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Thermodynamic cost of a shortcuts-to-isothermal transport of a Brownian particle
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We study the thermodynamic energy cost required for the shortcuts-to-isothermal (ScI) process that can
accelerate the isothermal process at a finite time. Our experiment uses a Brownian particle dragged by the
harmonic potential between two equilibrium positions with free energy difference. We confirm theoretically
and experimentally that the probability distribution functions of work done during these processes are Gaussian,
and the dissipated work for ScI transport is inversely proportional to the driving time, indicating that very prompt
transition is impossible because of a diverging driving cost.
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An isothermal process is a cornerstone in classical
thermodynamics, whose transition from one equilibrium
state to another takes a very long time to be completed [1].
Thanks to the recent technical advances in manipulating
nanosize objects, such as optical tweezers [2], magnetic
tweezers [3], and the Anti-Brownian ELectrokinetic (ABEL)
trap [4], there has been more focus on understanding small
systems where thermal fluctuations are dominant [5]. In
particular, the realization of the Brownian heat engine has
refocused attention on thermodynamic processes in stochastic
thermodynamics [6,7]. One obvious question is whether it is
possible to accelerate a system from one equilibrium state to
another with a time much shorter than the intrinsic relaxation
time and thus reproduce the same output as in a quasistatic
process. For the past decade, there have been many studies in
quantum systems, known as shortcuts to adiabaticity [8–14],
as well as in stochastic environments [15–18]. These shortcuts
require extra energy to suppress highly nonequilibrium
fluctuations. However, the thermodynamic cost to boost
such fast isothermal transitions has not been experimentally
explored. In particular, the recently proposed shortcuts-to-
isothermality (ScI) [17] method provided a unified framework
to realize the finite-rate isothermal process and determine
nonequilibrium work relations. Accelerated isothermal
process is of both fundamental and practical importance in
realizing thermodynamic cycles in microheat engines and ScI
can speed up significantly the engine cycle. Understanding
the associated cost for ScI processes is critical to improving
the efficiency in the design of such microengines.

In this paper, we experimentally demonstrate the finite-
time isothermal transport of a Brownian particle dragged by
the harmonic potential between two equilibrium states with
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free energy difference �F to examine the thermodynamic
cost to accelerate the isothermal process. For realization, the
laser center is shifted by the acousto-optic deflector (AOD) at
the rate of 100 kHz according to the ScI protocol proposed.
We measure the work done during transport and compare its
distribution to the Gaussian work distribution function derived
from the moment of work distribution [19]. We obtain the
thermodynamic energy cost for ScI protocol that is inversely
proportional to the driving time, indicating that prompt transi-
tion is impossible due to the infinite cost.

The fundamental idea to experimentally realize the ScI
transport of a Brownian particle is depicted in Fig. 1. Let
us consider a particle trapped in a one-dimensional time-
dependent harmonic potential U0(x, t ) = kx2/2 − λ(t )x at
temperature T , where x is the particle displacement from the
initial position of the potential center, k is the stiffness of
the potential, and λ(t ) is the external dragging force turned
on at t = 0. Note that the detailed derivation for the general
case is given in Appendix B. The protocol performing with
U0 is called the RAMP protocol because the laser position
monotonically increases in contrast to the ScI protocol. The
motion of the particle can be described by the overdamped
Langevin equation,

−γ ẋ(t ) + f0(x, t ) + ξ f (t ) = 0, (1)

where γ = 6πηR is the drag coefficient, η is the viscosity
of the surrounding medium, R is the radius of the particle,
and the force f0(x, t ) = −∂U0(x, t )/∂x. ξ f (x, t ) is the random
thermal force with zero mean and the variance 〈ξ f (t )ξ f (t ′)〉 =
2γ δ(t − t ′)/β with the inverse temperature, β = 1/kBT , and
the Boltzmann constant kB.

In the ScI protocol, it is hypothesized that the distribution
function is invariant during transport, indicating instantaneous
equilibrium (ieq) of the transition,

ρ(x, t ) = ρieq(x, λ(t )) ∝ e−βU0(x,t ) = e− βk
2 (x−x̄(t ))2

, (2)

where x̄(t ) is the mean position of the particle at the given
time. To maintain the evolution of the system always in
instantaneous equilibrium with the RAMP potential U0, an
auxiliary potential Uaux(x, t ) is introduced to the system
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FIG. 1. The illustration of ScI transport of a Brownian particle
by the harmonic potential. The laser spot (red circle) moves along
the red line and the trapped particle is expected to fluctuate centered
at the expected mean path (blue line). At t < 0, the particle stays
at the equilibrium position 〈xi〉. When the protocol is turned on, the
particle is dragged by the harmonic potential to another equilibrium
position x f . For t > τ , it stays at 〈x f 〉 = d , where τ is the driving
time.

such that the joint potential is U (x, λ(t )) = U0(x, λ(t )) +
Uaux(x, t ). The analytic form for the auxiliary potential for
the given potential is given as Uaux(x, t ) = −γ λ̇(t )/kx [17].
Eventually, the form of the potential for the ScI protocol
becomes

U (x, λ(t )) = 1

2
kx2 − λ(t )x − γ λ̇(t )

k
x. (3)

The boundary conditions for Uaux have to be λ̇(0) = λ̇(τ ) = 0
because the auxiliary potential must be applied only during
the process and thus the joint potential must be U0 at t = 0 and
t = τ . Theoretical results are derived for general protocol λ(t )
as given in Appendix B. In the experiments, we choose the
following form of the auxiliary force satisfying the boundary
conditions,

λ(t ) = a

[
1 − cos

(
πt

τ

)]
kσ, (4)

where a is the strength of the auxiliary force, σ = √
1/kβ is

the width of the particle fluctuation in the harmonic potential,
and τ is the transport time from one equilibrium state to
another. In Fig. 1, the red circle indicates the linear range of
the optical tweezers where the particle (the white circle) must
be within during whole process, or otherwise the particle
would experience a different force. At t = 0, the protocol is
turned on, and the particle starts to be dragged by the moving
potential from initial equilibrium state, 〈xi〉 = 0 to final
equilibrium state, 〈x f 〉 = d , with xlc = λ/k for the RAMP
protocol and xlc = λ/k + λ̇γ /k2 for the ScI counterpart,
where xlc is the laser center position. Because the laser (red
solid line) moves far from the mean particle trajectory (blue
solid line) for the ScI transport, the optical tweezers apply a
stronger dragging force on the particle than they do for the
RAMP protocol and so maintain instantaneous equilibrium
during the transition process.

The details of the experimental setup are described in
our previously published work [20,21]. The optical tweezers
system has one limitation to achieve the ScI transport at the

short transport time. As shown in Fig. 1, the blue solid line is
the expected mean position of the particle for the ScI process.
Because the particle fluctuations (blue shadow) must stay
inside the linear range (red shadow) of the optical tweezers
during the whole process, the laser center cannot move far
away from the expected mean particle position. Thus, the
optimal experimental condition is as follows: The stiffness is
k = 3.6 ± 0.1 pN/μm, the corresponding intrinsic relaxation
time is τc = 2.6 ms, and the minimum processing time is
τ = 1 ms. While under this condition, the transport distance
of a particle is 25 nm, much smaller than the particle diameter
of 1 μm, and our measurement captures most of important
physics of finite-rate isothermal process as described below.

The experiments have three steps: (i) The particle fluc-
tuates in the harmonic potential for 50 ms for the initial
equilibrium state. (ii) Two protocols for transport are realized
to be compared. The first protocol is the RAMP transport
processed by U0(x, t ) to look into the intrinsic relaxation of
the system. Second is the ScI protocol, not only done with the
same experimental parameters with the RAMP but also with
the additional auxiliary potential Uaux(x, t ). The RAMP and
ScI transport were realized at various process times of τ = 1,
2, 3, 10, 25, 50, and 75 ms. (iii) The potential stays for 50 ms
to wait for the particle to return to the another equilibrium
state. Then, the potential moves back to the initial position.
For each transport time, the measurements of both protocols
are repeated for 12 000 cycles.

Figure 2(a) presents the color maps of the time evolution of
position histogram of the particle driven by the RAMP (left)
and ScI (right) protocol at the process time of 1 ms. Here, the
white line indicates the mean particle trajectory, the pink is the
trajectory of the quasistatic isothermal process, and the black
line is the harmonic potential trajectory. When the protocols
are turned on at t = 0 ms, the laser moves sinusoidally from
x = 0 to 2aσ . For the RAMP protocol, the particle does not
immediately follow the laser and returns to the equilibrium
position after 20 ms. In contrast, for the ScI transport, the
laser moves far away from the expected mean particle posi-
tion to apply the auxiliary force that escorts the particle in
equilibrium during the process. With ScI, the particle always
follows the trajectory of the quasistatic isothermal process and
thus achieves 20 times faster relaxation than the RAMP does.
We also checked the basic hypothesis of the ScI [Eq. (2)]
that the system is always at instantaneous equilibrium during
the process, although the total system including the auxiliary
potential is highly out of equilibrium. Thus, the histograms of
the instantaneous particle position during the laser shift must
collapse into the Boltzmann distribution in Eq. (2). Figure 2(b)
shows that the measured instantaneous position histogram
of the particle subtracted by the mean particle trajectory,
P(x − x̄), from the ScI transport. The colored dots represent
the 300 individual histograms at different times (−1ms < t <

2ms) shown as the white box in Fig. 2(a). Our finding that
all distributions collapse into a single Gaussian curve agrees
well with the ScI assumption that the system evolves along the
instantaneous equilibrium state of the initial potential.

In Fig. 3, the mean trajectories of the dragged particle for
the RAMP and ScI protocol are compared for various values
of τ . For each measurement, the stiffnesses of the harmonic
potential and thus the corresponding characteristic lengths, σ ,
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FIG. 2. (a) The color map of the time evolution of position histogram of the particle driven by the RAMP (left) and ScI (right) protocol at
the process time of 1ms. Both protocols are turned on at t = 0 ms. The white and black lines indicate the particle and the laser center trajectories,
respectively. (b) The instantaneous histograms of the particle position marked by the white box in panel (a) for 3 ms (−1 < t < 2 ms). The
colored dots are the 300 individual histograms at different times, and the red solid line is the Gaussian distribution function. All histograms
collapse into a single curve.

are not identical, so we rescaled the mean particle trajectories
by the final equilibrium position, xlc(τ ) = 2aσ . The mean
positions for the RAMP (dashed gray) and ScI (solid color)
protocols are

XRAMP(t ) = aσ

(
1 − 1

1 + (
πτc
τ

)2

[
cos

πt

τ
+ πτc

τ
sin

πt

τ

+
(

πτc

τ

)2

e− t
τc

])
, (5)

XScI(t ) = aσ

(
1 − cos

πt

τ

)
. (6)

For the short τ < 20 ms, we observed that relaxation to final
equilibrium state for the RAMP protocol takes 20 ms, while

FIG. 3. The time evolution of the mean particle position for two
distinct transport protocols: (a) RAMP and (b) ScI. The colors denote
the different transport times τ and the gray dashed lines indicate
the theoretical prediction of Eq. (5) for RAMP and Eq. (6) for ScI
protocol.

for the ScI transport the mean trajectories accord with the
expected equilibrium trajectories and is the process is much
faster than that for the RAMP protocol. For 1-ms transition
time, the relaxation time for ScI is 1 ms, which is 20 times
faster than that for the RAMP protocol. As τ increases, the
difference between two mean trajectories decreases and for
τ > 20 ms, two trajectories overlap each other, indicating that
the transition is close to the quasistatic process.

Next, we turn our attention to the nonequilibrium work
fluctuations during transport. The free energy difference be-
tween two equilibrium states is given by �F = ∫ τ

0 dt λ̇ ∂U0
∂λ

=
−2a2/β. The measured work done during a single cycle of
transport can be determined using the discretized Sekimoto
formula W = ∫ τ

0 (∂U/∂t )dt [22]:

WRAMP = �t
N∑
i

[
−a sin

(
πti
τ

)
πkσ

τ

]
xRAMP(ti ), (7)

Wieq = �t
N∑
i

[
−a sin

(
πti
τ

)
πkσ

τ

]
xScI(ti ), (8)

WScI = Wieq + �t
N∑
i

[
−aγ cos

(
πti
τ

)
π2σ

τ 2

]
xScI(ti), (9)

where the work from the RAMP process, the instantaneous
equilibrium calculation, and the ScI are WRAMP, Wieq, and
WScI, respectively. Here N = τ/�t , �t = 10 μs, ti = i�t is
the time step with i = 0, 1, . . . , N .

Figure 4 shows the experimentally measured probability
density functions (PDF) of the work done for various transport
times τ (various symbols). The solid lines on the symbols are
the fitting curves, and the vertical line indicates the free energy
difference β�F = −0.125. One notices that all PDFs for
the three cases are well described by Gaussian distributions:

P(W ) = 1/

√
2πσ 2

W exp[−(W − 〈W 〉)/2σ 2
W ] (see the details

in Appendix B). When the works are compared to the free
energy difference �F , at τ < τc, the peaks for the RAMP
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FIG. 4. The PDFs of work done for each transport cycle (a) for
the RAMP protocol, WRAMP; (b) for the ScI protocol, WScI, and (c) for
the instantaneous work, Wieq. The vertical line is the theoretical
estimation of the free energy difference, �F .

protocol slightly deviate from �F and approach to �F as τ

increases. For the ScI counterpart, the peak values are far from
the �F and the width are broad for τ < τc, meaning that with
ScI the process is highly nonequilibrium. For instantaneous
equilibrium work Wieq, all PDFs peak at �F over the whole
transition time range. This ensures that the system driven by
the ScI protocol behaves as if it is in equilibrium with the
potential U0 even though it is highly nonequilibrium.

Figure 5(a) shows the averaged work as a function of τ for
the RAMP (circles), ScI (triangles), and ieq (squares). Here,
the error bars are smaller than the symbol sizes. The aver-
aged works for ScI, RAMP, and ieq processes are computed
from (B26), (B28), (B30), and (B27) as

β〈WScI〉 =
(

π2

2

τc

τ
− 2

)
a2, (10)

β〈WRAMP〉 =
(

1 + e−τ/τc[
1 + (

τ
πτc

)2]2 + τ/τc

2
[
1 + (

τ
πτc

)2] − 2

)
a2, (11)

β〈Wieq〉 = −2a2. (12)

For the RAMP protocol, the work required to drag the particle
is not far from the �F at short times and approaches to �F .
For the ScI transport, as expected, the work to maintain the
system in equilibrium with U0 is much larger than that in the
RAMP protocol. In other words, even when the total system
is highly nonequilibrium with the ScI protocol, the particle
stays in equilibrium with the RAMP protocol with extra work
as the cost. The experimentally measured instantaneous work,
β〈Wieq〉 = −0.114 ± 0.012, clearly matches the theoretical

FIG. 5. (a) The averaged work from the RAMP (circles), ScI
(squares), and ieq (triangles). The blue dashed line is the free energy
difference from the theoretical calculation. (b) Comparison of the
theoretical characteristic time, Atheory, to the experimental Aexp for the
different τcs. (c) The instantaneous free energy difference normalized
by 〈Wieq(τ )〉 for the various values of τ .

calculation, β�F = −0.125, and also confirms that during
the transition it is always in equilibrium with the RAMP
protocol. The solid curve in Fig. 5(a) is a fitting line of
the thermodynamic cost to keep the particle in instantaneous
equilibrium under ScI transport, which is the dissipated work
and inversely proportional to the driving time, β〈Wdiss〉 =
β〈W − �F 〉 = A/τ , when the ScI transport is the optimal
process [23]. This result also agrees well with the theoretical
calculations [16,17]. For this specific protocol, the theoreti-
cal prediction (see Appendix C) gives Atheory = π2a2τc/2 =
0.80 ms, which is in agreement with the experimental value
of 0.87 ± 0.01 ms. We performed more measurements with
different τc to compare Aexp to the theoretical prediction. As
shown in Fig. 5(b), the slope is close to 1. It is evident that
the shorter driving time induces a larger driving cost and
instantaneous jump to another equilibrium state is impossible
due to the infinite cost.

We further characterize the property of the instantaneous
equilibrium of the ScI transport in terms of the instantaneous
free energy �F (t ), which can be defined at the each
moment of the process. That is theoretically simply given
by β�Ftheo(t ) = − a2

2 [1 − cos(πt/τ )]2 and experimentally

by Wieq(t ) ≈ �t
M

∑M
j=1

∑t/�t
i=1 (−a sin(πti/τ )πkσ/τ )xScI

j (ti ),
where M is the number of the trajectories for averaging.
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Figure 5(c) shows the measured instantaneous work
normalized by that at the end of transition as a function
of t . Wieq(t ) is represented by the solid line and �Ftheo(t ) by
the dashed line. The experimental results agree very well with
the theoretical predictions, indicating that the particle behaves
as if it is in equilibrium during the entire process.

To summarize, we experimentally realized the shortcuts-
to-isothermal transport of a Brownian particle dragged by
optical tweezers from one equilibrium state to another at
finite times. We showed that although it takes 20 ms to
relax to the equilibrium state at the fast shift of the potential
with the RAMP protocol, the system can reach equilibrium
20 times faster with the escort of the auxiliary potential and
that the position PDFs are invariant and Boltzmann during the
transport. Also, we have computed the nonequilibrium work
relation and showed it is accurately predicted by theoretical
values. Work done to maintain the system in instantaneous
equilibrium is much larger than that from the RAMP protocol
and inversely scales with the processing time. Our results
indicate that if a particle is driven with the shortcuts-to-
isothermal protocol, it behaves as if it is in equilibrium
although the system is governed by a highly nonequilibrium
process.

Although the optical tweezers can be described by a har-
monic potential in some regimes, to overcome practical issues
and realize them in experiments require careful design and
technical effort so that accurate measurements can be carried
in appropriate timescales. Experimental realization of the
theoretical results indicates that one actually can accelerate
an isothermal process, with some cost. The experimental
realization strongly suggests one can make use of ScI in
designing microscale heat engines in practice.
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MoST of Taiwan under Grants No. 105-2112-M-008-026-
MY3 (Y.J.) and No. 107-2112-M-008-003-MY3 (P.-Y.L.) and
also by NRF Grant No. 2016R1D1A1A09918020 in Korea
(C.K.).

APPENDIX A: INSTANTANEOUS EQUILIBRIUM
POSITION DISTRIBUTION

Figure 6 shows the PDFs of time evolution of the mea-
sured particle position distribution in different process time
τ . Figures 6(a)–6(c) are for faster processing times than the
characteristic relaxation time τc while Figs. 6(d)–6(f) are
for the slower processing times. The gray and black lines
indicate the mean particle position and the movement of
the laser center during the process, respectively. For τ < τc,
the laser moves very far from the mean particle position,
indicating the stronger dragging force applied to the particle
during the process. This auxiliary force by the laser keeps the
distribution in instantaneous equilibrium with respect to the
RAMP protocol. As τ becomes larger than τc, the transport
is going to be the quasistatic process so that the laser center
trajectories are very close to the center of the position distri-
bution and thus the work done approaches �F , as shown in
Fig. 5(a).

FIG. 6. The color map of the time evolution of position his-
togram of the particle driven by the ScI protocol at different process-
ing time: (a) 1, (b) 2, (c) 3, (d) 25, (e) 50, and (f) 75 ms. All protocols
are turned on at t = 0 ms. The gray and black lines indicate the mean
particle and the laser center trajectories, respectively.

APPENDIX B: PARTICLE UNDER TIME-DEPENDENT
HARMONIC POTENTIALS: RAMP AND SCI PROTOCOLS

Let us consider a particle trapped in a one-dimensional
time-dependent harmonic potential of the form

URAMP(x, t ) = 1
2 kx2 − λ(t )x. (B1)

To maintain the evolution of the system always in instan-
taneous equilibrium with the original potential URAMP, an
auxiliary potential Uaux(x, t ) is introduced to the system such
that the joint potential is UScI(x, λ(t )) = URAMP(x, λ(t )) +
Uaux(x, t ). The analytic form for the auxiliary potential for the
given potential is given as Uaux(x, t ) = −γ λ̇(t )x/k [17]. Here,
the dot on a variable is the time derivative of that variable.
Eventually, the form of the potential for the ScI protocol
becomes

UScI(x, λ(t )) = 1

2
kx2 − λ̃(t )x, λ̃(t ) ≡ λ(t ) + γ λ̇(t )

k
.

(B2)

To ensure the ScI protocol reduces smoothly to the RAMP
potential at the beginning and end of the ScI process, the
conditions λ̇(0) = λ̇(τ ) = 0 are imposed. Throughout this
paper, we shall denote the ScI of the protocol λ(t ) by λ̃(t ).
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To find the minimum of the potential for the ScI process,
Eq. (B2) can be rewritten as

UScI(x, t ) = 1

2
k

[
x − λ̃(t )

k

]2

− 1

2
k

(
λ̃(t )

k

)2

,

and hence the minimum potential, i.e., the center of the
potential, is λ̃(t )

k . For the RAMP potential, simply put λ̃ → λ

in the above results for the ScI protocol.
The Langevin equation for the ScI protocol is

ẋ(t ) = 1

γ
[−kx + λ̃(t )] + ξ (t ) (B3)

where γ is the drag coefficient and ξ is a zero-mean white
noise with 〈ξ (t )ξ (t ′)〉 = (2kBT /γ )δ(t − t ′). It is convenient
to separate the motion of the particle into a deterministic part,
X (t ) ≡ 〈x(t )〉, and a stochastic part, z(t ), with x = X + z,
and (B3) becomes

Ẋ = − k

γ
X + 1

γ
λ̃(t ), (B4)

ż = − k

γ
z + ξ (t ), (B5)

whose solutions are

X (t ) = 1

γ

∫ t

0
dt ′e− k

γ
(t−t ′ )

λ̃(t ′) + X (0)e− k
γ

t
, (B6)

z(t ) = 1

γ

∫ t

0
dt ′e− k

γ
(t−t ′ )

ξ (t ′) + z(0)e− k
γ

t
. (B7)

Inserting the expression of λ̃(t ) from (B2) into (B6) and
integrating by parts, one has

X (t ) = λ(t )

k
+ (X (0) − λ(0)

k
)e− k

γ
t
. (B8)

When we use the condition of the protocol that initially the
system is at equilibrium in a harmonic well centered at λ(0)/k,
X (0) = 〈x(0)〉 = λ(0)/k and hence X (t ) = 〈x(t )〉 = λ(t )/k.
Furthermore, (B6) can be rewritten (integrating by parts) as

X (t ) = λ̃(t )

k
− 1

k

∫ t

0
dt ′ ˙̃λ(t ′)e− k

γ
(t−t ′ )

. (B9)

The RAMP trajectory can also be decomposed in a sim-
ilar way into deterministic and fluctuating parts as x(t ) =
XRAMP + z(t ). The fluctuating dynamics is the same as (B5)
and the solution of XRAMP is

XRAMP(t ) = 1

γ

∫ t

0
dt ′λ(t ′)e− k

γ
(t−t ′ ) + λ(0)

k
e− k

γ
t (B10)

= λ(t )

k
− 1

k

∫ t

0
dt ′λ̇(t ′)e− k

γ
(t−t ′ )

. (B11)

Equation (B5) describes a Brownian particle in a harmonic
potential under zero-mean Gaussian white noise and thus pos-

sesses an equilibrium Boltzmann distribution of
√

βk
2π

e− βk
2 z2

at all times since initial equilibrium; i.e., z is a zero-mean
Gaussian stochastic variable with

〈z(t )〉 = 0, 〈z(t )z(t ′)〉 = 1

βk
e− k

γ
|t−t ′|

. (B12)

z(t ) can be viewed as a Gaussian random variable with weak
(exponentially decaying with correlation time τc ≡ γ /k) cor-
relations.

Using z(t ) = x(t ) − X (t ) and X (t ) = λ(t )/k, one can ver-
ify directly that probability distribution of the instantaneous
position x(t ) indeed obeys the equilibrium Boltzmann distri-
bution:

PScI(x(t ), t ) =
√

βk

2π
e− βk

2 [x(t )− λ(t )
k ]2

=
√

βk

2π
e−β[ k

2 x(t )2−λ(t )x(t )]e− βλ(t )2

2k

= e−β[ k
2 x(t )2−λ(t )x(t )]∫

dxe−β[ k
2 x2−λ(t )x]

= e−βURAMP(x,t )∫
dxe−βURAMP(x,t )

≡ ρieq(x(t ), t ).

(B13)

On the other hand, when using (B11), the RAMP process will
result in the distribution function

PRAMP(x(t ), t ) =
√

βk

2π
e− βk

2 [x(t )− λ(t )
k + 1

k

∫ t
0 dt ′λ̇(t ′ )e− k

γ (t−t ′ )]2

= ρieq(x(t ), t ) exp

[
− βkδXRAMP(t )

×
(

1

2
δXRAMP(t ) + λ(t )

k
− x(t )

)]
,

(B14)

where δXRAMP(t ) ≡ XRAMP(t ) − λ(t )
k = − 1

k

∫ t
0 dt ′λ̇(t ′)

e− k
γ

(t−t ′ ). It explicitly reveals the non-Boltzmann correction
for the nonequilibrium RAMP process. Under the quasistatic
condition of λ̇ → 0, PRAMP → ρieq, recovering the
quasiequilibrium Boltzmann result.

1. Generating function and work distribution

The work rate of the ScI protocol is Ẇ = − ˙̃λx and hence
the work in the ScI process is

W = −
∫ τ

0
dt ˙̃λ(t )[X (t ) + z(t )]. (B15)

The probability distribution of W can be computed using the
generating function

g(α) ≡ 〈e−αβW 〉;

P(W ) = 1

2π

∫
dαeiαβW g(iα).

(B16)

In particular, P(W ) is Gaussian if g(α) is quadratic in α with
mean and variance given by

〈W 〉 = − 1

β

∂ ln g(α)

∂α

∣∣∣∣
α=0

, (B17)

〈W 2〉 − 〈W 〉2 = 1

β2

∂2 ln g(α)

∂α2

∣∣∣∣
α=0

. (B18)
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For ScI given by (B2), g(α) is calculated using (B9) and by
cumulant expansion as follows:

g(α) ≡ 〈e−αβW 〉 = 〈eαβ
∫ τ

0 dt ˙̃λ(t )[X (t )+z(t )]〉 (B19)

= e
αβ

k

∫ τ

0 dt ˙̃λ(t )λ̃(t )e− αβ

k

∫ τ

0 dt ˙̃λ(t )
∫ t

0 dt ′ ˙̃λ(t ′ )e− k
γ (t−t ′ )

×〈eαβ
∫ τ

0 dt ˙̃λ(t )z(t )〉. (B20)

Since z(t ) is a zero-mean Gaussian random variable, cumulant
expansion gives

〈eαβ
∫ τ

0 dt ˙̃λ(t )z(t )〉 = e
(αβ )2

2

∫ τ

0 dt ˙̃λ(t )
∫ τ

0 dt ′ ˙̃λ(t ′ )〈z(t )z(t ′ )〉. (B21)

Integrating by parts the exponent of the first factor in the right-
hand side of (B20) and using (B12), one finally gets

− ln g(α) = βα(1 − α)

k

∫ τ

0
dt ˙̃λ(t )

×
∫ t

0
dt ′ ˙̃λ(t ′)e− k

γ
(t−t ′ ) + αβ�F, (B22)

�F ≡ − 1

2k
[λ̃(τ )2 − λ̃(0)2]. (B23)

The double integral in (B22) can be further simplified to
γ

k

∫ τ

0 dt λ̇(t )
2
.

Then ln(g(α)) is quadratic in α and hence P(W ) is Gaus-
sian with mean and variance

〈W 〉 = γ

k2

∫ τ

0
dt λ̇(t )

2 + �F, (B24)

〈W 2〉 − 〈W 〉2 = 2γ

βk2

∫ τ

0
dt λ̇(t )

2 = 2

β
(〈W 〉 − �F ). (B25)

One can also compute the mean work for ScI process directly
using (B15):

〈WScI〉 = −1

k

∫ τ

0
dt ˙̃λ(t )λ(t )

= − 1

2k
[λ(τ )2 − λ(0)2] − γ

k2

∫ τ

0
dt λ̈(t )λ(t )

= �F + γ

k2

∫ τ

0
dt λ̇(t )

2
,

(B26)

which agrees with (B24). The mean dissipated work in the ScI
process is then

〈Wdiss〉 = 〈WScI〉 − �F = γ

k2

∫ τ

0
dt λ̇(t )

2
. (B27)

It is clearly seen that the dissipated work is inversely
proportional to the driving time τ, which agrees
with Schiemdl and Seifert [23]. Similarly, using
WRAMP = − ∫ τ

0 dt λ̇(t )[XRAMP(t ) + z(t )] and Wieq =
− ∫ τ

0 dt λ̇(t )[X (t ) + z(t )], it is easy to see that the distributions
of both WRAMP and Wieq are Gaussians with means and
variances given by

〈WRAMP〉 = �F + 1

k

∫ τ

0
dt λ̇(t )

∫ t

0
dt ′λ̇(t ′)e− k

γ
(t−t ′ )

, (B28)

〈
W 2

RAMP

〉 − 〈WRAMP〉2 = 2

β
(〈WRAMP〉 − �F ), (B29)

〈Wieq〉 = �F, (B30)〈
W 2

ieq

〉 − 〈Wieq〉2 = 〈
W 2

RAMP

〉 − 〈WRAMP〉2. (B31)

2. Jarzynski equality

Since both WScI and WRAMP are Gaussian distributed, cu-
mulant expansion together with (B25) and (B29) gives

〈e−βW 〉 = e−β〈W 〉+ β2

2 (〈W 2〉−〈W 〉2 ) = e−β�F ; (B32)

i.e., the Jarzynski equality (Integral fluctuation theorem) holds
for the both ScI and RAMP processes.

APPENDIX C: PROTOCOL λ(t ) = a[1 − cos( πt
τ

)]kσ

In this experiment, the driving protocol is given as

λ(t ) = a

[
1 − cos

(
πt

τ

)]
kσ, (C1)

where σ = √
kBT /k. Then,

λ̇(t ) = (akσπ/τ ) sin(πt/τ ),

λ̈(t ) = (akσπ2/τ 2) cos(πt/τ, ) (C2)

λ̃(t ) = (akσ )

[
1 − cos

πt

τ
+ γπ

kτ
sin

πt

τ

]
,

˙̃λ(t ) = (akσ )
π

τ

[
sin

πt

τ
+ γπ

kτ
cos

πt

τ

]
, (C3)∫ t

0
dt ′λ̇(t ′)e− k

γ
(t−t ′ ) = akσ

πτc

τ

1

1 + (
πτc
τ

)2

(
sin

πt

τ
− πτc

τ

× cos
πt

τ
+ πτc

τ
e− t

τc

)
. (C4)

Free energy difference �F for the ScI (and the RAMP)
process from t = 0 to t = τ can be calculated from (B23) to
give

�F = −2a2kBT . (C5)

The mean positions for the RAMP and ScI protocols are

XRAMP(t ) = aσ

(
1 − 1

1 + (
πτc
τ

)2

[
cos

πt

τ
+ πτc

τ
sin

πt

τ

+
(πτc

τ

)2
e− t

τc

])
, (C6)

XScI(t ) = aσ

(
1 − cos

πt

τ

)
. (C7)

The mean works for ScI, RAMP, and ieq processes are com-
puted from (B26), (B28), (B30), and (B27) as

β〈WScI〉 =
(

π2

2

τc

τ
− 2

)
a2, τc ≡ γ

k
, (C8)

β〈WRAMP〉 =
{

1 + e−τ/τc[
1 + (

τ
πτc

)2]2 + τ/τc

2
[
1 + (

τ
πτc

)2] −2

}
a2, (C9)

β〈Wieq〉 = −2a2, (C10)

β〈Wdiss〉 = π2a2

2

τc

τ
. (C11)

The variances can be calculated directly from (B25), (B29),
and (B31) in the previous section.
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