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The character of acceleration radiation is analyzed by considering the joint probability of an accelerated atom
emitting a photon and a photodetector fixed in space registering a count. This simple model yields insight into
counterintuitive issues associated with causality, vacuum entanglement, and related topics.
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I. INTRODUCTION

Acceleration radiation emitted by neutral atoms undergo-
ing uniform acceleration is a rich but somewhat subtle prob-
lem. Indeed R. Feynman had the note on his final blackboard
(see, e.g., Fig. 1 in Ref. [1]) listing “acceleration temperature”
as something “to learn!” One of the early inroads into the
subject came from the 1969 Ph. D. thesis of optical physicist
G. Moore [2], who showed that an accelerating mirror will
generate photons. This stimulated S. Fulling [3] to do his Ph.
D. thesis on “Quantum Field Theory in Curved Space-Time,”
showing that the vacuum in a stationary (Minkowski) frame
will look very different in an accelerating (Rindler) frame.
This “quantum fields in curved space-time perspective” was
the basis of S. Hawking’s famous demonstration that a black
hole can emit thermal radiation [4,5]. W. Unruh [6] then used
the same formalism to show that atoms undergoing constant
acceleration “a” will be excited as if they are in a bath of
thermal photons having temperature TU = h̄a/2πckB, where
c is the speed of light and kB is the Boltzmann constant.

From a quantum optical perspective [7–9] the acceleration
radiation, also known as Unruh radiation, derives from the
counter-rotating terms in the interaction Hamiltonian given by

V̂counter-rotating ⇒ σ̂+â†
kei(ω+νk )t , (1)

which represents the virtual process in which an atom “jumps”
to the excited state while emitting a photon. In Eq. (1), σ̂+ is
raising operator for the atom with transition angular frequency
ω and â†

k is creation operator of a photon with wave vector k
and angular frequency νk . However, this excitation-emission
process can be made real when the atom undergoes accel-
eration. In other words, the usual virtual process, in which
emission is rapidly followed by reabsorption, is actuated by
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breaking adiabaticity (due to acceleration) which leaves the
atom and the radiation oscillator excited.

For a uniformly accelerating observer, the background
appears to be in thermodynamic equilibrium with temperature
TU and the atom gets excited by absorbing a thermal photon.
The atomic excitation associated with the thermal bath of
acceleration radiation involves the σ̂+âk terms in the Hamil-
tonian. These two points of view: the Minkowski space σ̂+â†

k
approach and the Rindler space (noninertial frame) σ̂+âk
approach are complementary. The interplay between these
two vantage points can be subtle [10] and is the subject of this
and two following papers as is discussed in the conclusion.

In particular, we are interested in the question of the emis-
sion of radiation from atom 1 which is undergoing constant
acceleration a and propagation of this radiation so as to excite
a fixed atom 2 (see Fig. 1). We assume that atom 2 is located
to the left from atom 1. The interaction between the two atoms
is somewhat subtle. For example, under some conditions,
right running waves of atom 1 can strongly contribute to the
probability of finding radiation on the left-hand side of the
vertical time axis (z < 0) [10]. However, in the present paper,
we show that for a stationary detector atom 2 exposed to
radiation from atom 1 (from t = −∞ to t = ∞) only the left
running modes contribute.

II. JOINT EXCITATION OF TWO ATOMS

The atom-field interaction Hamiltonian V̂ (t ) = V̂1(t ) +
V̂2(t ) is given by

V̂ (t ) = ℘1(σ̂1e−iω1τ (t ) + σ̂
†
1 eiω1τ (t ) )Ê (t, z1(t ))

+℘2(σ̂2e−iω2t + σ̂
†
2 eiω2t )Ê (t, z2), (2)

where ℘ j is the dipole matrix element for the jth atom
( j = 1, 2), σ̂ j is the atomic lowering operator, σ̂

†
j is the

corresponding raising operator, and τ (t ) is the proper time of
the accelerated atom 1 which moves along trajectory z1(t ). In
this paper, we consider either dimension 1 + 1, or dimension
3 + 1 but restrict photons to have wave vector k parallel to
the z axis. The electric field operator at spatial coordinate z j is
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FIG. 1. Atom 1 accelerates from −∞ to +∞ along hy-
perbolic trajectory where the null geodesics u = t − z

c = 0 and
v = t + z

c = 0 are indicated by dashed lines. Unruh acceleration
radiation from atom 1 is shown as a wavy line which is absorbed by
the detector atom 2; atomic states |aj〉 and |bj〉 are shown as weakly
excited.

given by

Ê (t, z j ) = −∂Â(t, z j )

∂t
=

∑
k

Ekâke−iνk (t−κz j/c) + ad j,

where Â(t, z) is the vector potential operator, κ is the “unit
vector” in 2D (one time + one space dimension) such that
κ = +1 for right propagating photons and κ = −1 for left
propagation, Ek = √

h̄νk/2ε0Vph is the electric field per photon
of frequency νk = ck, Vph is the quantization volume [11], and
âk is the annihilation operator for a photon of wave vector k.

In the second order in the coupling constant, the probability
amplitude that both the fixed detector atom 2 and the acceler-
ated atom 1 get excited, and the field is in the vacuum state
|0〉, is given by

A = 〈a1a20|Û (t )|b1b20〉
∼= − 1

h̄2 〈a1a20|
∫ t

t0

dt ′
∫ t ′

t0

dt ′′ V̂ (t ′)V̂ (t ′′)|b1b20〉,

which is usefully written in terms of the commutators [,] and
anticommutators {, } as

A = − 1

2h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′

×〈a1a20|([V̂ (t ′), V̂ (t ′′)] + {V̂ (t ′), V̂ (t ′′)})|b1b20〉. (3)

As is shown in Appendix A, in the long time limit of
t0 → −∞ and t → ∞, Eq. (3) becomes

A = − ℘1℘2ω2

4ε0 h̄cAph

∫ ∞

−∞
dt ′

4∑
i=1

Ki(t
′, z1(t ′), z2), (4)

where Aph is the photon quantization area. The kernels Ki are
given in Table I, where it is seen that contributions from the
right propagating photons differ in sign and cancel out. This
is what we would expect since the detector atom 2 is placed to

TABLE I. Kernels for commutator and anticommutator terms.
Here, z′

1 = z1(t ′).

Kernel Origin

K1 ei(ω1τ (t ′ )+ω2t ′ )−iω2(z′
1−z2 )/c anticommutator

right propagator

K2 ei(ω1τ (t ′ )+ω2t ′ )+iω2(z′
1−z2 )/c anticommutator

left propagator

K3 ei(ω1τ (t ′ )+ω2t ′ )+iω2(z′
1−z2 )/c commutator

left propagator

K4 −ei(ω1τ (t ′ )+ω2t ′ )−iω2(z′
1−z2 )/c commutator

right propagator

the left of the radiating atom 1 so that only the left propagating
modes can excite the detector atom. The net result is

A = − ℘1℘2ω2

2ε0 h̄cAph

∫ ∞

−∞
dt ′ei(ω1τ (t ′ )+ω2t ′ )+iω2(z1(t ′ )−z2 )/c. (5)

Equation (5) is recognized as the integral appearing in,
for example, earlier work [9] in which the atomic fre-
quency ω and the radiation frequency ν coming from the
σ̂

†
1 (τ )â†

keiνk (t (τ )−κz1(τ )/c) terms of Eq. (2), where

t (τ ) = c

a
sinh

(
aτ

c

)
, (6a)

z1(τ ) = c2

a
cosh

(
aτ

c

)
(6b)

is the trajectory of the uniformly accelerated atom 1 with
acceleration a . An alternative derivation of Eq. (5) based on
coordinate transformations u = t − z/c and v = t + z/c has
some advantages and is given in Appendix B.

Carrying out the integral in Eq. (5) and squaring we find
the joint probability of both atoms being excited and field in
the Minkowski vacuum state to be

Pa1a20
∼= π℘2

1℘
2
2ω

2
2

8ε2
0 h̄2caA2

phω1

1

e
2πcω1

a − 1
. (7)

III. CONCLUSIONS

The joint probability that both the emitter (atom 1) and
detector (atom 2) are excited during the time from −∞ to +∞
and the field remains in the Minkowski vacuum state goes as
the Planck factor with the Unruh temperature (average Unruh
photon number). Note that the emission of radiation associ-
ated with the counter propagating term goes as 〈ââ†〉 = n + 1
whereas the absorption goes as 〈â†â〉 = n so that together
the total probability of both atoms being excited would be
expected to go as (n + 1)n. Since n 	 1, we find the result
of Eq. (7) to be physically correct.

It is interesting to note that only the left propagating modes
contribute to the joint excitation probability given by Eq. (7).
While it might seem that this is intuitively obvious in the
sense that the light from the accelerated atom propagates to
the left and right, but only the left propagating mode would
excite the left laying detector atom, the detailed calculation
in Appendix B shows that this interpretation is naive. It just
so happens that the entanglement of the quantum fields from
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the right moving modes (as seen in the anticommutator terms
in Appendix B) cancel with the delta function terms in the
commutator, and add for the left moving modes. There is
a subtle interplay of entanglement and causal change which
leads to the results we see.

Thus while it might seem obvious that only the left prop-
agating modes would contribute, as seen from Table I, this
could lead to a bad intuition in cases where the stationary
detector had a time dependent interaction with the fields (such
as that studied by Unruh and Wald [10]). It is thus important
to note that different detection situations can lead to very
different results. In particular, the present simple model in
which the detector atom has two sharp levels and is left in
place for the entire duration of the emission process associated
with the atom 1 gives the result of Eq. (7). Whereas a model
in which we turn the detector atom on at some time T and
off at T + �T can lead to very different results; namely, the
joint probability of both atoms being excited now shows that
the probability of excitation at the specific time T involves
the noncausal region z < c|t | due to the entanglement terms
as expressed by the anticommutator. We emphasize that the
sharp single frequency model leading to the joint probability
given by Eq. (7) comes from the left propagating modes. The

sharp time, broad frequency, model also involves the right
propagating modes, and is not causal. We will return to this
and other related issues in a later paper.
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APPENDIX A: CALCULATION
OF EXCITATION PROBABILITY

Starting with the expression for the evolution operator Û

Û (t ) ∼= 1 − i

h̄

∫ t

t0

V̂ (t ′)dt ′ − 1

h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′V̂ (t ′)V̂ (t ′′) + · · · , (A1)

we may write the second-order term as

− 1

2h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′({V̂ (t ′)V̂ (t ′′) + V̂ (t ′′)V̂ (t ′)} + [V̂ (t ′)V̂ (t ′′) − V̂ (t ′′)V̂ (t ′)]). (A2)

The { } anticommutator term may be written as∫ t

t0

dt ′
∫ t ′

t0

dt ′′{V̂ (t ′), V̂ (t ′′)} =
[∫ t

t0

dt ′
∫ t ′

t0

dt ′′ +
∫ t

t0

dt ′
∫ t

t ′
dt ′′

]
V̂ (t ′)V̂ (t ′′) =

∫ t

t0

dt ′
∫ t

t0

dt ′′V̂ (t ′)V̂ (t ′′). (A3)

Using V̂ (t ) = V̂1(t ) + V̂2(t ) together with Eqs. (A2) and (A3), we have the second-order approximation to the excitation
probability amplitude

〈a1a20|Û (t )|b1b20〉 = − 1

2h̄2 〈a1a20|
∫ t

t0

dt ′
∫ t

t0

dt ′′V̂1(t ′)V̂2(t ′′) +
∫ t

t0

dt ′
∫ t ′

t0

dt ′′[V̂1(t ′), V̂2(t ′′)] + (1 ↔ 2)|b1b20〉. (A4)

Next we calculate the terms in Eq. (A4).

1. Anticommutator

Aanti = − 1

2h̄2

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′〈a1a20|V̂1(t ′)V̂2(t ′′) + V̂2(t ′)V̂1(t ′′)|b1b20〉 (A5)

= −℘1℘2

2h̄2

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′

[
eiω1τ (t ′ )eiω2t ′′ ∑

k

E2
k e−iνk (t ′−z′

1/c)+iνk (t ′′−z′′
2/c) (i)

+ eiω2t ′+iω1τ (t ′′ )
∑

k

E2
k e−iνk (t ′−z′

2/c)+iνk (t ′′−z′′
1/c)

]
right (κ = 1)

(ii)

− ℘1℘2

2h̄2

∫ ∞

−∞
dt ′

∫ ∞

−∞
dt ′′

[
eiω1τ (t ′ )eiω2t ′′ ∑

k

E2
k e−iνk (t ′+z′

1/c)+iνk (t ′′+z′′
2/c) (iii)

+ eiω2t ′+iω1τ (t ′′ )
∑

k

E2
k e−iνk (t ′+z′

2/c)+iνk (t ′′+z′′
1/c)

]
left (κ = −1)

. (iv)
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The terms (i) and (iii) after integration over t ′′ yield δ(ω2 + νk ). The argument of the delta function is always positive and,
therefore, the terms (i) and (iii) give zero contribution. Integration of other two terms over t ′ gives

Aanti = −π℘1℘2

h̄2

∫ ∞

−∞
dt ′′eiω1τ (t ′′ )

∑
k

E2
k [δ(ω2 − νk )eiνk (t ′′−z′′

1/c)eiνk z2/c (ii)

+ δ(ω2 − νk )eiνk (t ′′+z′′
1/c)e−iνk z2/c]. (iv)

We replace
∑

k → L
2π

∫
dk

Aanti = −℘1℘2

4h̄2c

h̄ω2

ε0Aph

∫ ∞

−∞
dt ′[eiω1τ (t ′ )eiω2(t ′−z′

1/c)eiω2z2/c (ii)

+ eiω1τ (t ′ )eiω2(t ′+z′
1/c)e−iω2z2/c] (iv)

= −℘1℘2

4h̄2c

h̄ω2

ε0Aph

∫ ∞

−∞
dt ′

[
ei(ω1τ (t ′ )+ω2t ′ )−iω2(z′

1−z2 )/c

right
+ ei(ω1τ (t ′ )+ω2t ′ )+iω2(z′

1−z2 )/c

left

]
, (A6)

where Aph = Vph/L.

2. Commutator

Acom = − 1

2h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′〈a1a20|[V̂1(t ′), V̂2(t ′′)] + [V̂2(t ′), V̂1(t ′′)]|b1b20〉

= −℘1℘2

2h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′[eiω1τ (t ′ )eiω2t ′′
[Ê (t ′, z1(t ′)), Ê (t ′′, z2)] + eiω2t ′

eiω1τ (t ′′ )[Ê (t ′, z2), Ê (t ′′, z1(t ′′))]]. (A7)

Using

[Ê (t ′, z1), Ê (t ′′, z2)] = ich̄

2ε0Aph

∂

∂z2
(δ[t ′ − t ′′ − (z1 − z2)/c] − δ[t ′ − t ′′ + (z1 − z2)/c]), (A8)

the matrix element becomes

Acom = − ic℘1℘2

4ε0 h̄Aph

∫ t

t0

dt ′
∫ t ′

t0

dt ′′eiω1τ (t ′ )eiω2t ′′ ∂

∂z2

(
δ[t ′ − t ′′ − (z′

1 − z2)/c]
(i)

− δ[t ′ − t ′′ + (z′
1 − z2)/c]

(ii) always +

)
(A9)

− eiω2t ′
eiω1τ (t ′′ ) ∂

∂z2

(
δ[t ′ − t ′′ − (z2 − z′′

1 )/c]
(iii) always +

− δ[t ′ − t ′′ + (z2 − z′′
1 )/c]

(iv)

)
. (A10)

The second and third delta functions give zero contribution because their arguments are always positive. The first term yields

− ic℘1℘2

4ε0h̄Aph

∂

∂z2

∫ ∞

−∞
dt ′eiω1τ (t ′ )eiω2[t ′−(z′

1−z2 )/c]. (A11)

The fourth delta function has z′′
1 = z1(t ′′) in the argument. This makes the integral over t ′′ difficult. We resolve this issue by

noting that we may extend the integral over t ′′ to t by adding
∫ t

t ′ which is zero because the fourth delta function vanishes for
t ′′ > t ′. Thus we may write the fourth integral as

∫ t
t0

dt ′ ∫ t
t0

dt ′′ and do the integral over t ′ first (which goes with z2(t ′) = z2 ) to
yield

ic℘1℘2

4ε0h̄Aph

∂

∂z2

∫ t

t0

dt ′′eiω1τ (t ′′ )eiω2[t ′′−(z2−z1(t ′′ ))/c]. (A12)

Extending to t0 → −∞ and t → ∞, we finally obtain

〈a1a20|Û (∞)|b1b20〉 = − ℘1℘2ω2

4ε0h̄cAph

∫ ∞

−∞
dt ′[ei(ω1τ (t ′ )+ω2t ′ )−iω2(z′

1−z2 )/c (i, anticomm-right, K1)

+ ei(ω1τ (t ′ )+ω2t ′ )+iω2(z′
1−z2 )/c (ii, anticomm-left, K2)

+ ei(ω1τ (t ′ )+ω2t ′ )+iω2(z′
1−z2 )/c (iv, comm-left, K3)

− ei(ω1τ (t ′ )+ω2t ′ )−iω2(z′
1−z2 )/c], (iii, comm-right, K4)
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where z′
1 is z1(t ′). So we see that the right-propagating modes cancel while the left-propagating modes add. The net result is

〈a1a20|Û (∞)|b1b20〉 = − ℘1℘2ω2

2ε0 h̄cAph

∫ ∞

−∞
dt ′ei(ω1τ (t ′ )+ω2t ′ )+iω2(z1(t ′ )−z2 )/c.

APPENDIX B: ALTERNATIVE DERIVATION OF EXCITATION PROBABILITY

In the interaction representation, the atom-field interaction Hamiltonian reads

V̂ (t ) = ℘2(σ̂2e−iω2t + σ̂
†
2 eiω2t )

∂Â(t, z2)

∂t
+℘1(σ̂1e−iω1τ + σ̂

†
1 eiω1τ )

∂Â(t, z1)

∂t
, (B1)

where index 1 designates the accelerated detector, with proper time along the path of that detector given by τ , and with τ

evaluated at time t .
The amplitude that, given the detectors both start out in the ground state |b1b20〉 at time −T and end up in their excited state

|a1a20〉 at time t = T, to lowest order in the coupling dipole moment ℘1,2 is

A = −〈a1a20|
∫ T

−T
dt

∫ t

−T
dt ′V̂ (t )V̂ (t ′)|b1b20〉 (B2)

= −℘1℘2〈0|
∫ T

−T
dt

∫ T

−T
dt ′θ (t − t ′)

[
eiω2t ∂Â(t, z2)

∂t
eiω1τ (t ′ ) ∂Â(t ′, z1)

∂t ′ + eiω1τ (t ) ∂Â(t, z1)

∂t
eiω2t ′ ∂Â(t ′, z2)

∂t ′

]
|0〉, (B3)

where θ (x) is the Heaviside function which is 1 for x > 0 and 0 for x < 0. In the following we will also use σ (x) = θ (x) − θ (−x),
the antisymmetric step function (not to be confused with the atomic lowering operator σ̂ .)

The operator Â is a scalar function, which represents the vector potential in 1 + 1 dimensional “electromagnetism”, which
has the form

Â(t, z2) =
∫ ∞

0

1√
4πω

[b̂Rωe−iωu2 + b̂†
Rωeiωu2 + b̂Lωe−iωv2 + b̂†

Lωeiωv2 ]dω, (B4)

where the L, R designate the left, right moving modes, u2 = t − z2/c, v2 = t + z2/c with z2 the location (z2 < 0) of the geodesic
detector, and

Â(t, z1) =
∫ ∞

0

1√
4πω

[bRωe−iωu1 + b†
Rωeiωu1 + bLωe−iωv1 + b†

Lωeiωv1 ]dω, (B5)

where u1 = t − z1/c = −ce−aτ/c/a and v1 = t + z1/c = ceaτ/c/a.
The field operator Â can be written as a sum of left and right moving terms,

Â(t, z) = AR(u(t, z)) + ÂL(v(t, z)). (B6)

Also if ξ is a function of χ , then ∂ξ Â(ξ )dξ = ∂χ Â(χ )dχ for any function Â of variables ξ, χ = χ (ξ ).
We can write the expression for the probability amplitude A in terms of the R, L terms, and obtain

AR = −℘1℘2

∫ u2(T )

u2(−T )
du2

∫ u1(T )

u1(−T )
du1eiω2t (u2 )eiω1τ (u1 ) (B7)

〈0|∂u1

(
θ (t (u2) − t (u1))∂u2 ÂR(u2)ÂR(u1) + θ (t (u1) − t (u2))ÂR(u1)∂u2 ÂR(u2)

)|0〉 (B8)

and similarly for AL by replacing u by v and R by L in the above.
Now, we can write

θ (t (u2) − t (u1))∂u2 ÂR(u2)ÂR(u1) + θ (t (u1) − t (u2))ÂR(u1)∂u2 ÂR(u2)

= 1
2

({
∂u2 ÂR(u2), ÂR(u1)

} + σ (t (u2) − t (u1))
[
∂u2 ÂR(u2), ÂR(u1)

])
(B9)

where {, } is the anticommutator while [,] is the commutator. We also get the same for the L terms by replacing R by L and u
by v.

Taking the vacuum expectation values of the above operators, we have

〈0|1

2

({
∂u2 ÂR(u2), ÂR(u1)

} + σ (t (u2) − t (u1))
[
∂u2 ÂR(u2), ÂR(u1)

])|0〉

= i

8π

[∫ ∞

0
(eiω(u2−u1 ) − e−iω(u2−u1 ) )dω + σ (t (u2) − t (u1))

∫ ∞

0
(eiω(u2−u1 ) + e−iω(u2−u1 ) )dω

]
(B10)

= 1

8π

[
lim

λ→0+

(
1

(u2 − u1) − iλ
+ 1

(u2 − u1) + iλ

)
+ 2π iσ (t (u2) − t (u1))δ(u2 − u1)

]
. (B11)
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Now the term multiplying the σ (t (u2) − t (u1)) is nonzero only when u2 = u1, and since the accelerated curve points always lie
to the right of the geodesic points, t (u1) is greater than t (u2), and σ (t (u2) − t (u1)) = −1 and

〈0|1

2

({
∂u2 ÂR(u2), ÂR(u1)

} + σ (t (u2) − t (u1))
[
∂u2 ÂR(u2), ÂR(u1)

])|0〉

= 1

8π

[
lim

λ→0+

(
1

(u2 − u1) − iλ
+ 1

(u2 − u1) + iλ

)
− 2π iδ(u2 − u1)

]
. (B12)

Similarly for the left traveling terms

〈0|1

2

({
∂v2 ÂL(v2), ÂL(v1)

} + σ (t (v2) − t (v1))
[
∂v2 ÂL(v2), ÂL(v1)

])|0〉

= 1

8π

[
lim

λ→0+

(
1

(v2 − v1) − iλ
+ 1

(v2 − v1) + iλ

)
+ 2π iδ(v2 − v1)

]
(B13)

because σ (t (v2) − t (v1)) = +1 since the left moving null curve goes from the accelerated curve in the past to the unaccelerated
curve in the future.

Thus we have

AR = −℘1℘2

8π
lim
λ→0

∫ 0

−∞
du1

∫ ∞

−∞
du2 ∂u1 eiω2u2

[
1

(u2 − u1) − iλ
+ 1

(u2 − u1) + iλ
− 2π iδ(u2 − u1)

]
eiω1τ (u1 ) = 0, (B14)

while

AL = −℘1℘2

8π
lim
λ→0

∫ ∞

0
dv1

∫ ∞

−∞
dv2∂v1 eiω2v2

[
1

(v2 − v1) − iλ
+ 1

(v2 − v1) + iλ
+ 2π iδ(v2 − v1)

]
eiω1τ (v1 ) (B15)

= −℘1℘2ω2

2

∫ ∞

0
eiω1τ (v1 )eiω2v1 dv1. (B16)
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