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In a growing number of strongly disordered and dense systems, the dynamics of a particle pulled by an
external force field exhibits superdiffusion. In the context of glass-forming systems, supercooled glasses,
and contamination spreading in porous media, it was suggested that this behavior be modeled with a biased
continuous-time random walk. Here we analyze the plume of particles lagging far behind the mean, with the
single big jump principle. Revealing the mechanism of the anomaly, we show how a single trapping time, the
largest one, is responsible for the rare fluctuations in the system. These nontypical fluctuations still control
the behavior of the mean square displacement, which is the most basic quantifier of the dynamics in many
experimental setups. We show how the initial conditions, describing either the stationary state or nonequilibrium
case, persist forever in the sense that the rare fluctuations are sensitive to the initial preparation. To describe
the fluctuations of the largest trapping time, we modify Fréchet’s law from extreme value statistics, taking into
consideration the fact that the large fluctuations are very different from those observed for independent and
identically distributed random variables.
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I. INTRODUCTION

Diffusion and transport in a vast number of weakly disor-
dered systems follow Gaussian statistics. As a consequence,
the packet of the spreading particles is symmetrically spread
with respect to the mean 〈x(t )〉. In contrast, for strongly dis-
ordered systems, the packet is found to be non-Gaussian and
nonsymmetric [1,2]. Starting on x = 0, the slowest particles
are trapped by the disorder, resulting in a plume of particles
lagging far behind the mean 〈x(t )〉, i.e., the fluctuations are
large and break symmetry (see Figs. 1 and 2). Deep energetic
and entropic traps, which hinder the motion, are expected to
lead to a slowdown of the diffusion. The most frequently used
quantifier of diffusion processes is clearly the mean square
displacement (MSD). However, in the presence of deep traps,
the MSD exhibits superdiffusion. This is not an indication for
a fast process, instead it is due to the very slow particles far
lagging behind the mean, which lead to very large fluctuations
of displacements. Thus slow dynamics of a minority of par-
ticles leads to enhanced fluctuations and symmetry breaking
with respect to 〈x(t )〉. Such processes are widespread; in
particular, many works focused on the surprising discovery
of the superdiffusion in dense environments [3–8]. This was
originally investigated in the context of diffusion in disordered
material [1–3,9–12], contamination spreading in porous me-
dia [13–16], simulation of biased particles in glass-forming
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systems [4], and supercooled liquids [6], pulled by a constant
force.

Here we investigate the spreading of the packet of
particles, using the biased continuous-time random walk
(CTRW) [17–19]. Our goal is to characterize precisely the
mechanism leading to the large fluctuations. We promote the
idea of the single big jump principle. This means that one and
only one trapping time is responsible for the rare fluctuations.
Thus, in this work we show the relation between the theory of
extreme value statistics and the anomalous transport. For that
we need to modify the well-known Fréchet law [20,21] which
describes extreme events for uncorrelated systems. Similarly,
we present an analysis of the far tail of the spreading of the
packet of particles, showing the deviations from the Lévy
statistics describing the bulk statistics. This is done for both
nonstationary and equilibrium initial conditions. While the
typical fluctuations in our systems are not sensitive to the
initial conditions, the rare fluctuations are, and this we believe
is a general theme for systems with fat-tailed statistics.

We will relate the position of the random walker x(t ) and
the longest trapping interval τmax. The typical fluctuations
of both observables were considered previously and were
shown to behave as if they were composed of independent
and identically distributed events, namely, the Lévy stable
law and Fréchet’s law hold for typical fluctuations [Eqs. (15)
and (31) below]. We show below how these laws must be
corrected when dealing with the far tail. In turn, the standard
Cramer’s theorem from large-deviation theory [22], which
identifies the large fluctuations with the accumulation of many
small steps, fails in this case studied here. More precisely,
we claim below that one can obtain two limiting laws for
both x(t ) and τmax; the first is the just-mentioned Lévy and
Fréchet laws and the second is an infinite density, i.e., a
non-normalized state.
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FIG. 1. Density of positions of particles for an ordinary CTRW
model. The spreading packet is non-Gaussian. The left plume of
particles is due to the long trapping times, which implies that some
particles are moving by far slower if compared with the mean 〈x(t )〉.
Somewhat paradoxically, these slow particles lead to superdiffusion
as the MSD grows as t3−α [1]. In this work we show how rare
events in this process are determined by the largest trapping times.
In turn, the rare events control the behavior of the MSD. The typical
fluctuations are defined for x ∼ 〈x(t )〉, i.e., close to the peak of the
packet, while we focus on the rare fluctuations shown by the red solid
line. The parameters are a = 5, σ = 1, and α = 1.5 [see Eqs. (2)
and (4)].

What is the principle of big jump? Many works have focus
on the dominance of one big jump in a stochastic process.
For example, consider the activation process of a particle over
a barrier, modeled with an overdamped Langevin equation.
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FIG. 2. Two trajectories of particles ending at small and large x
when t = 1000. For the case where x(t = 1000) is near the original
position, we see a very long waiting time, as the particle is trapped
for a time of the order of t . In contrast, when x(t = 1000) � 〈x(t )〉,
the trapping times are relatively short and comparable to each other.
The inset shows the trajectory of the particle at a short time. The
parameters are the same as in Fig. 1.

If the noise is noncorrelated and Gaussian, this escape is
achieved by many small displacements, accumulating to give
the rare escape from the well. On the other hand, if the noise
is of the Lévy type, one event giving rise to a large fluctuation
dominates the escape [23]. Similar ideas hold for the analysis
of random partition functions and were used in the study of
the Sinai model [24,25]. In the context of a run-and-tumble
model and the combination phenomenon, these insights are
well understood [26,27]. Roughly speaking, one can see that
the largest summand is of the order of the total sum, a theme
which is already known.

To be more specific consider N random variables
{ϑ1, ϑ2, . . . , ϑN }. Let ϑmax be the maximum of the set and
SN = ∑N

i=1 ϑi is the sum. The dominance effect, found, for
example, if the ϑi are independent and identically distributed
random variables drawn from a fat-tailed distribution, is the
claim that SN and ϑmax are of the same order [28]. More
exactly, SN and ϑmax scale with N the same way. A more
profound case is when the distribution of ϑmax is the same
as that of SN , except for a trivial constant and in a limit to
be specified later. This is what we and others refer to as the
principle of big jump. This statement was shown to be valid
for subexponential independent and identically distributed
variables [28] (see also [29,30]). In the independent and iden-
tically distributed case, the statement is valid for any N , so the
limit N → ∞ is not at all required. Here our aim is show how
the big jump principle holds for diffusion in disorder systems
using the CTRW model. We will modify the principle to
discuss the largest trapping time and its relation to the position
of the random walker, so the principle discussed below is very
different if compared to the original; in particular, we depart
from the independent and identically distributed case.

In [31,32] we promoted a rate method to the big jump
approach which was used to predict nonanalytical behaviors
of the far tail of Lévy walk process and the so-called quenched
Lévy-Lorentz gas model. In these works, the very basic
approach is different from what we have here [see Eq. (9)
below]. Further, the connection to the modified Fréchet law
and the difference between stationary and nonequilibrium
initial conditions are discussed here.

The organization of the paper is as follows. In Sec. II we
outline the single big principle and give the corresponding
definitions. Nonequilibrium and equilibrium initial conditions
are investigated in Secs. III and IV, respectively. We conclude
with a discussion. We also present simulation results confirm-
ing the theoretical predications.

II. SINGLE BIG JUMP PRINCIPLE

A. Model and definition

We consider two types of biased CTRWs [17–19,33,34];
the first is initiated at time t = 0 while the second is an equi-
librium process. These two models differ in the first trapping
time statistics, but otherwise they are identical. Let φ(τ ) be
the probability density function (PDF) of all the sojourn times
while h(τ ) is the PDF of the first one. It should be empha-
sized that the correct choice of h(τ ) depends on the initial
conditions. For the widely investigated nonequilibrium initial
condition, we assign hor (τ ) = φ(τ ) [35]. This time process is
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sometimes called an ordinary renewal process; hence we use
the subscript “or” to denote this type of initial condition. In
contrast, in an equilibrium situation we use [36–39]

heq(τ ) =
∫ ∞
τ

φ(y)dy

〈τ 〉 , (1)

where 〈τ 〉 = ∫ ∞
0 τφ(τ )dτ is the mean trapping time. We will

soon explain the physical meaning of these processes.
We are interested in the position of the random walker x(t ),

which starts at x = 0 when t = 0. After waiting for time τ1,
drawn from h(τ ), the particle makes a spatial jump. The PDF
of jump size χ is Gaussian

f (χ ) = 1√
2σ 2π

exp

[
− (χ − a)2

2σ 2

]
, (2)

where a > 0 is the average size of the jumps. Physically, this
is determined by an external constant force field that induces a
net drift. From Eq. (2) the Fourier transform of f (χ ) is f̃ (k) =
exp(ika − σ 2k2/2). This yields

f̃ (k) ∼ 1 + ika − σ 2 + a2

2
k2, (3)

with k → 0. After the jump, say, to x1, the particle will
pause for time τ2, whose statistical properties are drawn from
φ(τ ). Then the process is renewed. We consider the widely
applicable case where the PDF of trapping times is

φ(τ ) =
{

0, τ < τ0

α
τα

0
τ 1+α , τ � τ0,

(4)

with 1 < α < 2. As is well known, such a fat-tailed distribu-
tion yields a wide range of anomalous behaviors. (See [10,17]
for a review on the CTRW and further discussion on physical
systems below.) From the Abelian theorem, the Laplace τ →
s transform of φ(τ ) is

φ̂(s) ∼ 1 − 〈τ 〉s + bαsα, (5)

with bα = (τ0)α|	(1 − α)| and s → 0. The leading term is
the normalization condition. We focus on 1 < α < 2, where
the mean 〈τ 〉 of the waiting time is finite, but not the variance.
The term sα comes from the long tail of the waiting times (and
it is responsible for the deviations from the normal behavior).
Specific values of α for a range of physical systems and
models are given in [10,40].

For an equilibrium initial condition the rate of performing
a jump is stationary in the sense that for any time t the average
number of jumps is

〈N (t )〉 = t

〈τ 〉 , (6)

so the effective rate 1/〈τ 〉 is a constant. In contrast, for
the ordinary renewal process we have in the long-time limit
〈N (t )〉 ∼ t/〈τ 〉; hence for short times the two processes are
not identical. Since the mean 〈τ 〉 is finite, one would ex-
pect naively that statistical laws for the two processes will
be identical in the long-time limit. While this is correct for
some observables, for others this is false. The prominent
example is the MSD. In particular, for the calculation of the
rare events one must make the distinction between the two
models (discussed below). An equilibrium initial condition
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FIG. 3. Illustrations of (a) an ordinary CTRW when the process
begins at time t = 0 and x = 0 and (b) an equilibrium CTRW.
(b) describes an ongoing equilibrium process, i.e., a stationary case
where the dynamics started long before the start of the observation
(see the blue dashed line for an illustration). The ti corresponds to the
time when the ith event occurs, and the backward recurrence time is
Bt = t − t4. The only difference between these two processes is the
statistics of the waiting time of the first step. However, due to the
disorder, in particular the power-law trapping time distribution, this
difference crucially influences the rare events and also the behavior
of the MSD.

is found when the particle is inserted in the medium long
before the process begins, more specifically, when the process
starts at some time −ta before the measurement begins at time
t = 0 and in the limit ta → ∞. All along we consider the
displacement of the particle compared to its initial position,
namely, we assign x(0) = 0. For a schematic presentation of
the random processes see Fig. 3.

Nonequilibrium initial conditions are found when the pro-
cesses are initiated at time t = 0. For example, in Scher-
Montroll theory [41], a flash of light excites charge carriers at
time t = 0 and then the process of diffusion begins; then we
have an ordinary process. Mathematically, these two models
merely differ by the statistics of the waiting time of the first
step, and hence it is interesting to compare them, to see
whether or not this seemingly small modification of the model
is important in the long-time limit. For a Poisson process
the two models are identical. In contrast, for the heavy-tailed
processes under investigation, we find from Eqs. (1) and (4)
that

heq(τ ) ∼ (τ0)α

〈τ 〉 τ−α. (7)

As 1 < α < 2 we see that the average time for the first waiting
time diverges (but not for the second, etc.). This means that
in a stationary state the process is slower if compared to the
ordinary case; hence we expect that in this case particles will
be lagging even farther behind the mean displacement.

Let us discuss the applicability of the CTRW model. As
mentioned, Scher and Montroll showed how this theory de-
scribes the diffusion of charge carriers in disordered media.
In some experiments, one can find α = T/Tg, where T is the
temperature and Tg is the measure of the disorder. This is
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also the case for the Bouchaud trap model describing glassy
dynamics [10]. In the context of contamination spreading, a
biased CTRW is used with α = 1.73 [16]. Based on numerical
simulations, Winter et al. [4] and Schroer and Heuer [6]
showed the superdiffusive behavior and related the dynamics
to the biased CTRW. In these systems one expects that at
very long times we find normal diffusion. There are also
many examples of a CTRW without bias [17,40,42,43]. It is
interesting to add a bias in these systems to compare the effect
discussed here.

B. Main results: The big jump principle

Transport and diffusion processes, either normal or anoma-
lous, are composed of a large number of displacements. Hence
statistical laws, like the central limit theorem, are useful tools
describing universal aspects of the phenomenon. In our case
a single event is controlling the statistics of the spreading
packet at its tail. Let {τ1, τ2, . . . , τN , Bt } be the set of wait-
ing times between jump events and

∑N
i=1 τi + Bt = t is the

measurement time. Here Bt , called the backward recurrence
time, is the time elapsing between the moment of last jump
tN = ∑N

i=1 τi and the measurement time t ; N is the random
number of jumps in (0, t ) [44]. We define the largest waiting
time according to

τmax = max{τ1, τ2, . . . , τN , Bt }. (8)

One main conclusion of this paper is that the statistics of τmax

determine the fluctuations of the position x(t ) of the biased
random walker. This holds for rare fluctuations of x(t ), which
still control the behavior of the most typical observable in the
field: the MSD.

Due to the fat-tailed distribution of the trapping time φ(τ )
and using basic arguments from extreme value statistics of
independent and identically distributed random variables, one
expects that the typical fluctuations scale as τmax ∝ t1/α , while
for a thin-tailed distribution of waiting time, e.g., φ(τ ) =
exp(−τ ), we have τmax ∝ ln(t ) [20]. For the latter example
∝ means that τmax is of the order of ln(t ) and similarly for
the former case. While we are not dealing with independent
and identically distributed random variables, the constraint
is weak in the sense that it does not modify the typical
fluctuations (discussed below and in Refs. [28,45]). Note that
all these scalings, i.e., τmax ∝ t1/α and τmax ∝ ln(t ), describe
typical fluctuations, sometimes called bulk fluctuations. These
fluctuations are described by normalized densities, specified
by Fréchet’s law and the Gumbel law. In contrast, here we
focus on rare fluctuations, that is to say, both τmax and t are
comparable.

When Eq. (4) holds, for the biased CTRW we will demon-
strate that for small x, i.e., the left plume in Fig. 1,

x � t − τmax

〈τ 〉 a, (9)

where � indicates that the random variables on both sides
follow the same distribution. However, the PDFs describing
the position of the particle x when x is not small and of τmax

are far from being identical; they will be calculated below.
The meaning of small x and large τmax will soon become
clear when we formulate the problem more precisely. For

FIG. 4. Correlation plot between 1 − τmax/t and x/〈x(t )〉 pred-
icated in Eq. (9) for the biased ordinary CTRW process. Here
we choose a = 1, α = 1.5, σ = √

2, and 〈τ 〉 = 1. The dots are
simulation results obtained by generating 105 trajectories and the red
solid line is obtained from Eq. (9) by switching random variables
to a dimensionless form, i.e., x/〈x(t )〉 ∼ x/(at/〈τ 〉) � (1 − τmax/t ).
The evidently strong correlations, circled in (b), indicate that a single
trapping event is responsible for the statistics of rare events.

now, based on Figs. 1 and 2, we see that Eq. (9) works well
when x 
 〈x(t )〉 and τmax � t . For example, when x < 50 

〈x(t )〉 � 1667 in Fig. 1(b) or for the trajectory of Fig. 2(a),
where τmax = 988, when t = 1000, x � 40 
 〈x(t )〉 � 1667.
Equation (9) means that the distribution of x 
 〈x(t )〉 is the
same as the average size of the jumps a times the typical num-
ber of jumps made in (0, t − τmax), which is the time “free” of
the longest waiting time. A correlation plot based on Eq. (9) is
demonstrated numerically in Fig. 4. Using simulations of the
ordinary CTRW process, we generate trajectories and search
for positions of the random walkers at time t and record τmax.
Then we plot the random entries, observing that for small x
there is a perfect correlation as predicated by Eq. (9). Such
correlation plots indicate that Eq. (9) is working. We call this
the principle of the big jump, and it is valid for both stationary
and ordinary processes. Here the big jump means the large
trapping time (see further discussion on the term big jump
and its origin in Sec. V). Now we will analytically derive
Eq. (9) and discuss its consequence. For that we obtain the
distribution of τmax and then of x.

Remark 1. Our main results in this paper are
Eqs. (27), (37), (46), and (56), which give explicit formulas
for the PDFs of x and τmax for the two types of processes
under investigation. In [31] we promoted a rate formalism to
treat similar problems, e.g., the Lévy walk. Here the focus
is on the exact calculation of the statistics of rare events for
both τmax and x and on the relation between these two random
variables, i.e., Eq. (9).

C. Statistics of τmax

Let us proceed to derive the general formulas describing
the statistics of the longest waiting times which are valid for
both the ordinary and equilibrium renewal processes. The case
of an ordinary renewal theory was considered previously by
Godrèche et al. in Ref. [45]. They investigated the typical
fluctuations of τmax, and these as explained below exhibit
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behavior identical to a classical case of extreme value statis-
tics, namely, Fréchet’s law holds for typical fluctuations. Here
our goal is very different; we aim to obtain the rare events,
namely, investigate the behavior when τmax is of the order t . In
this case the fluctuations greatly differ from the independent
and identically distributed case.

We define the probability that τmax is smaller than L,

F (t, L) = Prob[τmax � L]. (10)

The corresponding PDF is Pτmax (t, L) and as usual F (t, L) =∫ L
0 Pτmax (t, y)dy. Clearly, the probability depends on the mea-

surement time t and this dependence is especially important
for fat-tailed waiting-time PDFs. It is helpful to introduce
the joint probability distribution of τmax and the number of
renewals N ,

Fn(t, L) = Prob(τmax � L, N = n)

=
∫ L

0
dτ1

∫ L

0
dτ2 · · ·

∫ L

0
dBt Pτmax (τ1, τ2, . . . , τn, Bt )

=
∫ L

0
h(τ1)dτ1

∫ L

0
φ(τ2)dτ2 · · ·

×
∫ L

0

(Bt )dBtδ

(
t −

(
n∑
1

τ j + Bt

))
, (11)

where h(·) in the third line is governed by the process we
investigate and 
(t ) is determined by the type of the process
and the number of renewals


(t ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

t
h(τ )dτ for n = 0 (equilibrium process)∫ ∞

t
φ(τ )dτ otherwise.

(12)

Taking the Laplace transform with respect to t , we find

F̂n(s, L) =

⎧⎪⎪⎨
⎪⎪⎩

∫ L

0
exp(−sτ1)

∫ ∞

τ1

h(τ )dτ dτ1, n = 0∫ L

0
exp(−sτ )h(τ1)dτ1

(∫ L

0
exp(−sτ )φ(τ )dτ

)n−1 ∫ L

0
exp(−sBt )

∫ ∞

Bt

φ(τ )dτ dBt , n � 1.

(13)

The case n = 0 corresponds to realizations with no re-
newals during the time interval (0, t ). One can check that∑∞

n=0 F̂n(s, L → ∞) = 1/s. This means that the density of
τmax is normalized. The sum of n from zero to infinity gives

F̂ (s, L) =
∫ L

0
exp(−sτ1)

∫ ∞

τ1

h(τ )dτ dτ1

+
∫ L

0
exp(−sτ1)h(τ1)dτ1

×
∫ L

0 exp(−sBt )
∫ ∞

Bt
φ(y)dy dBt

1 − ∫ L
0 exp(−sτ )φ(τ )dτ

. (14)

The first term is related to the survival probability and the
second term corresponds to the probability that at least one re-
newal happened in (0, t ). For the equilibrium renewal process,
we insert Eq. (1) into Eq. (14), while for the ordinary case
we use hor (τ ) = φ(τ ). Below, from Eq. (14) we will calculate
the far tail of the distribution of τmax for the two different
processes, i.e., the ordinary process and the equilibrium one,
and prove that Eq. (9) is valid for both cases.

III. ORDINARY PROCESS

Here we consider the ordinary renewal process and the
ordinary CTRW to build the relation between the rare events
of positions and the largest waiting times.

A. Rare fluctuations of τmax

The aim is to investigate the PDF of τmax for the nonequi-
librium process which is denoted by Por,τmax (t, L). We first

treat the problem heuristically to calculate the typical fluctu-
ations. Let 〈N〉 = t/〈τ 〉 be the average number of renewals
in the long-time limit. For simplification, we neglect Bt in
Eq. (8) and ignore the constraint

∑N
i=1 τi + Bt = t ; further

we replace the random N with 〈N〉. This means that we treat
this problem as if the waiting times are independent and
identically distributed random variables, an approximation
which turns out to be insufficient in our case, still ignoring
the correlation [45]

Prob(τmax < L) = ProbN (τi < L)

�
[
1 −

(τ0

L

)α]N

∼ exp
[
−〈N〉

(τ0

L

)α]
. (15)

This is the well-known Fréchet distribution [21]. A closer
look reveals a drawback of this treatment of the typical
fluctuations, since within this approximation the PDF of τmax

is Pτmax (t, L) ∼ α〈N〉(τ0)α/L1+α for L → ∞. However, in our
setting τmax � t . This means that we must modify Fréchet’s
law at its tail; in other words, the constraint that the sum of all
the waiting times and the backward recurrence time is equal
to the measurement time t comes into play when τmax ∝ t , as
expected. Note that the number of renewals in our case is a
random variable (see Fig. 5).

Now we use an exact solution of the problem to calculate
the rare events. Considering the nonequilibrium renewal pro-
cess, we insert h(τ ) = φ(τ ) into Eq. (13) to get [45]∫ ∞

L
P̂or,τmax (z)dz = 1

s

1

1 + Ĝ(s, L)
, (16)
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FIG. 5. Random variables τi for an ordinary renewal process
with Eq. (4) and α = 1.5. The observation time t is 1000 and i =
100, 200, . . . correspond to the 100th, 200th, . . . waiting times of
the fractional renewal process, respectively. Clearly, in our case the
number of renewals N is a random variable. Due to the fat-tailed
trapping times, the fluctuation of N is large, which come from the
large fluctuations of waiting times.

where

Ĝ(s, L) = s exp(sL)

p0(L)

∫ L

0
p0(t ) exp(−st )dt, (17)

with the survival probability

p0(t ) =
∫ ∞

t
φ(τ )dτ �

(τ0

t

)α

. (18)

We are interested in the limit s → 0 (corresponding to long
measurement time) and L → ∞ in such a way that sL re-
mains a constant. As mentioned, the typical fluctuations are
described by Fréchet’s law (15) and here instead we consider
the rare fluctuations. Using Eq. (18), for L → ∞, Eq. (17)
becomes

Ĝ(s, L) ∼ exp(sL)sLα〈τ 〉
(τ0)α

, (19)

where we have used the limit

lim
L→∞

∫ L

0
p0(t ) exp(−st )dt = 1 − φ̂(s)

s
∼ 〈τ 〉, (20)

with s → 0. From Eq. (19) we see that Ĝ(s, L) is large for
sL → const and α > 1. According to Eq. (19), we find

∂Ĝ(s, L)

∂L
∼ sĜ(s, L) + α

L
Ĝ(s, L) + · · · . (21)

Note that Eq. (21) can also be derived directly from Eq. (17).
Utilizing Eq. (16) and

F (t, L) =
∫ L

0
Por,τmax (t, y)dy, (22)

after some simple rearrangements we obtain

P̂or,τmax (s, L) = 1

s

∂Ĝ(s,L)
∂L

[1 + Ĝ(s, L)]2
, (23)
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FIG. 6. Scaled PDF of the longest time interval tαPor,τmax (t, L)
versus L/t . The red solid lines predicated by Eq. (26), or equivalently
Eq. (27), describe the rare fluctuations showing the behavior of L
when it is of the order of t . The simulations, plotted by the symbols,
are generated by averaging 106 trajectories with α = 3/2 and τ0 =
1. The figure clearly shows perfect agreement of the simulations
compared with the theoretical result (26), which has a sharp cutoff at
the tail of density at τmax/t → 1 (see the red dash-dotted lines). This
is very different if compared with typical fluctuations calculated with
Fréchet’s distribution (15), which clearly does not describe well the
far tail (see the inset).

where we used the relation that Por,τmax (t, L) is the derivative
of Eq. (22) with respect to L. Combining Eqs. (21) and (23),
we have

P̂or,τmax (s, L) ∼ 1

Ĝ(s, L)
+ α

sLĜ(s, L)
+ · · · . (24)

Note that the first two terms on the right-hand side of Eq. (24),
namely, 1/Ĝ(s, L) and α/(Ĝ(s, L)sL), are comparable when
sL → const. Hence, from Eqs. (19) and (24) we get

P̂or,τmax (s, L) ∼ (τ0)α

〈τ 〉
exp(−sL)

sLα

(
1 + α

sL

)
. (25)

Taking the inverse Laplace transform s → t of Eq. (25) gives
our second main result with the scaling L ∝ t ,

Por,τmax (t, L) ∼ (τ0)α

tα〈τ 〉

[
α

(
L

t

)−α−1

− (α − 1)

(
L

t

)−α
]
,

(26)

with 0 � L � t . The theoretical predication of Eq. (26) is
compared with numerical simulations in Fig. 6. As explained
before, Eq. (26) describing the far tail of the distribution of
τmax is a modification of Fréchet’s law.

According to Eq. (26), we find

lim
t→∞〈τ 〉

(
t

τ0

)α

Por,τmax (t, L) = Ior,α

(
L

t

)
, (27)

where

Ior,α (y) = αy−α−1 − (α − 1)y−α, (28)

with 0 < y < 1. This scaling solution describes the far tail of
the distribution, where Fréchet’s law does not work. In fact,
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these two laws are related as the y−α−1 term matches the far
tail of the Fréchet law, as it should. Since 0 < y < 1 implies
τmax < t , moments of τmax are computed with respect to this
scaling solution. In contrast, the Fréchet law gives diverging
variance of τmax, which is certainly not a possibility since τmax

is bounded. The expression in Eq. (27) is an infinite density
describing a non-normalizing limiting law. More exactly,
Ior,α (·) is not normalizable; the moments of order q > α of
τmax are calculated with respect to this non-normalized state.
(For more details on infinite densities see Refs. [46–50].)

B. Rare fluctuations of the position

We now investigate the distribution of x proving the va-
lidity of the big jump principle (9). Let Por (x, t ) be the PDF
of finding the walker on x at time t . The starting point is
the well-known Montroll-Weiss equation, which gives the
Fourier-Laplace transform of Por (x, t ) [10,17],

˜̂Por (k, s) = 1 − φ̂(s)

s

1

1 − f̃ (k)φ̂(s)
, (29)

with ˜̂Por (k, s) = ∫ ∞
−∞

∫ ∞
0 exp(ikx − st )Por (x, t )dt dx. Here

f̃ (k) is the Fourier transform of the jump length PDF f (χ )
and φ̂(s) is the Laplace transform of waiting-time PDF.
The long-wavelength approximation, i.e., the small-s and -k
limit, is routinely applied to investigate the long-time limit
of Por (x, t ). However, how to choose the limit of k → 0 and
s → 0 is actually slightly subtle. Utilizing Eqs. (3) and (5) and
assuming that the ratio |sα|/|k| is fixed, we get

˜̂Por (k, s) ∼ 〈τ 〉
−ika + s〈τ 〉 − (τ0)α|	(1 − α)|sα

. (30)

Inverting, we then find a known limit theorem [51,52]

Por (x, t ) ∼ 1

a(t/t )1/α
Lα,1

(
x − at/〈τ 〉
a(t/t )1/α

)
, (31)

where t = 〈τ 〉1+α/(τ0)α|	(1 − α)|, Lα,1(·) is the nonsymmet-
rical Lévy stable law with characteristic function exp[(ik)α],
and a > 0. This central limit theorem, just like Fréchet’s law,
has its limitations. As a stand alone formula, it predicates
〈x2(t )〉 = ∞, since the second moment of the Lévy distri-
bution does not exist. This means that we must consider a
different method to describe the far tail.

To proceed we reanalyze Eq. (29) but now fixing |s|/|k|.
This is a large-deviation approach since such a scaling implies
a ballistic scaling behavior of x and t , unlike x − at/〈τ 〉 ∝
t1/α in Eq. (31). The strategy we use now, i.e., the deter-
mination of Por (x, t ) for x ∝ t , is similar to the approach in
the preceding section where we calculated Por,τmax (t, L). The
obvious difference is that there we started with Eq. (16),
while here we start with the Montroll-Weiss equation (29).
More specifically, in Sec. III A we assumed that sL ∝ const,
while here |s| and |k| are small and of the same order, where
s and k are a Laplace pair and a Fourier pair of t and x,
respectively.

We restart from Eq. (29), which gives

˜̂Por (k, s) ∼ 〈τ 〉
〈τ 〉s − ika︸ ︷︷ ︸

leading

+ ika(τ0)α|	(1 − α)|sα−1

(s〈τ 〉 − ika)2︸ ︷︷ ︸
correction

+ · · · .

(32)

The derivation of Eq. (32) is given in Appendix A. The
inversion of the leading term is trivial, but it yields a δ

function δ(x − at/〈τ 〉). Mathematically we choose a scaling
that shrinks the density to an uninteresting object. Luckily,
the correction term is important as it describes the far tail. So
for x �= at/〈τ 〉 we have

Por (x, t ) ∼ F−1
k→xL−1

s→t

[
a(τ0)α|	(1 − α)|iksα−1

(s〈τ 〉 − ika)2

]
, (33)

with F−1
k→x and L−1

s→t the inverse Fourier and inverse Laplace
transforms, respectively. We first perform the inverse Laplace
transform using the convolution theorem and the pairs

L−1
s→t [s

α−1] = t−α

	(1 − α)
,

L−1
s→t

[
1

(s − ika/〈τ 〉)2

]
= t exp

(
ika

t

〈τ 〉
) (34)

and find

Por (x, t ) ∼ F−1
k→x

[
−ik

a(τ0)α

〈τ 〉2

∫ t

0

y exp
( ikay

〈τ 〉
)

(t − y)α
dy

]
. (35)

The inverse Fourier transform of exp(ikay/〈τ 〉) is a δ function
and the ik in front of this expression is the spatial derivative in
x space; hence we get

Por (x, t ) ∼ (τ0)α

〈τ 〉
∂

∂x

∫ t

0

yδ
(
y − x〈τ 〉

a

)
(t − y)α

dy. (36)

Then, after simple rearrangement,

Por (x, t ) ∼ (τ0)α

atα
Ior,α (ξ ), (37)

with 0 < ξ < 1, ξ = 1 − (x/a)/(t/〈τ 〉), and Ior,α (·) defined
by Eq. (28). As Fig. 7 demonstrates, this equation describes
the far tail of the density of the spreading packet and it is
complementary to the Lévy law (31). The MSD of the process
is obtained with respect to integration over the formula (37)
and in that sense this equation resolves the drawback of the
Lévy density. More important is the fact that the distributions
of τmax [Eq. (27)] and x [Eq. (37)] have the same structure,
beyond a trivial Jacobian. In other words, given the fact
that these observables have the same distribution, we have
proven the single big jump principle (9) for the ordinary
processes. The statistics of one waiting time τmax determines
the fluctuations at small x. In addition, since Eq. (37) gives
the MSD, which is used in most experimental, theoretical, and
numerical works to characterize the fluctuations, we see that
the MSD is directly related to the single big jump principle
and extreme value statistics. One should note that low-order
moments like 〈|x − 〈x〉|q〉, with q < α, are finite with respect
to the Lévy density and these are given by integration with
respect to Eq. (31).
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FIG. 7. Scaled PDF Por (x, t ) compared with the prediction of
the single big jump principle and the Lévy central limit theorem
describing rare and typical fluctuations. The parameters are a =
1, σ = 1, α = 1.5, and τ0 = 0.1, and for the simulation we used
5 × 106 trajectories. The inset exhibits a comparison among typical
fluctuations (31), rare fluctuations (37), and simulations. Clearly, our
theory performs perfectly, while Eq. (31) overshoots (see the inset)
and extends to positive infinity. In reality there is a clear cutoff at
x = 0 being exclusively revealed by the single big jump principle
analysis (see the red dash-dotted lines).

Remark 2. We now study the case of the CTRW in two
dimensions and focus on an ordinary process. The joint length
PDF is f (χx, χy) = fx(χx ) fy(χy), where fx(χx ) is the same
as in Eq. (2) and fy(χy) = exp[−(χy)2/2(σy)2]/

√
2π (σy)2,

with σy a constant. This means that the drift is only in the
x direction. Similar to our previous calculations, we use the
Montroll-Weiss equation to find

Por (x, y, t ) ∼ (τ0)α

atα
Ior,α (ξ )δ(y). (38)

The marginal density Por (x, t ) is the same as the one-
dimensional case (37). Note that τmax is of the order t (for
the far tail), so in the y direction the particles are practically
frozen. Hence we get a δ function since there is no drift in the
y direction.

IV. EQUILIBRIUM CASE

Up to now we have considered the case when a physical
clock was started immediately at the beginning of the process,
i.e., an ordinary CTRW. Here we consider the equilibrium
initial condition. We note that for 0 < α < 1, i.e., when the
average trapping time diverges, this is related to the aging
CTRW [33,34,40,53,54], which is used as a tool to describe
complex systems ranging from the Anderson insulator to
colloidal suspensions and was first introduced by Monthus
and Bouchaud to illustrate the diffusion in glasses [55]. In
contrast, when 1 < α < 2 and Eq. (1) holds, we have a sta-
tionary process. Then, as mentioned already, the mean waiting
time for the first event is infinite [see Eq. (7)]. In practice, if
we start the process at time −ta and ta is large but finite, the
averaged first waiting time observed after time ta will increase
with ta, and when ta tends to infinity it will diverge. Here

we focus on the statistics of particles with an equilibrium
condition, i.e., ta → ∞.

A. Rare fluctuations of the position

In Fourier-Laplace space, the density of spreading particles
is given by [33]

˜̂Peq(k, s) = 1 − ĥeq(s)

s
+ [1 − φ̂(s)]ĥeq(s) f̃ (k)

s[1 − φ̂(s) f̃ (k)]
. (39)

This equation is a modification of the Montroll-Weiss equa-
tion, taking into consideration the equilibrium initial state.
Using the Laplace transform of Eq. (1), we have

˜̂Peq(k, s) = 〈τ 〉s − 1 + φ̃(s)

〈τ 〉s2
+ [1 − φ̂(s)]2 f̃ (k)

〈τ 〉s2[1 − φ̂(s) f̃ (k)]
. (40)

The first term on the right-hand side is k independent; hence
its inverse Fourier transform gives a δ function on the initial
condition x = 0 describing nonmoving particles. This popula-
tion of motionless particles is non-negligible in the sense that
they contribute to the MSD [see Eq. (B6)].

Based on Eq. (40), we consider typical fluctuations, i.e.,
k, s → 0 and |k| ∝ |sα|,

˜̂Peq(k, s) ∼ [1 − φ̂(s)]2

〈τ 〉s2

1

1 − φ̂(s) f̃ (k)

∼ 〈τ 〉
〈τ 〉s − ika − bαsα

, (41)

where we used the asymptotic behaviors of φ̃(s) and f̂ (k). The
inverse Laplace-Fourier transform of Eq. (41) yields

Peq(x, t ) ∼ 1

a(t/t )1/α
Lα,1

(
x − at/〈τ 〉
a(t/t )1/α

)
, (42)

According to Eq. (42), the typical fluctuations are the same as
the one of the ordinary case [see Eq. (31) and the dashed lines
in Fig. 8]. That is, the bulk fluctuations do not depend on the
initial state. On the other hand, the MSDs of both cases are
different, which means that the far tail of Peq(x, t ) should be
modified compared with the ordinary case. As mentioned be-
fore, the normalized density (42) gives an unphysical infinite
MSD due to the slowly decaying tail of the asymmetric Lévy
distribution. This means that we expect modifications of this
limiting law at the far tail.

For the rare events of the equilibrium CTRW, i.e., both s
and k are small and comparable, inserting φ̂(s) and f̃ (k) into
Eq. (40) gives

˜̂Peq(k, s) ∼ bα

〈τ 〉s2−α
+ 〈τ 〉 − 2bαsα−1

〈τ 〉s − ika − bαsα
. (43)

Rewriting the second term on the right-hand side of Eq. (43)
as

〈τ 〉 − 2bαsα−1

〈τ 〉s − ika − bαsα
∼ 〈τ 〉 − bαsα−1

〈τ 〉s − ika
+ bαsα−1ika

(〈τ 〉s − ika)2
(44)

and using the relation

F−1L−1

[
sα−1

〈τ 〉s − ika

]
=

(
t − 〈τ 〉

a x
)−α

a	(1 − α)
, (45)
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FIG. 8. Scaled PDF of the position versus 1 − (x/a)/(t/〈τ 〉).
The symbols are simulation results obtained from 3 × 106 realiza-
tions. The red solid line calculated from Eq. (46) describing the
behavior when x ∝ t is consistent with the far tail of the simulation
results (see the inset). We also plot the theory of an ordinary
process (37), showing that it clearly fails, and it underestimates the
rare fluctuations described by the equilibrium theory. Notice that the
δ-like contribution, circled in red, describes nonmoving particles at
x = 0. Here α = 1.5, a = 1, σ = 1, ta = 104, t = 1000, and τ0 =
0.1.

we get the main results of this section describing the packet
when x is of the order of t ,

Peq(x, t ) ∼ (τ0)αt1−α

〈τ 〉(α − 1)
δ(x) + (τ0)α

atα
Ieq,α (ξ ), (46)

where the non-normalized state function reads

Ieq,α (ξ ) = αξ−α−1 + (2 − α)ξ−α (47)

and ξ = 1 − (x/a)/(t/〈τ 〉). Comparing with Eq. (37), we see
that the infinite densities for the equilibrium and nonequilib-
rium processes are different. This indicates that initial condi-
tions influence the statistics at small position even when the
measurement time is long t � 〈τ 〉. The rare fluctuations for
the equilibrium case are larger if compared with the ordinary
process; in particular, they include a δ-function contribution
(see the data marked in a red circle in Fig. 8). This means
that particles not moving at all contribute to the rare events.
Note that Eq. (46) can be matched to the far tail of the Lévy
distribution Eq. (42), as it should.

We further check that the MSD is determined by the rare
fluctuations (46) resulting in a different MSD compared with
the ordinary process. Using the random variable η = (x −
at/〈τ 〉)/(at/〈τ 〉) with −1 < η < 0, from Eq. (46) we get

〈η2〉eq ∼ 2bαt1−α

〈τ 〉	(4 − α)
(48)

(see Appendix C). Similarly, 〈η2〉or is also obtained according
to Eq. (37). Utilizing Eqs. (29) and (48),

〈x2〉 − 〈x〉2 ∼

⎧⎪⎪⎨
⎪⎪⎩

2a2bα (α − 1)t3−α

〈τ 〉3	(4 − α)
ordinary

2a2bαt3−α

〈τ 〉3	(4 − α)
equilibrium.

(49)

Though the MSDs for both cases grow as a power law t3−α ,
the MSD for the equilibrium case is larger than the ordinary
one. Since the mean of the first waiting time following Eq. (1)
is infinite, the probability of particles experiencing a long
trapping time increases rapidly compared with an ordinary
situation. In turn, this yields considerably inactive particles
which are trapped on the origin for the whole observation
time t lagging far behind the mean. Hence, the MSD for the
equilibrium process has a deep relationship to the motionless
particles [see Eq. (B6)]. It is interesting to find that the MSDs
for both cases are determined by the far tail of the packet
described by the infinite densities. As expected, when α → 2,
these two processes show normal diffusion with no difference,
so then the initial condition is unimportant.

B. Rare fluctuations of τmax

After calculating P(x, t ) for small x, the next aim is to
deal with the far tail of the PDF τmax when τmax and t are
comparable. From Eq. (14) we have

1

s
− F̂eq(s, L) = 1

s[1 + Ĝ(s, L)]

+ 1 − ∫ L
0 exp(−sτ1)heq(τ1)dτ1

s
(
1 + 1

Ĝ(s,L)

)
−

∫ L

0
exp(−sBt )

∫ ∞

Bt

heq(τ )dτ dBt , (50)

where Ĝ(s, L) is defined in Eq. (17). It gives the PDF by the
derivative

P̂eq,τmax (s, L) = −∂
[

1
s − F̂eq(s, L)

]
∂L

. (51)

Note that

∂

∂L

1 − ∫ L
0 exp(−sτ1)heq(τ1)dτ1

s[1 + 1/Ĝ(s, L)]
∼ exp(−sL)

−s
heq(L) (52)

since Ĝ(s, L) is large with L ∝ 1/s. Using Eqs. (51) and (52),
P̂eq,τmax (s, L) reduces to

P̂eq,τmax (s, L) ∼ 1

Ĝ(s, L)
+ α

sLĜ(s, L)

+ exp(−sL)
∫ ∞

L
heq(τ )dτ

+ exp(−sL)

s
heq(L). (53)

Note that Eq. (53) is a uniform approximation in Laplace
space which is effective for numerous L and large t . More
exactly, within this approximation, we have the only condition
that the observation time t is large enough without considering
the scaling between t and L. For the typical fluctuations, the
leading term of Eq. (53) is the same as the ordinary process.
Thus ∫ L

0
Peq,τmax (t, y)dy ∼ exp

[
− t

〈τ 〉
(τ0

L

)α
]
. (54)

We see that the typical fluctuations of the longest time interval
of both the equilibrium and the ordinary renewal processes are
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FIG. 9. Simulations of the distribution of ξ with the scaling ξ =
τmax/t and α = 1.5 compared to the analytical predication obtained
from Eq. (56). Clearly, both the typical fluctuations (54) and the rare
events (37) with a nonequilibrium condition do not work at the far
tail of the distribution (see the inset).

the same and independent of the initial conditions, describing
the behavior when Lα is of the order of t .

Next we turn our attention to the case when L ∝ t . Restart-
ing from Eq. (53), the inverse Laplace transform gives our
main result describing the far tail of the density

Peq,τmax (t, L) ∼ (τ0)α

tα〈τ 〉Ieq,α (y) + δ(t − L)

×
∫ ∞

L
heq(τ )dτ + θ (t − L)heq(L), (55)

with L � t . Utilizing Eqs. (7) and (55), we have

Peq,τmax (t, L) ∼ (τ0)α

tα〈τ 〉Ieq,α

(
L

t

)
+ δ(t − L)

(τ0)αL1−α

(α − 1)〈τ 〉 (56)

(see Fig. 9). From Eqs. (46) and (56) it can be seen that the
principle (9) is also valid for the equilibrium case. Though the
typical fluctuations of τmax for the equilibrium and ordinary
processes show no difference, their far tails are distinct from
each other [see Eqs. (27) and (56)].

V. DISCUSSION AND SUMMARY

We have related the theory of extreme value statistics
and the fluctuations of a particle diffusing in a disordered
system with traps. As mentioned, the observation of a non-
Gaussian packet P(x, t ) and superdiffusive MSD has been
widely reported [1–15]. Here we showed that a modification
of Fréchet’s law is required to fully characterize these fluc-
tuations. The largest waiting time τmax is clearly shorter than
the observation time t , namely, the sum

∑N
i=1 τi + Bt is con-

strained; hence we naturally have deviations from the Fréchet
law. In other words, the theory of independent and identically
distributed random variables completely fails to describe the
phenomenon of the far tail of the packet. More profound is
the observation that the statistics of τmax determine the far
tail of P(x, t ) for the ordinary and equilibrium processes. One

trapping event, the longest of the lot, controls the statistics
of large deviations, and this is very different if compared with
standard large-deviation theory [22], where many small jumps
in the same direction control the statistics.

Our work is related to the so-called single big
jump principle, which was originally formulated for
N independent and identically distributed random vari-
ables {ϑ1, ϑ2, . . . , ϑN } [28]. It states that

∑N
i=1 ϑi �

max{ϑ1, ϑ2, . . . , ϑN } when the distribution of ϑi is subexpo-
nential and for a large maximum. Note that in the CTRW
model considered in this paper we do not have any large
spatial jump; instead we have long sticking events where
the particles do not move. More importantly, in our case the
waiting times are constrained by the total measurement time,
and hence correlated, and their number N fluctuates. Hence
the situation encountered here is simply different (though
related) to the original one. Thus one aspect of our work was
to modify the principle as we did in Eq. (9) and then describe
the rare events with Eqs. (27), (37), (46), and (56). This
allowed us to connect the big jump theory to infinite densities.
The solutions describing the far tails of the distributions of x
and τmax are non-normalizable; still, with proper scaling, they
are the limits of the perfectly normalized probability densities.
For example, in Eq. (27) we multiply the normalized density
Por,τmax (t, L) by 〈τ 〉(t/τ0)α and then get the infinite density
Ior,α (L/t ). The variance of τmax and the superdiffusive MSD
are calculated with these non-normalized states, meaning that
these quantifiers of the anomaly are sensitive to rare events.

We showed that the initial condition is an important factor
controlling the behavior of the far tail of distribution of
interest. We calculated these for the stationary and ordinary
renewal processes, showing that for the stationary process
motionless particles give an important contribution to the
description of the rare fluctuations and the MSD. This implies
that the far tails are nonuniversal in their shapes. This can
therefore be used to characterize the nature of the underlying
process. As for universality, this shows up in the principle of
big jump (9), as the relation between the trapping time and the
position x is independent of the underlying process.

We note that the surprising superdiffusion of a biased
tracer in a crowded medium was also found based on a
many-body theory [5,8,56] and diffusion of contamination in
disordered systems, as well as for numerical simulations of
glass-forming systems [4,6], where it is interesting to check
the relation of the dynamics and the big jump principle. The
investigation of the single big jump principle in the context
of other models of random walks in random environments is
of great interest. For example, the biased quenched trap model
exhibits typical fluctuations which are the same as those found
for the biased CTRW [9,10,57,58]. Whether this will repeat
for the rare events is still unknown. Recently, the case of
N independent and identically distributed random variables
constrained to have a given sum was investigated, and under
certain conditions the Fréchet law was found [59–61]. From
this constraint it is clear that the far tail of the distribution
of the maximum cannot be modeled with the Fréchet law
since there is a cutoff at the far tail. It would be of interest to
investigate the far tail of this model (there N was fixed, while
here N is random) and see if the non-normalized density is
found here as well.
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APPENDIX A: CALCULATION OF EQ. (32)

We now present a detailed derivation of Eq. (32), starting
from the Montroll-Weiss equation (29). Here we are interested
in the case x − at/〈τ 〉 ∝ at/〈τ 〉 instead of x − at/〈τ 〉 ∝ at1/α

describing the typical fluctuations (discussed in the main
text). In Fourier-Laplace space, this corresponds to |s| ∝ |k|.
Plugging Eqs. (3) and (5) into Eq. (32) leads to

˜̂Por (k, s) ∼ 1

〈τ 〉s − ika − (τ0)α|	(1 − α)|sα

× [〈τ 〉 − (τ0)α|	(1 − α)|sα−1]

= 1

(〈τ 〉s − ika)
(
1 − (τ0 )α |	(1−α)|sα

〈τ 〉s−ika

)
× [〈τ 〉 − (τ0)α|	(1 − α)|sα−1], (A1)

where we use that 〈τ 〉s and ika are comparable and neglect
the term k2 since k2 
 |s|, |k|. Using 1/(1 − y) � 1 + y, with
y → 0, and s2α−1/(〈τ 〉s − ika) ∝ s2α−2 
 sα−1, Eq. (A1) re-
duces to

˜̂Por (k, s)∼ 1

〈τ 〉s − ika

(
〈τ 〉 − bαsα−1+ (τ0)α|	(1 − α)|〈τ 〉

〈τ 〉s − ika
sα

)
.

(A2)

Regrouping, we have

˜̂Por (k, s)∼ 1

〈τ 〉s − ika

(
〈τ 〉 + iksα−1a(τ0)α|	(1 − α)|

〈τ 〉s − ika

)
,

(A3)

which gives Eq. (32).

APPENDIX B: MOMENTS OF THE POSITION FOR THE
EQUILIBRIUM CASE

We further consider the moments of the position for an
equilibrium situation by using [18]

〈x̂q(s)〉 = (−i)q ∂q ˜̂Peq(k, s)

∂kq

∣∣∣∣
k=0

(B1)

to check our theoretical result (48). For q = 1, using Eqs. (40)
and (B1), we have

〈x̂(s)〉eq = a

〈τ 〉s2
, (B2)

which yields

〈x(t )〉eq = a
t

〈τ 〉 . (B3)

This is the exact result growing linearly with time t [see also
Eq. (6)]. Note that for an ordinary process, the asymptotic
behavior of 〈x(t )〉 is at/〈τ 〉. When q = 2, from Eq. (B1) the

second moment of x(t ) is

〈x2(t )〉eq ∼ a2t2

〈τ 〉2
+ 2a2bαt3−α

〈τ 〉3	(4 − α)
. (B4)

Utilizing Eqs. (B3) and (B4), the MSD is

〈[x(t ) − 〈x(t )〉]2〉eq = 〈x2(t )〉eq − 〈x(t )〉2
eq

∼ 2a2bαt3−α

〈τ 〉3	(4 − α)
. (B5)

This demonstrates that the process shows superdiffusion,
increasing faster than the ordinary process. As expected,
Eq. (B5) is consistent with Eq. (49) obtained from the infinite
density (46).

We further consider how motionless particles contribute
to the MSD. Taking the inverse Laplace-Fourier transform
on the first term on the right-hand side of Eq. (39) gives∫ ∞

t heq(τ )dτ δ(x). From Eq. (7) one can show that

〈(x − 〈x〉eq )2〉eq �
∫ ∞

−∞
(x − 〈x〉eq )2

∫ ∞

t
heq(τ )dτ δ(x)dx

= a2(τ0)αt3−α

〈τ 〉3(α − 1)
, (B6)

where we used the relation (B3). Since the MSD grows
like t3−α , clearly this term describing nonmoving particles
controls the leading term of the MSD (B5), while for the
nonequilibrium case we get a contribution of motionless par-
ticles to the MSD which increases as t2−α and is negligible.

APPENDIX C: CALCULATION OF MSDS USING
THE INFINITE DENSITIES

In principle, the MSDs can be calculated according to
Eq. (B1). However, in the long-time limit it is easy to calculate
MSDs based on the non-normalized density. This method is
also valid for high-order moments [49]. From Eq. (37) the
scaling behavior of ξ = 1 − (x/a)/(t/〈τ 〉) gives

Por (ξ, t ) ∼ (τ0)αt1−α

〈τ 〉 Ior,α (ξ ), (C1)

where 0 < ξ < 1. The second moment of ξ is

〈ξ 2〉or ∼
∫ 1

0
ξ 2Por (ξ, t )dξ = 2(τ0)αt1−α

〈τ 〉(2 − α)(3 − α)
(C2)

and 〈x(t )〉 ∼ at/〈τ 〉. Using the relation 〈ξ 2〉or = 〈(1 −
x/a

t/〈τ 〉 )2〉or, we have〈(
x − at

〈τ 〉
)2

〉
or

=
〈(

aξ
t

〈τ 〉
)2

〉
or

=
(

a
t

〈τ 〉
)2

〈(ξ )2〉or

∼ 2a2(τ0)αt3−α

〈τ 〉3(2 − α)(3 − α)

= 2a2bα (α − 1)t3−α

〈τ 〉3	(4 − α)
. (C3)
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This means that the MSD of the nonequilibrium case is determined by the far tail of the density, i.e., the infinite density. Similarly,
the MSD of an equilibrium process follows〈(

x − at

〈τ 〉
)2

〉
eq

∼
∫ ∞

−∞

(
x − at

〈τ 〉
)2 (τ0)αt1−α

〈τ 〉(α − 1)
δ(x)dx +

(
a

t

〈τ 〉
)2

〈ξ 2〉eq ∼ 2a2bαt3−α

〈τ 〉3	(4 − α)
,

with 〈ξ 2〉eq = ∫ 1
0 ξ 2 (τ0 )α

tα−1〈τ 〉Ieq,α (ξ )dξ . Here we want to stress that in the case of integrable observables, one can use the non-
normalized state described by the infinite density.
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