given by
Estatic(2c) − 2Estatic(c) and an oscillatory tail. To derive this
limiting value, note that when both impurities are at r = 0,
they act as a single impurity with the strength 2c. For c → 0
the tail can be written simply as c2 cos(Ar + δ)/r, where A
and δ are constants. This tail can be obtained from Friedel
oscillations [29].3 These oscillations determine the density of
the Fermi gas at the position of the second impurity, provided

3An alternative derivation is given in Refs. [54,55].

that the first impurity is separated by the distance r. This
density in turn determines the energy of the system, according
to first-order perturbation theory. It is worthwhile noting that
the dependence of EBO on r is observable. It can, in principle,
be probed in cold-atom experiments by spectroscopy [54].

IV. EFFECTIVE MODEL

A. Bethe-ansatz-solvable system

The ground state of a one-dimensional Fermi gas
(Nf → ∞) with a single interacting impurity is orthogonal
(for all nonzero values of interaction strengths) to the ground
state of the corresponding noninteracting system. This phe-
nomenon is related to the Anderson orthogonality catastrophe
[57]. For the SU(2)-symmetric case it can be conveniently
studied using the BA equations [58]. This orthogonality re-
duces the applicability of the polaron picture. For example,
the dynamics after a sudden change of parameters cannot
be captured by a single quasiparticle; instead it requires a
continuum of states. Still, the notion of the effective mass and
self-energy can be used to describe the low-energy spectrum
of a Fermi gas with one impurity [43,44,58–60], suggesting
the use of the following Hamiltonian to model the binding
energy for the system of two impurities:

heff = − m

meff

∂2

∂y2
1

− m

meff

∂2

∂y2
2

+ W (y1 − y2), (11)

where meff (c) is the effective mass of the impurity whose
analytical form is presented in Refs. [44,58,59], so that the
Hamiltonian heff with W = 0 correctly describes the low-
energy spectrum of two noninteracting impurities. For sim-
plicity, we work with the expansion of the effective mass
truncated at the order O(c4),

meff

m
�1+ c2

π4
+

(
2

π6
− 1

6π4

)
c3+

(
4

π8
− 1

2π6

)
c4. (12)

The terms of the order O(c5) can be neglected for interactions
considered here, c ∈ (−2, 0). This equation shows that the
mass does not increase by more than a few percent for the
considered parameters.

The function W in Eq. (11) describes the impurity-impurity
correlations. We choose it as

W (y1 − y2) = 2cδ(y1 − y2) + V (y1 − y2), (13)

where the first term is the interaction between impurities with-
out the Fermi gas; the second term is an effective interaction
mediated by the environment. Note that the exact shape of V
is not required for our purpose. We are interested in the weak
and moderate interaction regimes for which the knowledge
of a few integrated properties of V is sufficient; e.g., only∫

V (y)dy determines the binding energy for c → 0. Indeed,
the ground-state energy Eeff of heff for weak interactions
reads [28,46]

Eeff � −meff

8m

[∫ ∞

−∞
W (y)dy

]2

, (14)
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where the integration is over the whole system in the thermo-
dynamic limit. This expression can be expanded as

Eeff = −c2

2
− c

2

∫
V (y)dy + O(c4), (15)

where we assume that
∫

V dy scales as c2 (see below) to
estimate the neglected pieces. Note that the renormalization
of mass enters in O(c4) meaning that this effect may be
disregarded for c → 0 when compared to the effect of the
two-body effective interaction. The first term in Eq. (15) is the
ground-state energy of two particles without the Fermi gas.
The integral

∫
V dy must be negative to ensure that the energy

of the in-medium bound state is below −c2/2 as in Fig. 2.
Therefore, the effective interaction must be overall attractive.
Let us discuss the two (arguably) simplest approximations that
can be used to appropriately choose V .

Zero-range potential. The most basic form of V in Eq. (13)
consistent with the first two terms of the expansion (15) is the
zero-range (ZR) potential

VZR(y1 − y2) = −κδ(y1 − y2), (16)

where κ ≡ |∫ V dy|. This potential can be used to reproduce
low-energy properties of two impurities when higher-order
terms in Eq. (15) are not important. The parameter κ can be
obtained, for example, from a single-phonon exchange [13], in
which case κ = 2c2/π2 � 0.202c2 for c → 0. If the potential

WZR(y1 − y2) = [2c − 2c2/π2]δ(y1 − y2) (17)

is used in Eq. (11) then a single bound state with the energy

EZR
eff = −meff

2m
(c − c2/π2)2 (18)

is produced. This effective model captures qualitatively the
exact results; see Fig. 4 (top). We show the ground-state
energies of heff with meff from Eq. (12) and with meff = m,
to illustrate that the mass renormalization leads only to a
marginal correction for the considered values of c.

Induced interaction from the Born-Oppenheimer approxi-
mation. The potential V in Eq. (13) can also be derived in the
Born-Oppenheimer approximation, where it is assumed that
the Fermi gas follows the impurity adiabatically. The potential
in this case is simply the energy in Fig. 3. This approximation
must be accurate if the impurities are very heavy. For mobile
impurities this approximation is useful if the impurities move
slowly in comparison to the Fermi velocity, which defines the
dispersion of a sound mode in a Fermi gas.

The function EBO(y1 − y2) decays as 1/|y1 − y2|; however,
it leads to an effectively short-range potential due to the
oscillatory tail. For example,

∫
EBO(y)dy is well defined.

We calculate that |∫ EBO(y)dy| � 0.22c2 for c → 0. This is
slightly larger than κ � 0.202c2 for the zero-range potential
discussed above. Even though the long-range tail is not ex-
pected for integrable systems [13], the potential EBO performs
as well as the zero-range potential, confirming that only
integral properties of V are important. Figure 4 (center) gives
the binding energy calculated using the potential

WBO = 2cδ(y1 − y2) + EBO(y1 − y2). (19)

Figure 4 (bottom) shows the quantity E + c2/2 to single out
the effect of the induced interaction. The center and bottom

FIG. 4. The in-medium binding energy of two impurities in
a Fermi gas compared to the zero-range and Born-Oppenheimer
approximations. The dots show the exact BA results as in Fig. 2,
while the dashed curve shows the binding energy of two bosons
without the Fermi gas. Top: Comparison to the zero-range approx-
imation, Eq. (18), with meff from Eq. (12) (circles) and the result for
meff = m (crosses). Center: Comparison to the Born-Oppenheimer
approximation with the potential from Fig. 3 and meff from Eq. (12)
(circles) and the result for meff = m (crosses). Bottom: The data from
the center panel shifted by c2/2 and displayed on a larger scale.

panels of Fig. 4 demonstrate that the EBO can be used to qual-
itatively analyze in-medium bound states. We note that the
difference between the filled and empty circles in Fig. 4 (bot-
tom) for |c| < 0.5 can be fitted with −0.036c2 − 0.1873c3,
which demonstrates the importance of terms with cn, n>2.
To reduce this disagreement between the exact results and
the effective model one can include couplings between eigen-
states of hBO due to the motion of the impurities. We leave this
discussion for future studies.
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To calculate the data in Fig. 4 (center, bottom), we exactly
diagonalize the Hamiltonian heff from Eq. (11) with WBO: We
use the eigenstates of the effective Hamiltonian with WBO = 0
as a basis to write heff as a matrix and diagonalize this matrix
after truncation. The energy is found by fitting to the form
EK = Eeff + D/K , where K is the number of used basis states
and D, Eeff are fitting parameters. This slow 1/K convergence
is expected for zero-range interactions [61].

Other potentials. The effective potential can also be calcu-
lated using other approximation schemes. For example, trial
wave functions [16,25,62] can be used. We do not discuss
those approaches here. However, we note that different meth-
ods may lead to different shapes of the effective potential.
This is not surprising, since the effective potential is not an
observable quantity for mobile impurities.

B. Nonintegrable cases

Motivated by the accuracy of the effective model (11)
for the most symmetric case, we extend this model to study
appearance of in-medium bound states in nonintegrable sys-
tems, i.e., cII 	= c and/or m 	= M. We write the corresponding
effective Hamiltonian as

heff = − m

M

∂2

∂y2
1

− m

M

∂2

∂y2
2

+ 2cIIδ(y1 − y2) + V (y1 − y2),

(20)

where we use meff = M for simplicity. This approximation
relies on the observation that the mass renormalization is not
important for the Bethe-ansatz-integrable case for weak inter-
actions. heff supports a bound state for all cII < 0 because the
induced interaction is attractive. For cII > 0 the bound states
appear only if cII < ccr

II for which the repulsive impurity-
impurity interaction in the absence of fermions is overtaken
by the attractive interaction mediated by the Fermi gas.

We first consider the case when cII 	= c and m = M, in
which the particle exchange symmetry is broken by the in-
teraction term.4 The kinetic energy is still symmetric with
respect to the exchange of two particles. We calculate bind-
ing energies using the zero-range effective potential and the
potential from the adiabatic approximation; see Fig. 5 (top).
Both potentials lead to similar results for cII = 0 and small
values of c. Note that in this regime the one-phonon exchange
potential gives a leading contribution in c. For larger values of
c the ZR potential must be corrected.

For cII = 0.2 the ZR potential predicts that the in-medium
bound state is formed at smaller values of c in comparison to
the BO potential; see Fig. 5 (top). The difference between ccr

II
in the two methods is, however, marginal and one can use the
ZR potential to derive the critical value for the appearance of
the bound state:

ccr
II � c2

π2
. (21)

4For strong interactions, this case can still be studied with inte-
grable Heisenberg Hamiltonians using the mapping onto a spin chain
[47–50]. We do not discuss this limit here; instead we focus on the
regimes with weak and moderate interactions.

FIG. 5. The ground-state energy for two impurities in a Fermi
gas in nonintegrable cases. We show results for the effective Hamil-
tonian heff with meff = M for the BO potential from Fig. 3 and the ZR
approximation in Eq. (18). Top: Comparison of ZR and BO results
in the case M = m for cII = 0 (two lower curves) and cII = 0.2
(two upper curves). Middle: Impact of the mass ratio. Comparison
of the BO results for M = m (curves) and M = 2m (curves with
dots) at cII = 0 and cII = 0.2. Bottom: Comparison of ZR and BO
potentials for the mass ratio of a 133Cs/6Li mixture at cII = 0 (two
lower curves) and cII = 0.2 (two upper curves).

The transition from an overall repulsive to an overall attractive
induced interaction can be studied in Bose-Fermi mixtures by
looking, for example, at the collapse dynamics [23]: a Bose
gas can be stable only if its particles repel each other. One
could also study spectroscopically the energy needed to break
a bound state by transferring the system into a noninteracting
state. Let us estimate the in-medium binding energy for m =
M. For c = −2 and cII = 0, we have E � −0.06 [see Fig. 5
(center)], which for 6Li atoms with ρ = 3/(μm) translates
into � 22 nK × kB, where kB is the Boltzmann constant. This
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means that in-medium bound states can be observed only at
ultracold temperatures.

The in-medium binding energy can be increased if the
impurities are heavy, cf. Eq. (14) with meff = M. To explicitly
show this, we consider cII 	= c and m 	= M. In this case both
the interaction and kinetic energies are not symmetric with
respect to the exchange of two particles. For the sake of dis-
cussion, we first use the BO potential to calculate the energies
of the system with M = 2m; see Fig. 5 (center). The behavior
of the energy resembles that for m = M, but, as expected,
the overall energy scale is now larger. It is worthwhile noting
that the critical value ccr

II obtained using the ZR approximation
does not depend on the mass M. The dependence of ccr

II on M
is also negligible for the BO potential. Therefore, Eq. (21) can
be used to predict the appearance of bound states for different
masses of the impurity.

Finally, we consider two bosonic 133Cs atoms in a
fermionic gas of 6Li as in the experiment of Ref. [23]; see
Fig. 5 (bottom). We use both the Born-Oppenheimer potential
and the zero-range potential. Note however that for M 
 m
the former is expected to perform better than the latter. For a
Li-Cs mixture the energy scale is larger than that for lighter
impurities and the bound states should be observable at much
higher temperatures.

V. SUMMARY AND OUTLOOK

We investigate the problem of two bosonic impurities in a
spin-polarized Fermi gas. First, we consider the ground-state
energy of the system in the Bethe-ansatz-solvable case, i.e.,
equal masses of fermions and impurities, m = M, as well
as equal impurity-impurity and impurity-fermion interactions,
cII = c. We calculate the ground-state energy and show that
there are attractive impurity-impurity interactions induced
by the fermionic medium. In the next step, we discuss an
effective model for the induced interactions and compare its
predictions to the exact results. We use two effective potentials
to define the effective Hamiltonian for the impurity system:
a zero-range potential matched to single-phonon exchange
and an adiabatic potential for heavy impurities derived in
the Born-Oppenheimer approximation. Both potentials are
able to approximate the exact results from the Bethe ansatz.
The difference between the two model potentials for m = M
allows us to estimate the errors and the breakdown of our ef-
fective Hamiltonian. For the Bethe-ansatz-integrable case the
difference between the results derived using the two effective
potentials is marginal, which argues in favor of using them for
qualitative analysis of Fermi gases with impurities.

The success of the effective model in the integrable case
motivates our use of the effective model to study noninte-
grable systems characterized by relaxing at least one of the
two conditions m = M and cII = c. For repulsive impurity-
impurity interactions without the Fermi gas, cII > 0, we pre-
dict that the induced interaction overcomes the repulsion if the
impurity-fermion interaction satisfies c < −π

√
cII , leading to

an in-medium bound state. The binding energies are larger
for heavier impurities such that the observation of in-medium
bound states in heavy-light mixtures appears more promising.

Our findings show that the Bethe-ansatz-solvable models
provide a playground for investigating induced interactions.

In the future it will be interesting to use the Bethe ansatz
equations (6) to investigate spatial correlations of two impuri-
ties, which will allow us to test an effective model beyond the
simple energy comparison presented here. Further studies of
nonintegrable systems are also needed. The nonintegrability
due to cII 	= c and m 	= M has been briefly discussed here.
For cold atoms it is important also to consider trap effects,
which break the integrability and change the properties of the
system [34,63].

It will be interesting to extend the present study to
fermionic impurities. It is known that two fermionic impu-
rities in the SU(2) case do not have an in-medium bound state
[64]. However, if the impurities are very heavy then a bound
state must exist: The BO potential in Fig. 3 has attractive
regions and unlike the zero-range potential of Eq. (16) has
a finite range. Since it becomes exact as M → ∞, the system
must support a bound state in this limit. This prediction can be
explored using numerical many-body methods that are able
to deal with mass-imbalanced systems such as the complex
Langevin approach [65,66].

Finally, we note that there is still a limited number of exact
numerical results on two impurities in Bose gases. The present
work gives insight into the properties of impurities in strongly
interacting Bose gases [67]. However, further work should
be done to understand impurities in weakly interacting Bose
gases. Since these systems cannot be studied using the Bethe
ansatz, one has to employ other methods [16,56,61,68–75].
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APPENDIX A: WEAK-COUPLING EXPANSION

In this Appendix, we derive a weak-coupling expansion of
the BA equations,

eik j l = k j − 	1 + ic
2

k j − 	1 − ic
2

k j − 	2 + ic
2

k j − 	2 − ic
2

, 1 � j � N ; (A1)

N∏
j=1

k j − 	1 + ic
2

k j − 	1 − ic
2

= 1,

N∏
j=1

k j − 	2 + ic
2

k j − 	2 − ic
2

= 1, (A2)

where N is an odd number. First, we consider the quasimo-
menta k j ( j = 3, . . . , N) that satisfy k j (c=0) 	=0. For c=0,
these quasimomenta are multiples of 2π/l . When c 	= 0, we
write them as

k j = 2π

l
m j + δ j, mj ∈ Z \ {0}, (A3)
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where δ j is small. Inserting Eq. (A3) into the left-hand side of
Eq. (A1) leads to

eik j l = eimj 2π︸ ︷︷ ︸
=1

eiδ j l ≈ 1 + iδ j l. (A4)

We write the right-hand side of Eq. (A1) as

k j − 	1 + ic
2

k j − 	1 − ic
2

k j − 	2 + ic
2

k j − 	2 − ic
2

≈ 1 + 2ic

k(0)
j

, (A5)

where terms proportional to cn with n > 1 are neglected. Also
it is assumed that k(0)

j 
 δ j − 	1 and k(0)
j 
 δ j − 	2. This

assumption is valid, since the 	’s lie in between the first three
quasimomenta, which are all close to zero. To derive Eq. (A5),
we use that for a 
 b

a + b

a − b
≈ 1 + 2b

a
. (A6)

With Eqs. (A4) and (A5), we obtain

δ j l = 2c

k(0)
j

⇒ δ j = c

πmj
. (A7)

Now we investigate the quasimomenta k j that vanish at
c = 0. As discussed in the main text, for the ground state,
k1 = −k2 and k3 = 0. To show that 	1 = −	2, we consider
Eq. (A1) for k1 and k2. We use k1 = −k2 in the equation for
k2:

e−ik1l = −k1 − 	1 + ic
2

−k1 − 	1 − ic
2

−k1 − 	2 + ic
2

−k1 − 	2 − ic
2

(A8)

→ eik1l = k1 + 	1 + ic
2

k1 + 	1 − ic
2

k1 + 	2 + ic
2

k1 + 	2 − ic
2

. (A9)

From this equation and the equation for k1,

eik1l = k1 − 	1 + ic
2

k1 − 	1 − ic
2

k1 − 	2 + ic
2

k1 − 	2 − ic
2

, (A10)

we obtain that 	1 = −	2. Using the equation for k1, we
derive

1 + ik1l ≈ 1 + 2ick1

k2
1 − 	2

1

⇔ (
k2

1 − 	2
1

)
l = 2c. (A11)

Next, we consider Eq. (A2). The sum of the quasimomenta
{k3, . . . , kN } is zero; thus, Eq. (A2) can be rewritten as

3∏
j=1

k j − 	1 + ic
2

k j − 	1 − ic
2

= 1. (A12)

With k1 = −k2, k3 = 0, this equation reads

1

k1 − 	1
− 1

k1 + 	1
− 1

	1
= 0 → 	2

1 = k2
1

3
. (A13)

We rewrite Eq. (A11),(
k2

1 − 	2
1

)
l = 2

3 k2
1 l = 2c, (A14)

which leads to k1 = √
3c/l and 	1 = √

c/l .

FIG. 6. The black dots show the calculated quasimomenta k1 and
k2 (k1 = −k2) as functions of the interaction strength, c. Area 1
represents the region where the weak-coupling expansion (wce) is
accurate. The (orange) solid curve is the weak-coupling expansion.
Area 2 is the region where we use the solution at the previous point
(see the green arrows) as an initial guess for Newton’s method.
To establish an initial guess for the quasimomenta in area 3, we
construct a Taylor series using a number of already-calculated points.
The Taylor series constructed upon the points shown with crosses is
presented as a (blue) dotted curve.

APPENDIX B: NUMERICAL METHOD
TO SOLVE THE BA EQUATIONS

In this Appendix we give a detailed explanation of the
numerical method that we employ to solve the BA equations.
For simplicity, we consider here the case of five particles,
three fermions and two bosons. To solve the BA equations,
we employ Newton’s method, initial conditions for which are
established differently for different regions of c. We exemplify
different regions in Figs. 6 and 7, which show the calculated
values of ki. The quasimomenta k1 and k2 are purely imag-
inary; they are shown in Fig. 6. The quasimomenta k3, k4,
and k5 are purely real; they are presented in Fig. 7. For
better visibility, we do not show every value of ki that we
calculate, only every fourth point. The three numbered areas
with different types of shading refer to different methods we
use to establish the initial conditions for Newton’s method.

For weak interactions (area 1) we use the weak-coupling
expansion from Eq. (7), as an initial guess for Newton’s
method. As can be seen in Fig. 6, for c � −0.5 the deviation
between Eq. (7) and the exact solution becomes significant.
We need another approach to calculate ki for stronger interac-
tions.

In the second area, we use the solution at the previous
step as an initial guess for Newton’s method (see the green
arrows in Fig. 7). At about c ≈ −1.5, this method requires us
to compute points lying very close to each other, which can be
time consuming. So once more, we change our strategy.

To come up with an initial guess for Newton’s method
in the third region, we extrapolate the previously calculated
solutions by using a polynomial fit with order 3. The red
crosses in Fig. 7 exemplify a fitting range used to calculate the
fitting function (dotted, blue curve). At c ≈ −2 the fit function
does not represent the exact solution well. Therefore, the
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FIG. 7. The black dots show the calculated quasimomenta k3, k4,
and k5 (k3 = 0, k5 = −k4) as functions of the interaction strength,
c. Area 1 represents the region where the weak-coupling expansion
(wce) is accurate. The (orange) solid curve is the weak-coupling
expansion. Area 2 is the region where we use a solution at the
previous point (see the green arrows) as an initial guess for Newton’s
method. To establish an initial guess for the quasimomenta in area
3, we construct a Taylor series using a number of already-calculated
points. The Taylor series constructed upon the points shown with
crosses is presented as a (blue) dotted curve.

fitting process must be repeated using the calculated solutions
in the range c ∈ (−2,−1.5) (not shown here for brevity).

APPENDIX C: THERMODYNAMIC EXTRAPOLATION

To extrapolate the calculated energies ε(c) − ε(0) to the
thermodynamic limit, we shall employ the two fit functions:

ε∞ + A1

N
+ A2

N2
, (C1)

ε∞ + A1

Nα
+ A2 e−βN . (C2)

FIG. 8. The energy ε(c) − ε(0) as a function of the particle
number N for c = −1.0. The (blue) solid line corresponds to the fit
with Eq. (C1), in which case ε∞ = −5.176. The (red) dashed curve
shows the fit with Eq. (C2), leading to ε∞ = −5.125.

FIG. 9. The energy ε(c) − ε(0) as a function of the particle
number N for c = −1.6. The (blue) solid line corresponds to the fit
with Eq. (C1), in which case ε∞ = −9.499. The (red) dashed curve
shows the fit with Eq. (C2), leading to ε∞ = −9.479.

To illustrate the fits, we show in Figs. 8 and 9 the exact ener-
gies as functions of N for two different interaction strengths
together with the corresponding fits. Both functions (C1) and
(C2) appear to represent the data well. They also produce
similar results for N → ∞. The values of ε∞ from the two
fits differ only in the third digit, implying that the precise
knowledge of the convergence pattern as N → ∞ is not
needed for the considered parameters.

APPENDIX D: ONE IMPURITY

Here we briefly review how to derive the ground-state
energy of a Fermi gas with a single impurity atom. This
system has already been investigated [43]. We use this well-
known setup to test our numerical approach. The system is
described with the Hamiltonian

hBA = −
N∑

j=1

∂2

∂x2
j

+ 2c
N∑

j<l

δ(x j − xl ), (D1)

where the coordinates x1, . . . , xN−1 are the positions of the
fermions, and xN is reserved for the impurity. The correspond-
ing Bethe ansatz equations are given by [39]

eik(1)
j l = k(1)

j − 	 + 1
2 ic

k(1)
j − 	 − 1

2 ic
, 1 � j � N ;

N∏
j=1

k(1)
j − 	 + 1

2 ic

k(1)
j − 	 − 1

2 ic
= 1, (D2)

where k(1)
j is the jth quasimomentum (we use the superscript

to emphasize that we work with a single impurity here), and
	 is one additional variable. We consider N to be even. Once
the BA equations are solved, the energy can be calculated as
ε(1) = ∑

j (k
(1)
j )2.

We solve the BA equations with Newton’s method as
already explained in the main part. For small c the weak-
coupling expansion of the BA equations [76] is used as an
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FIG. 10. The energy of an impurity atom in a Fermi gas, E , as
a function of the interaction strength, c. The crosses represent our
numerical result for the thermodynamic limit. The analytic result for
the thermodynamic limit [43] is shown by the orange line. In addition
the total energy for a system consisting of N = 14 particles is shown
by the blue dots. Inset: The red circles display the relative difference
(x − y)/x, where x is our numeric result and y the analytic expression
from Ref. [43]. The curve is added to guide the eye.

initial guess,

k(1)
1 ≈ − 1

4π

N∑
j=3

1

mj
c +

√
c

l
,

k(1)
2 ≈ − 1

4π

N∑
j=3

1

mj
c −

√
c

l
,

k(1)
j ≈ 2π

l
m j + 1

2πmj
c for 3 � j � N ; 	 ≈ γ c, (D3)

where mj ∈ Z determine the quasimomenta of the particles
for zero interaction. The shift due to the small interaction is
given by the terms proportional to c and

√
c.

To extrapolate the result to the thermodynamic limit we
use ε(1)(c) − ε(1)(0) = E + α/Nβ , where E, α, and β are fit
parameters. We show the result in Fig. 10. Our result fits the
analytic expression quite well. The relative difference, shown
in the inset, is negligible for our purposes. We present also the
result for 14 particles to demonstrate that only a handful of
particles are needed to simulate the ground-state properties of
an infinite Fermi gas with an impurity in a laboratory.

APPENDIX E: TWO STATIC IMPURITIES

Here we calculate the eigenenergies of the Hamiltonian

hBO = − ∂2

∂x2
+ 2c

[
δ

(
x − r

2

)
+ δ

(
x + r

2

)]
. (E1)

To this end, we divide the space into three parts: −l/2 < x <

−r/2, −r/2 < x < r/2, and r/2 < x < l/2. For each part we
write the wave function as

ψ (x) = a1eikx + a2e−ikx, (E2)

where k is the wave number. The wave function must obey
the “delta-potential boundary conditions” at x = ±r/2, and
periodic boundary conditions at x = ±l . We divide the so-
lutions into parity-symmetric and parity-antisymmetric ones.
The energy k2 must be represented by a real number, which
means that k can be either real or imaginary. These two
possibilities are referred to as the “scattering states” and the
“bound states,” respectively. For bound states, we write k = iκ ,
where κ is real. The equations that determine k for each class
of solutions are written below.

(1) Symmetric bound states:

−2κe
κl
2 +κr (2ce−κl + ge−κl−κr + 2ce−κr + 2ce−2κr

− 2κe−κl−κr + 2κe−κ−r ) = 0. (E3)

(2) Antisymmetric bound states:

2e
κl
2 +κr (2ce−κl − 2ce−κl−κr − 2ce−κr + 2ce−2κr

+ 2κe−κl−κr − 2κe−κr ) = 0. (E4)

(3) Symmetric scattering states:

k

(
2c

{
cos

(
kl

2

)
+ cos

[
1

2
k(l−2r)

]}
− 2k sin

(
kl

2

))
=0.

(E5)

(4) Antisymmetric scattering states:

8c cos

[
1

2
k(l − 2r)

]
− 8c cos

(
kl

2

)
(E6)

+ 8k sin

(
kl

2

)
= 0. (E7)

To solve the equations, a genetic algorithm first finds approx-
imate solutions for k, κ . These are then used in the Newton
iteration method as an initial guess. We calculate as many
energy levels as particles we consider.
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