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Ultrafast polarization switching in ferroelectrics
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A method of ultrafast switching of ferroelectric polarization is suggested. The method is based on the
interaction of a ferroelectric sample with the feedback field of a resonator in which the sample is inserted.
The polarization reversal time can be of order of femtoseconds. The polarization switching produces a coherent
electromagnetic pulse.
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I. INTRODUCTION

Ferroelectric materials, possessing spontaneous electric
polarization, can be harnessed for various electronic devices
[1,2]. For example, they are used in devices regulating tun-
neling resistance [2] and enabling nonvolatile memory [3], in
memristors [4], in neuromorphic networks [5,6], and in solar
cells [7,8].

To regulate the processing of such devices, it is often neces-
sary to be able to quickly vary the direction and magnitude of
ferroelectric polarization. There exist two ways of polarization
switching that can be called inhomogeneous (or incoherent)
and homogeneous (or coherent).

First, the inhomogeneous way of polarization switching
was studied, being realized through the nucleation and growth
of domains of opposite polarization, with moving domain
walls under the influence of static electric fields [9–13]. This
way, however, provides rather long switching times, of order
of nanoseconds, being limited by the domain recrystallization
time that is typically hundreds of picoseconds [1,2,11,14,15].
Similar slow switching in the nanoscale volume of a ferro-
electric can be realized by mechanical deformation of a ferro-
electric sample [16]. Another slow mechanism of polarization
switching is due to the chemical oxidization at the surface of a
ferroelectric film [17]. Because of the principal restriction of
the inhomogeneous switching caused by the limited domain
recrystallization time, it became necessary to find other ways
that could provide much faster switching.

The other way that has been developed is the homoge-
neous (or coherent) switching process realized by external
alternating fields, applied perpendicular to the ferroelectric
polarization, in the optical [18–21], terahertz [22–28], or
infrared [29] regions. Under this process, the alternating field
acts directly on all ions of a single-domain sample, and
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polarization switching occurs through a continuous homo-
geneous mechanism, without formation of new domains of
opposite polarization. Homogeneous switching is facilitated
in films of nanometer thickness, where inhomogeneous nu-
cleation is strongly suppressed [30].

In order to realize a homogeneous switching, it is nec-
essary that, first, all characteristic times of the process be
much shorter than the domain nucleation-growth time and,
second, that the sample be a single-domain ferroelectric.
Under the ultrafast switching by means of alternating fields,
the first condition is easy to accomplish, since the domain
nucleation-growth time is sufficiently long, being of order of
nanoseconds. In addition, the preparation of single-domain
ferroelectrics is a technical problem having several solutions
[31–34]. For instance, single-domain states can be made
stable by using strain [34] or doping with point defects [35].
Also, there are plenty of ferroelectric films of nanometer
thickness, where domain nucleation is suppressed [30].

The homogeneous switching mechanism under the action
of an alternating field, involving no nucleation and growth
of oppositely polarized domains, can provide reversal times
of order of picoseconds. However, the present sources do
not provide a sufficiently strong pulse to completely switch
the polarization. Experiments [36] have shown that the re-
versal can be only 40% of its equilibrium value. Although
the reversal is quite fast, occurring in about 10−13 s, the
reverse polarization rapidly, during the same 10−13 s, returns
to the initial state, similarly to the dynamics induced by
terahertz pulses, when the reversal happens over a picosecond
timescale, followed by its fast complete retrieval [37].

Finally, time-dependent density functional theory simula-
tions show that by strongly exciting electrons via laser pulses,
it could be possible to change the underlying dynamical
potential energy surface, which could result in the polarization
switching within tens of picoseconds [38].

In the present paper, we consider the homogeneous way
of polarization switching involving alternating fields, but with
a rather different setup. The idea of the method is to put a
ferroelectric, subject to an external constant electric field, into
a resonator cavity. Then the polarization motion induces a
resonator feedback field acting back on the ferroelectric. In
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such a way, there is no need to additionally impose external
electromagnetic pulses; the ferroelectric produces the required
pulse by itself through the feedback field. The polarization
switching can be realized in femtoseconds. The suggested
method of switching also uses alternating fields, similar to the
techniques employing oscillating fields with fixed properties.
However, the principal difference is that here the alternating
field is not imposed by external sources but is self-organized,
being created by moving polarization itself. Such a self-
organized feedback field turns out to be essentially more
effective than an externally imposed field.

We use the system of units where the Planck constant h̄ is
set to one.

II. EVOLUTION EQUATIONS

We consider a ferroelectric inserted into a cavity. Gener-
ally, if the sample is sufficiently large and especially when it
is in contact with other media, say, a dielectric, then it can be
separated into domains [39]. However, we consider the case
of a cavity containing no other materials inside it except the
ferroelectric itself, which is a single-domain sample.

To consider a realistic ferroelectric model, let us take the
Hamiltonian in the pseudospin representation [40,41]

Ĥ = −�
∑

j

Sx
j − 1

2

∑
i �= j

Ji jS
z
i Sz

j −
∑

j

Etot · P j . (1)

Here Sα
j is an α component of the S = 1

2 spin operator
characterizing an electric dipole at site j, � is the tunneling
frequency, Ji j = Jji > 0 describes the strength of dipolar in-
teractions, Etot is the total electric field acting on dipoles, and

P j = d0S j (2)

is a dipolar operator.
This Hamiltonian provides a very good description of the

so-called order-disorder ferroelectrics, although it can also be
a reasonable approximation for other types of ferroelectrics
[40,41]. Among order-disorder ferroelectrics, we mention,
for example, KH2PO4, KH2AsO4, RbH2PO4, RbH2AsO4,
CsH2PO4, CsH2AsO4, NH4H2PO4, and NH4H2AsO4 and
their deuterated analogs, in which H2 is replaced by D2.
Similar Hamiltonians also are used to describe relaxor ferro-
electrics [42].

The Hamiltonian (1) is the standard, widely used, Hamil-
tonian for describing macroscopic ferroelectric samples. For
finite samples, in general, one should take into account the
depolarizing field caused by the charges on the surfaces of
the sample [43]. However, there are ways [44] of compensat-
ing surface charges, thus reducing or removing depolarizing
fields.

Also, considering an external electric field E0, applied in
the z direction, leads to the appearance of the depolarizing
field proportional to −Pz, which is of order of ρd0S, where ρ

is the sample density. The energy, corresponding to the depo-
larizing field, is d0Pz, which gives ρd2

0 S. The latter expression
equals the dephasing rate or transverse attenuation defined
by γ2 = ρd2

0 S. The magnitude of the energy, corresponding
to the external field, is |d0E0|, which denotes the dipole

rotation frequency defined as ω0 = |d0E0|. For what follows,
we will need a sufficiently strong external field such that
ω0 is much larger than γ2. This is necessary to realize the
coherent motion of dipoles so that the reversal time is much
shorter than the dephasing time. Under the condition ω0 � γ2,
corrections, related to the depolarizing field, can be omitted in
the Hamiltonian. At the same time, the attenuation rate γ2 will
be taken into account in the equations of motion.

The total electric field consists of two terms

Etot = Eex + E0ez, (3)

where the first term is the field of the resonator cavity, in
which the sample is inserted, and the second term is the
external constant electric field. The resonator cavity is chosen
such that it supports the TM010 fundamental mode, whose
electric field is directed along the cavity axis that is taken to
be the x axis. The resonator cavity electric field is a feedback
field generated by the moving polarization

P = d0

V

∑
j

〈S j〉, (4)

with V the sample volume.
The equation for the feedback field can be derived in the

standard way [45]. From the Maxwell equations inside the
cavity with an inserted ferroelectric, it is straightforward to
get the equation for the electric field

∇2E − 1

c2

∂2E
∂t2

− 4πσ

c2

∂E
∂t

= 4π

c2

∂2P
∂t2

(5)

generated by the ferroelectric polarization (4), where σ is the
conductivity and c is the light velocity. It is possible to look
for the solution to this equation in the form

E(r, t ) = e(r)E (t ), (6)

where e(r) is a cavity mode defined by the Helmholtz equation
and normalized to the cavity volume Vc so that

1

Vc

∫
|e(r)|2dr = 1. (7)

We are looking for the TM010 fundamental mode, which, by
definition, is the mode directed along the cavity axis, which
here is the x axis, which implies the conditions

ey(r) = 0, ez(r) = 0. (8)

The mode x component is nonzero inside the cavity, while it
satisfies the boundary condition

ex(r)|r=R = 0 (9)

on the cavity cylindrical surface of radius R. The expression
for the TM010 fundamental mode is known [45] to be pre-
sented through the Bessel function of the first kind,

ex(r) = C0J0

(
ω

c
r

)
, C0 = J−1

1

(
ω

c
R

)
,

with C0 the normalization constant. The boundary condition
ex(R) = 0 corresponds to the first zero of the Bessel function
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J0(ωR/c) = 0, which defines the cavity natural frequency

ω = 2.4048
c

R
. (10)

The normalization constant becomes

C0 = 1

J1(2.4048)
= 1

0.519 15
= 1.9262.

Thus the TM010 fundamental mode reads

e(r) = C0J0

(
ω

c
r

)
ex = ex(r)ex, (11)

where ex is a unit vector along the cavity axis x. Then we
substitute the expression (6), with the mode (11), into Eq. (5),
multiply the latter by the form (11), take into account that

P · e(r) = Pxex(r),

and integrate over the cavity volume. This leads to the equa-
tion

d2E

dt2
+ 2γ

dE

dt
+ ω2E = −4πη f

d2Px

dt2
, (12)

in which γ = 2πσ is a cavity attenuation, ω is the cavity
natural frequency (10), and

η f ≡ 1

Vc

∫
ex(r)dr = 0.831 67

is the filling factor corresponding to the TM010 fundamental
mode.

The evolution equations, following from the Heisenberg
equations of motion, are

dSx
i

dt
=

⎛
⎝∑

j

Ji jS
z
j + d0E0

⎞
⎠Sy

i ,

dSy
i

dt
= −

⎛
⎝∑

j

Ji jS
z
j + d0E0

⎞
⎠Sx

i + (� + d0E )Sz
i , (13)

dSz
i

dt
= −(� + d0E )Sy

i .

The observable quantities are given by the statistical averages

sα ≡ 1

NS

∑
j

〈
Sα

j

〉
(α = x, y, z), (14)

where N is the number of lattice sites and S = 1
2 is the spin

value.
The attenuation can be taken into account by employing

the method of local fields [46,47], where the attenuation is
caused by particle interactions acting in the local field formed
by other particles, so that the dynamic variables are forced to
relax to their local equilibrium values. In the present case, the
latter are

ζα ≡ 1

NS

∑
j

〈
Sα

j

〉
loc, (15)

where S = 1
2 and the local equilibrium averages are expressed

through variables (14) taken at the given moment of time.
Since dipolar interactions are of long range, the mean-field

approximation is applicable. In this way, the quantity 〈Sα
j 〉loc

is defined as the average〈
Sα

j

〉
loc = Trρ̂locSα

j , (16)

with the local equilibrium statistical operator

ρ̂loc = exp(−Ĥloc/T )

Tr exp(−ĤlocT )

for the ensemble of spins with the Hamiltonian

Ĥloc = −�
∑

j

Sx
j − sz

2

∑
i �= j

Ji jS
z
j − d0E0

∑
j

Sz
j .

Accomplishing explicit calculations for the local average (16),
we keep in mind low temperatures such that T � J , where

J ≡ 1

N

∑
i �= j

Ji j . (17)

Thus we obtain the low-temperature local equilibrium values

ζx = �[
�2 + ω2

0(1 − Asz )2
]1/2 , ζy = 0,

ζ 2
x + ζ 2

z = 1, ζz = − ω0(1 − Asz )[
�2 + ω2

0(1 − Asz )2
]1/2 ,

(18)

where we introduce the notation

A ≡ JS

ω0
(19)

and define the frequency

ω0 ≡ −d0E0 > 0. (20)

The positive value of ω0 implies that the external electric field
is directed downward.

Thus we come to the mean-field evolution equations for the
pseudospin variables

dsx

dt
= −ω0(1 − Asz )sy − γ2(sx − ζx ),

dsy

dt
= ω0(1 − Asz )sx + (� + γ2h)sz − γ2sy, (21)

dsz

dt
= −(� + γ2h)sy − γ1(sz − ζz ).

Here γ1 is the longitudinal relaxation rate due to spin-phonon
interactions (see [40,41]), while γ2 = ρd2

0 S is the transverse
attenuation caused by dipolar interactions. Usually, γ1 � γ2.

By introducing the dimensionless feedback field

h ≡ d0E

γ2

(
γ2 = ρd2

0 S
)
, (22)

where ρ = N/V , and taking into account the expression Px =
ρd0Ssx, we get the feedback-field equation

d2h

dt2
+ 2γ

dh

dt
+ ω2h = −4

γ f

γ2

ds2
x

dt2
. (23)

Here

γ f ≡ πη f ρd2
0 S = πη f γ2 = 2.6γ2 (24)
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is the coupling rate characterizing the interaction between the
ferroelectric sample and resonator.

Equations (21) and (23) define the dynamics of the vari-
ables sα and the feedback field h. The most interesting is
the behavior of the dimensionless polarization sz = sz(t ) as
a function of time for different parameters, under the given
initial polarization sz(0) = s0.

III. NUMERICAL SOLUTION

The polarization switching is realized in the following way.
Suppose the ferroelectric sample is initially polarized along
the z axis. The sample is placed inside a resonator cavity
supporting the TM010 fundamental mode and is subject to an
external electric field directed opposite to the initial polariza-
tion. The polarization dynamics is governed by Eqs. (21) and
(23). In order to precisely describe this dynamics, we have to
fix realistic parameters typical for ferroelectrics [1,2,41].

First, let us note that a ferroelectric characterized by the
Hamiltonian (1), without the last term containing electric
fields, acquires spontaneous polarization below the critical
temperature

Tc = �

(
ln

J + 2�

J − 2�

)−1

. (25)

This temperature is positive for the tunneling frequency

� <
J

2
(Tc > 0). (26)

The interaction strength, due to dipolar forces, J ≈ ρd2
0 .

The electric dipole is d0 = e0l0, with l0 ∼ 10−8 cm and the
electric charge about a proton charge e0 = 1.602 × 10−19

C. Keeping in mind that one Coulomb is equal to 2.998 ×
109g1/2 cm3/2 s−1, we find d0 ∼ 10−27 C cm ∼ 1 D, where
one Debye is equal to 3.336 × 10−28C cm. For the density
ρ ∼ 1022 cm−3, we obtain ρd2

0 ∼ 10−14 erg, that is, ρd2
0 ∼

1013 s−1. Actually, for typical ferroelectrics J ∼ 102 K, that
is, J ∼ 1013 s−1. The dipolar forces induce the transverse
attenuation γ2 = ρd2

0 S. Thus we have

JS ≈ γ2 = ρd2
0 S ∼ 1013 s−1.

The longitudinal attenuation, caused by the interaction of
pseudospins with phonons, is much smaller than the trans-
verse attenuation, γ1 � γ2.

The cavity is called resonant, since its natural frequency
ω has to be tuned close to the dipole rotation frequency ω0,
satisfying the quasiresonance condition∣∣∣∣�ω

∣∣∣∣ � 1 (� ≡ ω − ω0). (27)

In contrast, the attenuations are to be smaller than ω0, so that
γ2

ω0
� 1,

γ

ω
� 1. (28)

Therefore, for the parameter (19) we get

A ≡ JS

ω0
= γ2

ω0
� 1. (29)

Since JS = γ2 ∼ 1013 s−1, to satisfy the condition (29), we
need ω0 to be at least about 1014–1015 s−1, which is in

0 1 2 3 4t
-1

-0.5

0

0.5

1

s
z
(t)

 = 1
 = 10

 = 100
 = 0.1

s
0
 = 1

 = 0.1

FIG. 1. Polarization switching as a function of time for different
values of the resonator attenuation: γ = 0.1 (solid line), γ = 1
(dashed line), and γ = 10 (dash-dotted line). The other parameters
are � = 0.1, ω = 100, and s0 = 1. Here and in the following figures,
time is in units of 1/γ2 and all frequencies are in units of γ2.

the near infrared or visible light range. This gives the wave
vector k0 ≡ ω0/c of order of (3 × 103)–(3 × 104) cm−1 and
the wavelength λ ∼ 10−4–10−3 cm. Resonator cavities in the
range of visible light are widespread, and also there exist
various cavities operating in the infrared region [48–53].

We solve numerically the system of equations (21) and
(23), concentrating our attention on the behavior of the polar-
ization sz = s(t ) as a function of time, for different parameters
in the admissible range. In the figures, time is measured in
units of 1/γ2 and the frequency parameters are measured in
units of γ2. As initial conditions, we need to fix the values
sx(0) =

√
1 − s2

0 , sy(0), sz(0) ≡ s(0) ≡ s0, h(0), and the time
derivative ḣ(0). The initial polarization is positive, s0 > 0.
If some of other initial conditions, except s0, are not zero,
the reversal begins immediately at t = 0. When all of them
(except s0) are zero, there is a time delay. In the figures, we
show the results for the initial conditions sy(0) = 0, h(0) = 0,
and ḣ(0) = 0, while s0 and sx(0) =

√
1 − s2

0 can be varied.
The resonance is assumed when ω = ω0.

Figure 1 demonstrates the polarization reversal at different
values of the resonator attenuation. For small γ , the polariza-
tion oscillates after the switching. Hence, in order to achieve
a steady state after the polarization reversal, it is necessary to
take larger γ . For γ = 10, the after-switching oscillations are
suppressed. Thus, to avoid oscillations, it is preferable that the
resonator ringing time τ ≡ 1/γ be shorter than the dephasing
time T2 ≡ 1/γ2.

Figure 2 shows the dependence of the polarization switch-
ing on the tunneling frequency. The larger the �, the shorter
the delay time. As is clear from the evolution equations, this
is because the tunneling triggers the polarization motion.

In Fig. 3, the role of the frequency ω is illustrated. The
larger the ω, the shorter the delay time and the better the polar-
ization inversion. This happens because the larger frequency
makes stronger the coupling between the resonator cavity and
the ferroelectric sample.
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-0.5
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s
z
(t)

 = 10-3

 = 10-5 = 10-1

 = 100
 = 10

s
0
 = 1

FIG. 2. Polarization switching for varying tunneling frequency:
� = 10−5 (dash-dotted line), � = 10−3 (dashed line), and � = 10−1

(solid line). The other parameters are ω = 100, γ = 10, and s0 = 1.

Figure 4 shows a similar dependence of the polarization
switching on the frequency ω, as in Fig. 3, but for the initial
polarization s0 = 0.5, when sx(0) =

√
1 − s2

0 is not zero. As
is mentioned above, a nonzero sx(0) triggers the start of the
polarization motion, so that there is no delay time, and the
switching begins from t = 0.

In Fig. 5, the polarization switching for different initial
polarizations is compared: s0 = 0.5 (solid line) and s0 = 1
(dash-dotted line). For s0 = 0.5, the initial transverse compo-
nent sx(0) =

√
1 − s2

0 is not zero, because of which the pro-
cess of switching starts from the very beginning, practically at
t = 0, without delay.

Figure 6 demonstrates that the transverse polarization com-
ponent sx oscillates around zero. The oscillation is faster for
larger ω. The maximal oscillation amplitude corresponds to
the moment of the polarization switching.

Since the transverse component sx generates, by means of
the relation (23), the dimensionless cavity field h, and hence
the dimensional electric field inside the cavity E , the temporal

0 1 2 3 4 5 6 7t
-1

-0.5

0

0.5

1

s
z
(t)

 = 100

 = 1000

 = 10

 = 0.1
 = 10

s
0
 = 1

 = 20

FIG. 3. Dependence of the polarization switching on the fre-
quency: ω = 10 (dashed line), ω = 20 (dotted line), ω = 100 (dash-
dotted line), and ω = 1000 (solid line). The other parameters are
� = 0.1, γ = 10, and s0 = 1.

0 0.2 0.4 0.6 0.8 1 1.2t
-1

-0.5

0

0.5

s
z
(t)

 = 0.1
 = 10

s
0
 = 0.5

 = 10

 = 20
 = 100

 = 1000

FIG. 4. Dependence of the polarization switching on the varying
frequency ω for the same parameters as in Fig. 3, � = 0.1 and γ =
10, but for the initial polarization s0 = 0.5. Here ω = 10 (dashed
line), ω = 20 (dotted line), ω = 100 (dash-dotted line), and ω =
1000 (solid line).

behavior of h, as is seen from Fig. 7, is similar to that of the
component sx.

IV. ANALYTICAL SOLUTION

Although the numerical solution of the preceding section
gives us an accurate description of the process of polariza-
tion switching, it nevertheless is desirable to have analytic
solutions that would provide, at least approximately, explicit
formulas allowing for a better understanding of the related
physics and for straightforward estimates of characteristic
quantities. It is convenient to pass to the variables

u ≡ sx − isy,

w ≡ |u|2 = s2
x + s2

y , (30)

s ≡ sz.

0 0.2 0.4 0.6 0.8 1 1.2t
-1

-0.5

0

0.5

1

s
z
(t)

s
0
 = 0.5

s
0
 = 1

 = 100
 = 0.1
 = 10

FIG. 5. Polarization switching for different initial polarizations:
s0 = 0.5 (solid line) and s0 = 1 (dash-dotted line). The other param-
eters are ω = 100, � = 0.1, and γ = 10. For s0 < 1, the delay time
is practically absent.
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(a)

0 0.4 0.8 1.2 1.6t
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1

s
x
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FIG. 6. Temporal dependence of the transverse polarization component sx , with the parameters � = 0.1, γ = 10, and s0 = 1, for different
frequencies: (a) ω = 10 (solid line) and ω = 20 (dash-dotted line) and (b) ω = 100 (solid line).

In terms of these variables, Eqs. (21) transform into the
equation for the transverse component

du

dt
= −iω0(1 − As)u − γ2u − iγ2

(
h + �

γ2

)
s + γ2ζx, (31)

for the coherence intensity

dw

dt
= −2γ2w − iγ2

(
h + �

γ2

)
(u∗ − u)s + γ2ζx(u∗ + u),

(32)
and for the polarization

ds

dt
= i

2
γ2

(
h + �

γ2

)
(u∗ − u) − γ1(s − ζz ). (33)

Keeping in mind the case of resonance, defined by Eq. (27),
and the existence of the small parameters described in
Eqs. (26), (28), and (29), we note that the variables u and h can
be classified as fast and the variables w and s as slow. In that
case, to solve the given system of equations, it is admissible
to resort to the averaging techniques [54,55]. Below we follow
the variant of the method described in detail in Refs. [56,57].
First, we solve the equations for the fast variables, keeping

there the slow variables as quasi-integrals of motion. Such a
solution is straightforward, although cumbersome, since the
equations for the fast variables become linear with respect to
the latter, when the slow variables are kept fixed. Then the
solutions found for the fast variables are substituted into
the equations for the slow variables, with the averaging of the
slow-variable equations over time. This yields the equations
for the guiding centers, which can be analyzed. All this
machinery has been thoroughly described in Refs. [56,57] and
its use has been demonstrated in the study of the dynamics of
magnetic systems [58–60].

To present the solutions for the fast variables, under fixed
slow variables, in a compact form, we take into account the
small parameters and introduce various notation. We define
the coupling parameter

g ≡ γ f ω0

γ γ2
= 2.6

ω0

γ
, (34)

characterizing the strength of the coupling between the ferro-
electric sample and resonator; the coupling function

α ≡ g(1 − As)(1 − e−γ t ), (35)

0 0.5 1 1.5t
-40

-20

0

20

40

h(t) (b) = 100

0 2 4 6 8t
-8

-4

0

4

8

h(t) (a)
 = 10

 = 20

FIG. 7. Dimensionless electric field inside the cavity h(t ), as a function of time with the parameters � = 0.1, γ = 10, and s0 = 1, for
different frequencies: (a) ω = 10 (solid line) and ω = 20 (dash-dotted line) and (b) ω = 100 (solid line).

033136-6



ULTRAFAST POLARIZATION SWITCHING … PHYSICAL REVIEW RESEARCH 1, 033136 (2019)

describing the dynamics of the ferroelectric-resonator interac-
tion; and the effective frequency

ωeff ≡ ω0(1 − As) − iγ2(1 − αs). (36)

Thus we obtain the transverse component

u =
(

u0 + �s + iγ2ζx

ωeff

)
exp(−iωefft ) − �s + iγ2ζx

ωeff
(37)

and the feedback field

h = −iα(u∗ − u). (38)

Note that from Eq. (18) we have

ζx
∼= �

ω0
, ζz

∼= −1.

Substituting the fast variables into the equations for the slow
variables and averaging the resulting equations over time
gives the guiding-center equations for the coherence intensity,

dw

dt
= −2γ2(1 − αs)w + 2γ3(1 − α − αs)s2, (39)

and for the polarization

ds

dt
= −γ2αw − γ3(1 + s − 2αs) − γ1(s − ζz ), (40)

where

γ3 ≡ γ2
�2

ω2
0

. (41)

The parameter γ3 is very small. However, it cannot be ne-
glected, since it plays an important role in triggering the
polarization motion at the initial stage. At the very beginning
of the process, when t → 0, so that

γ t � 1, γ1t � 1, γ2t � 1, γ3t � 1, (42)

the coupling function (35) is close to zero. Then, keeping in
mind that usually γ1 � γ2, the equations of motion become

dw

dt
= −2γ2w + 2γ3s2,

ds

dt
= −γ3(1 + s) (t → 0). (43)

Their solutions are

w �
(

w0 − γ3

γ2
s2

0

)
e−2γ2t + γ3

γ2
s2

0,

s � (1 + s0)e−γ3t − 1,

which, in view of the inequalities (42), can be simplified to

w � w0 + 2
(
γ3s2

0 − γ2w0
)
t,

s � s0 − γ3(1 + s0)t, (44)

where w0 ≡ w(0) = 1 − s2
0 and s0 ≡ s(0). These are the so-

lutions at the initial stage, when the motion of individual
polarizations is not mutually synchronized.

The coupling function (35) grows with time, implying an
increase of the magnitude of the resonator feedback field,
which collectivizes the individual polarizations, forcing them

to move coherently. The influence of the feedback field be-
comes crucial after the coherence time tcoh, when the coupling
function grows so that

αs = 1 (t = tcoh ). (45)

This defines the coherence time

tcoh = τ ln
gs0(1 − As0)

gs0(1 − As0) − 1

(
τ ≡ 1

γ

)
, (46)

with τ the resonator ringing time. If the ferroelectric-resonator
coupling is strong, such that gs0 � 1, then the coherence time
is

tcoh � τ

gs0(1 − As0)
. (47)

At the coherence time, the solutions (44), that is,

wcoh = w(tcoh), scoh = s(tcoh), (48)

can be written as

wcoh � w0 + 2γ3s2
0tcoh, scoh � s0, (49)

where we assume that the coupling parameter g is sufficiently
large so that inequalities (42) are yet valid at tcoh.

After tcoh, the coupling function (35) quickly grows, reach-
ing the value g(1 − As) � g. At this stage, the parameters γ1

and γ3, which are much smaller than γ2 and especially gγ2,
can be neglected. Then Eqs. (39) and (40) become

dw

dt
= −2γ2(1 − gs)w0,

ds

dt
= −γ2gw (t > tcoh ). (50)

The latter equations enjoy the exact solutions for the coher-
ence intensity

w =
(

γs

gγ2

)2

sech2

(
t − t0

τs

)
(51)

and polarization

s = − γs

gγ2
tanh

(
t − t0

τs

)
+ 1

g
. (52)

The quantities γs and t0 are the integration constants that
are defined by combining expressions (51) and (52) with
Eqs. (49). This gives the switching time τs ≡ 1/γs, in which

γ 2
s = γ 2

g + (gγ2)2wcoh, γg ≡ γ2(gs0 − 1), (53)

and the delay time

t0 = tcoh + τs

2
ln

(
γs + γg

γs − γg

)
. (54)

The delay time shows the time when the switching starts,
while the switching time is the time during which the polar-
ization reversal occurs. The delay time can also be written as

t0 = tcoh + τs ln

(
γs + γg

gγ2
√

wcoh

)
, (55)

which demonstrates its explicit dependence on wcoh.
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V. CHARACTERISTIC QUANTITIES

The derived analytic expressions provide a transparent il-
lustration for the role of different system parameters and their
combinations. To study more carefully these dependences,
let us keep in mind the case of strong ferroelectric-resonator
coupling, when gs0 � 1. Then the coherence time (47) takes
the form

tcoh � 0.385

ω0s0
, (56)

which shows that the larger the frequency ω0, the shorter this
time.

The quantities (53) read

γs � gγ2

(
1 + 0.385

γ2�
2

ω3
0

s0

)
, γg � γ2gs0. (57)

The switching time τs ≡ 1/γs becomes

τs � 0.385
γ

ω0γ2
, (58)

so a larger ω0 makes the process of switching faster. The delay
time (55) acquires the form

t0 � tcoh + τs ln

(
1 + s0√

wcoh

)
, (59)

which depends on the value wcoh. The latter is connected with
the initial polarization s0.

When the system at the initial moment of time is well
polarized, with s0 = 1 and w0 = 0,

wcoh = 0.77
γ2�

2

ω3
0

(s0 = 1). (60)

In addition, the delay time turns into

t0 � 0.385

ω0

[
1 + γ

2γ2
ln

(
5.2ω3

0

γ2�2

)]
(s0 = 1). (61)

In contrast, when s0 = 0.5 and w0 = 0.75, the delay time is

t0 � 0.77

ω0

(
1 + 0.65

γ

γ2

)
(s0 = 0.5). (62)

To get concrete estimates, let us take the typical values
of parameters as have been used when numerically solving
the evolution equations: ω0 ∼ 100γ2, � ∼ 0.1γ2, γ ∼ 10γ2,
and s0 ∼ 1. Then g ∼ 10, γs ∼ γg ∼ 10γ2, and γ3 ∼ 10−6γ2.
For the coherence time, we have tcoh ∼ 10−15 s and for the
switching time we get τs ∼ 10−14 s. Diminishing s0 decreases
the delay time. Thus, if s0 = 1 and w0 = 0, then wcoh ∼ 10−8

and t0 ∼ 10−13 s; however, if s0 ≈ 0.5, so that w0 ∼ 1, then
t0 ∼ 10−14 s. These estimates are in good agreement with
numerical calculations.

An important question is how the switching time is lim-
ited in realistic materials, in particular, what the relation is
between the switching time τs and the cavity ringing time
(delay time τ ≡ 1/γ ). From the above estimates, we find the
ratio

τs

τ
= 0.385

γ 2

ω0γ2
. (63)

It looks like, by varying the system parameters, it is possible to
make this ratio rather small. However, there are limitations for
the variation of the parameters. Thus, for a good quality cavity
one has γ � ω0. However, γ cannot be arbitrarily small, since
for γ < γ2 there are oscillations in the polarization. In order to
realize a stable switching without oscillations, it is necessary
to take γ � γ2. Therefore, the ratio (63) lies in the interval

γ2

ω0
� τs

τ
� ω0

γ2
(γ2 � γ � ω0). (64)

For the infrared region, where ω0/γ2 ∼ 10, we have

0.1 � τs

τ
� 10

(
ω0

γ2
∼ 10

)
,

which actually means that the switching time τs is of order of
the ringing time τ . In the visible light region, when ω0/γ2 ∼
100, we find

0.01 � τs

τ
� 100

(
ω0

γ2
∼ 100

)
.

This tells us that again the switching time is correlated with
the ringing time. For the visible light, it looks admissible to
reach the shortest switching time of order τs ∼ 10−15 s.

VI. COHERENT RADIATION

The motion of electric dipoles has to produce electro-
magnetic radiation. If this motion is coherent, the produced
radiation should also be coherent. Since the sample is inside
a resonator cavity, the radiation can propagate only along the
cavity axis, that is, along the x axis. The radiation intensity
in the direction of n = ex consists of two terms describing
incoherent and coherent radiation,

I (n, t ) = Iinc(n, t ) + Icoh(n, t ). (65)

Radiation produced by moving dipoles can be described in the
following way [45,57,61]. The incoherent radiation intensity
reads

Iinc(n, t ) = 3

16π
Nω0γ0[1 + s(t )] (66)

and the coherent radiation intensity is

Icoh(n, t ) = 3

32π
N2ω0γ0w(t )F (k0n), (67)

with the shape factor

F (k0n) = 4

k2
0L2

sin2

(
k0L

2

)
, (68)

where L is the cavity length and γ0 is the natural width

γ0 = 2

3
|d0|2k3

0

(
k0 = ω0

c

)
. (69)

For the frequency ω0 ∼ 1015 s−1, we have the wavelength
λ ∼ 10−4 cm and the natural width γ0 ∼ 104 s−1. Then the
radiation intensities at the maximum are

Iinc(n, t ) ∼ N × 10−15 W,

Icoh(n, t ) ∼ N2F (k0n) × 10−16 W.
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The number of dipoles that could radiate coherently can be
estimated as N ∼ ρλ3. If we consider a small sample, with
the length L smaller than the radiation wavelength λ, then
the shape factor (68) is of order one. In that case, for the
density ρ ∼ 1022 cm−3, we get N ∼ 1010. In addition, for the
radiation intensities, we find

Iinc(n, t ) ∼ 10−5 W, Icoh(n, t ) ∼ 104 W.

When the frequency is ω0 ∼ 1014 s−1, λ ∼ 10−3 cm and
γ0 ∼ 10 s−1. The radiation intensities are

Iinc(n, t ) ∼ N × 10−20 W,

Icoh(n, t ) ∼ N2F (k0n) × 10−21 W.

Considering again coherently radiating dipoles, with the num-
ber N ∼ ρλ3, we have N ∼ 1013. This gives, for the radiation
intensities,

Iinc(n, t ) ∼ 10−7 W, Icoh(n, t ) ∼ 105 W.

Such a level of radiation can be easily measured. The prevail-
ing coherent component of radiation shows that this radiation
is a superradiance.

VII. CONCLUSION

A method of ultrafast polarization switching in ferro-
electrics has been suggested. The main idea is to place a
ferroelectric sample into a resonator cavity. In the presence of
a constant electric field, directed opposite to the ferroelectric
polarization, the sample is in a nonequilibrium state. As soon
as the polarization starts moving, it produces an electric field
in the cavity. This field acts back on the sample, forcing
the polarization to move faster. Thus the ferroelectric itself
generates a feedback field accelerating the polarization mo-
tion so that it is not necessary to apply external alternating
fields, as one usually does to realize polarization switching. It
turns out that the self-organized feedback field is essentially
more effective for the polarization reversal than an externally
imposed field.

The system of equations describing the ferroelectric po-
larization and feedback field is solved numerically and also
analytically by means of averaging techniques. This makes
it possible to give a detailed description of the whole pro-
cedure, to study the role of the system parameters, and to
estimate the characteristic quantities involved in the process.
The polarization switching can be realized extremely fast: For
the parameters of typical ferroelectrics, the switching time
can reach femtoseconds. This ultrafast polarization reversal
generates a coherent electromagnetic pulse.
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