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Compact microwave resonantors made of superconducting rings containing Josephson junctions (SQUIDs)
are attractive candidates for building frequency-tunable metamaterials with low losses and pronounced non-
linear properties. We explore the nonlinearity of a SQUID metamaterial by performing a two-tone resonant
spectroscopy. The small-amplitude response of the metamaterial under strong driving by a microwave pump
tone is investigated experimentally and theoretically. The transmission coefficient S,; of a weak probe signal is
measured in the presence of the pump tone. When increasing the power of the pump, we observe pronounced
oscillations of the SQUID’s resonance frequency fi.;. The shape of these oscillations varies significantly with
the frequency of the pump tone fy.. The response to the probe signal displays instabilities and sidebands. A state
with strong second-harmonic generation is observed. We provide a theoretical analysis of these observations,

which is in good agreement with the experimental results.
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I. INTRODUCTION

Superconducting metamaterials have a number of unique
properties that are difficult or impossible to achieve in any
other media [1]. A generic element of such a metamaterial,
its elementary meta-atom, is a superconducting ring split by a
Josephson junction. Each meta-atom thus forms a supercon-
ducting quantum interference device (SQUID), the most rele-
vant circuit element of superconducting electronics. A Joseph-
son junction acts as a nonlinear inductor, the inductance
depending on the superconducting current flowing through
it. SQUIDs are used in a variety of applications including
sensitive measurements of magnetic fields and the detection
of very small currents. In the microwave range, the unique
properties of SQUIDs include the tunability of their intrinsic
resonance frequency [2-5], extremely low losses, and bi- and
multistable response [6—10], allowing for a wireless switching
between opaque and transparent states of the metamaterial
[9-11].

The nonlinear dynamics of Josephson junctions and
SQUIDs plays an essential role in the development of para-
metric amplifiers [12-16] and even evokes interest in fields
as remote as biology [17]. Parametric amplifiers are capable
of amplifying one of the two quadratures of a signal with-
out adding extra noise. Their performance is fundamentally
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limited only by quantum noise—an extraordinary property
making them relevant for applications in various fields rang-
ing from astrophysics to the readout of qubits [18]. Driven
beyond the parametric regime by a strong microwave driving,
a resonant Josephson junction circuit exhibits a bifurcation
and enters the bistable regime with two stable dynamical
states, which differ by both amplitude and phase. This behav-
ior has been used to build the so-called Josephson bifurcation
amplifier [19].

Recently, a lot of attention has been drawn to traveling
wave parametric amplifiers (TWPAs), which can be real-
ized with chains of Josephson junctions [20,21] or SQUIDs
[14,15,22]. The SQUIDs of a TWPA chain have to be strongly
coupled, so that collective oscillations can be induced. In our
case, there is no galvanic connection between the SQUIDs.
The coupling due to mutual inductance is very small, since
the SQUIDs are spaced at large intervals of 92 um—twice
the width of a single SQUID. The distance to the central
conductor of the coplanar waveguide (CPW) is approximately
10 um. Thus, the SQUIDs behave as independent nonlinear
oscillators and are excited solely by the signal transmitted
through the CPW. This distinguishes our system from the
Josephson junction and SQUID chains of Refs. [24-26],
where a crucial role is played by collective modes. We study
the resonant response of the SQUID metamaterial to a weak
probe signal, while an additional strong driving (pump) signal
pushes the metamaterial into a strongly nonlinear regime. In
contrast to studies of intermodulation in SQUID metamateri-
als [23], where two signals of close frequencies induce sum
and difference tones, here we consider signals with remote
frequencies and are concerned with the strongly nonlinear
behavior induced by the pump. The frequency of the pump
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FIG. 1. The main idea: the nonlinear response of the metama-
terial to a large-amplitude driving tone (blue) is investigated by a
weak probe signal (orange). The response to the weak signal is linear;
however, it contains information about the large-amplitude response
to the driving tone.

is fixed, while the weak signal response is measured over a
broad band of frequencies. We note that previously the authors
of Refs. [7,8] presented pioneering studies of the response of a
single SQUID to a strong driving focusing on the amplitude-
frequency and amplitude-phase characteristics. The analyses
given in Refs. [7,8] resembles that in Ref. [9]. Here, by
extending the experiment and the theoretical framework to
two applied signals and performing a mathematical stability
analysis of the solutions, we go beyond these works. We find
previously unobserved regions of instability in the response of
the SQUIDs. Some of these instabilities are associated with
SQUID states that generate strong harmonics of the driving
signal. Because of the large signal amplitudes, these effects
go beyond the scope of a description through Kerr coefficients
[25,26]. The key to their understanding lies in the dynamics of
strongly driven nonlinear oscillators.

The paper is organized as follows: In Sec. II, we illus-
trate the main physical ideas behind our study. Section III
describes the experimental setup, details of the measurement
procedure, and presents our observations. In Sec. IV, we
provide the theoretical analysis of the nonlinear dynamics of
an rf-SQUID in the presence of both the weak probe signal
and the large-amplitude driving tone. We start from revisiting
a previously developed analytical approach to the nonlinear
SQUID response [9], and then apply its formalism to the
two-tone scenario. Section IV concludes the paper.

II. THE MAIN IDEA

The main idea behind our work is that the large-amplitude,
steady-state response of a nonlinear system to a strong driving
can be investigated by a weak probe signal, which is super-
imposed on the driving (see Fig. 1). The oscillatory response
to the the weak probe signal is expected to be small and
hence governed by a linear equation. The parameters of this
equation (most relevantly the resonance frequency) will sen-
sitively depend on the amplitude and frequency of the strong
driving. Thus, by examining the weak signal response, we
gain information about the nonlinear steady-state oscillations.

It is known that the response of (nonhysteretic) rf-
SQUIDs—our meta-atoms—in a certain range of driving
amplitudes and frequencies, has regions with multiple stable
steady states, a feature known as multistability [9]. We find
that a distinct resonance dip in the response to the probe
signal corresponds to each of the stable states, allowing us
to map the multistabilities. Furthermore, unstable regions, in
which no stable steady-state solutions exist, are seen as gaps
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FIG. 2. (a) An image of the rf-SQUID metamaterial showing 54
rf-SQUIDs coupled to a coplanar waveguide. (b) Left: Photo of a
single rf-SQUID. Right: Equivalent circuit model of an rf-SQUID
(resistively and capacitively shunted Josephson junction model [27]).
(c) The experimental setup consisting of a “*He cryostat at 4.2 K, a
microwave generator (GEN), and vector network analyzer (VNA).

within which no resonant response to the weak probe signal is
observed.

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

The experiments were carried out at a temperature of
4.2 K using a one-dimensional array of 54 single-junction
SQUIDs (rf-SQUIDs). In this setting, each SQUID constitutes
a metamaterial atom embedded in a CPW. This is shown
in Fig. 2(a). The SQUIDs [see Fig. 2(b)] were fabricated
using the well-established Nb/AlO, /Nb trilayer process. The
SQUID parameters are the same as reported in previous pub-
lications and experiments [4]. The value of the Josephson crit-
ical current is I, = 1.8 nA, leading to a zero-field Josephson
inductance of L;j o = 82.5 pH. The geometric loop inductance
amounts Ly, = 183 pH and the shunt capacitance is C =
2.0 pF. These characteristics result in a resonance frequency
of approximately 14.8 GHz at zero magnetic field. The ratio
of zero-field Josephson and geometric inductances is B, =
27l Loeo/ Do ~ 0.45, where g = h/(2e) is the magnetic flux
quantum. The value S < O indicates that the SQUIDs are
in the nonhysteretic regime, thus having each a single stable
static state at any magnetic flux.

A strong microwave pump signal generated by a mi-
crowave source (the driving tone) was inserted into the CPW
to carry out the two-tone spectroscopy of the above-described
sample. In the presence of this driving tone, we measured
the transmission coefficient S;; of a weak probe signal
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FIG. 3. The transmission spectrum of the metamaterial at a driv-
ing tone frequency f3 = 15 GHz. Driven into a strongly nonlinear
regime by a large-amplitude driving tone, the SQUID metamaterial
shows a resonant response to the weak probe signal of the VNA.
The resonance frequency is seen as a minimum in the transmission
coefficient Sp;. With increasing driving tone power, the resonance
frequency drops first and then shows an oscillatory behavior. The
blue curve shows the theoretically calculated resonance frequency as
given by the harmonic approximation of Eq. (11), while the white
curve shows the result obtained by solving Eq. (21).

propagating through the sample. A vector network analyzer
(VNA) [see, Fig. 2(c)] was used for these measurements.
Typical frequencies for the two signals were 1-10 GHz and
14-20 GHz for the driving tone and 10-16 GHz for the probe
signal. No external magnetic field was applied.

B. Observations

We observed that the frequency-dependent transmission
coefficient S, of the weak probe signal shows, even in the
presence of a strong pump signal, a narrow resonant drop at
the resonance frequency fis. The resonance frequency fres
itself strongly varies with the power of the externally applied
pump tone. Typical experimentally measured dependencies of
851 (for» P) on the frequency f,; of the weak probe signal and
the power P of the driving tone are presented in Figs. 3-5, for
driving tone frequencies of 15, 6, and 1 GHz, respectively.

For all driving tone frequencies, we observed a substantial
decrease of the resonance frequency f.s with increasing driv-
ing tone power. At high powers, the resonance frequency fres
showed an oscillatory behavior.

An additional feature seen in Fig. 3 is the splitting of
the resonance curves of different SQUIDs. This splitting is
due to the slightly different strength of coupling of each
single SQUID to the CPW. If the coupling of a SQUID is
comparatively weak, the effect of the driving tone on this
particular SQUID also will be smaller. Thus, its resonance
curve will be shifted to higher values of the driving tone
power.

At lower frequencies of the driving tone (f4: < 7 GHz), we
observe gaps in the probe signal’s resonant response. Such
a gap is seen in Fig. 4 at 12 GHz and a driving power of
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FIG. 4. The transmission spectrum of the metamaterial at a driv-
ing tone frequency fy = 6 GHz. Apart from the typical oscillatory
behavior of the resonance frequency, we observe a gap in the
resonance curve around 12 GHz, at approximately 0 dBm driving
power. This gap indicates an unstable region in the response of the
SQUID. In the vicinity of the gap, the resonance curve splits into
two branches corresponding to two stable states that can be occupied
by the SQUIDs—the response is bistable. The blue curve shows the
resonance frequency as calculated using Eq. (11) and is not plotted in
the region of instability predicted by Eq. (16). The white curve shows
the resonance frequency obtained from Eq. (21). In the bistable
region, the green curve, which was calculated using Eq. (18), depicts
the resonance associated with a state that is characterized by a strong
response at twice the driving frequency (see Sec. IV B 3).

around 0 dBm. It indicates an instability in the response
of the strongly driven SQUIDs, as will be explained below.
In the vicinity of the gap, the resonance curve splits. This
is due to the existence of two stable SQUID states in this
range of parameters. Both states are occupied by some of the
54 SQUIDs of our metamaterial, allowing us to image the
bistability directly.

Lowering the driving frequency even further, we observe
resonant sidebands in the probe signal’s transmission coeffi-
cient S»; (see Fig. 5). These sidebands are located above and
below the main resonance curve, at frequencies fes & 2 fur,
where fy; is the frequency of the driving tone and fis is the
resonance frequency at a given power of the driving tone.

All above observations can be explained by an analysis of
the nonlinear rf-SQUID dynamics in the presence of a large
amplitude microwave signal. The oscillations of the resonance
frequency with the power of a driving tone are obtained by
treating the response to the probe signal as that of a harmonic
oscillator with parameters depending on the power of the
driving tone. To obtain the resonance gaps and sidebands, we
have to go beyond this harmonic model and turn to a more
detailed treatment of the generic SQUID nonlinearity.

IV. THEORETICAL DESCRIPTION

A. The nonlinear response of rf-SQUIDs to a harmonic driving

In order to explain the effects reported in the previous
section, we assume that the interaction between adjacent
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FIG. 5. Transmission spectrum of the metamaterial at a driving
tone frequency f3 = 1 GHz. Sideband resonances appear at fi,s0 £
2 GHz, where fs0 is the resonance frequency at a given power
of the driving tone. The blue curve shows the main resonance as
given by Eq. (11). The white curve shows the resonance frequencies
obtained from Eq. (21). Equation (21) includes the effect of sum and
difference tones of the driving and probe signals. Including these
sum and difference tones gives a natural explanation for the resonant
sidebands.

rf-SQUIDs is negligible and that therefore the electrodynamic
response of the superconducting metamaterial is determined
by the response of individual SQUIDs. The dynamics of an rf-
SQUID is governed by a simple cirquit model: the resistively
and capacitively shunted Josephson junction model [27] in
parallel with the geometric inductance of the SQUID ring Ly,
[see Fig. 2(b)]. In this model, the time-dependent Josephson
phase ¢(t) satisfies the nonlinear equation

Lgeo
R
where ey consists of both an externally applied driving tone
and a probe signal, B = Lgeo/L;, Lj = ®o/2m I, with I being
the critical current and R being the normal resistance of the
Josephson junction.

We start by considering the nonlinear dynamics of an
rf-SQUID in the presence of a strong driving tone ey =
@ar Sin(wgrt ). Approximate solutions to Eq. (1) are obtained
by exploiting the fact that the response of an rf-SQUID to
a driving tone of frequency wg; will mostly be dominated
by harmonic oscillations at the same frequency wg;. This
approach has already been successfully applied to a study of
dynamic metastable states that can be excited in an rf-SQUID
metamaterial [9] and uses the following ansatz:

Yext = ¢ + LgeoC(;b +

¢ + Brsing, ey

Qext = Pdr SIN Wyt
@(t) = @, sin (wgt + 0). 2)

The validity of this ansatz has been analyzed in the methods
section of Ref. [9]. It was found that the ratio between the first
and third harmonics is numerically small, which justifies the
monochromatic approach of Eq. (2). Notice that ¢g, o +/P for
the driving tone amplitude holds, where P is the power of the

driving tone. When we insert the ansatz of Eq. (2) into Eq. (1),
the nonlinear term of Eq. (1) is expanded into a Fourier series
with the help of a Jacobi-Anger identity [28]:

sin (¢, sin (Wt + 6))

=2 Jupi(g)sin (@n+ D(@at +8)),  (3)
n=0

where J,(x) are Bessel functions of nth order. All terms of
this expansion except for n = 0 are neglected according to our
assumptions and Eq. (1) reads

wz
parsinwgt = |1 — w;‘f @a sin (gt + 8)

geo

@dr
+ —@acos(wgt + 5)
We

+ 21J1(¢a) sin (wqrt + 6), “)

where w. = R/L,, and the geometrical frequency is given by
Wgeo = (LgeoC)™ 2, By rewriting Eq. (4) in terms of sin (wg,?)
and cos (wq:t) and comparing the coefficients of these func-
tions, we obtain an equation for the amplitude of the driving
tone ¢4 in terms of the amplitude of the Josephson phase
response @,:

(,()gr : a)(zir
Qar = [(1 — —)@a + 2ﬂLJl (@a):| + E(pg' (5)

a)geoz

For the SQUIDs used here, the resistance R in is of the
order of 10k and hence w, ~ 50x10'%/s. Thus, to a good
approximation, the last term in Eq. (5) can be neglected.

From Eq. (5), one can see that if the SQUID is driven at
a frequency near the geometric resonance, i.e., Wdqr ~ Wgeo,
we have ¢@g =~ 28 |J1(¢a)|. Since Ji(¢,) is an oscillating
function, the inverse function ¢,(@q;) is multivalued. This
phenomenon is referred to as multistability and was experi-
mentally observed by Jung et al. [9], as well as by Refs. [7,8],
however, without putting emphasis on it. The response am-
plitude of a SQUID as a function of the driving amplitude
@a(@qr) for wgr ~ 0.998wge, is shown in Fig. 6. Some parts
of the curve @,(¢q4;) are unstable in the sense that any small
perturbation to the amplitude ¢, will cause a change of the
state of the SQUID. These parts are marked with red dotted
lines in Fig. 6.

To investigate the stability of the solutions of Eq. (5), we
followed a standard procedure [29], where the time evolu-
tion of a small perturbation to the phase and amplitude of
the SQUID response as given by Eq. (2) is studied. The
response is written @, sin (wgt + 8) = x sin wqrt + y cOS Wyt
with @, = /x2 4+ y2, § = arctan(y/x) and the perturbations
Ai(t) are added: x = x+ A(2), y — y+ Ax(), Mi(t) < 1.
Linear differential equations are then derived for X;(¢) from
Eq. (1) assuming the validity of Eq. (5). In unstable regions,
the perturbations A;(t) show an exponential growth, while
stability is assured if only oscillatory solutions exist for A;(z).
The results agree with the general expectations [9,23,29] that
those sections of ¢, (¢q,) are unstable, where the curve’s slope
is negative.
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FIG. 6. The response amplitude of a SQUID to a harmonic exter-
nal driving at the frequency wg, ~ 0.998w,, as given by formula (5).
The stable regions of ¢,(¢.,) are plotted in blue, whereas in the red
dotted areas the solution of Eq. (5) is unstable. For some values of
the driving amplitude, response at different amplitudes is possible,
a feature generally referred to as multistability. The parameters
B = 0.45 and w, = 14.8 GHz were chosen.

B. Two-tone resonant spectroscopy of rf-SQUIDs

In this subsection, we analyze the resonant response of the
superconducting metamaterial to both the weak probe signal
and the strong driving tone. First, we will treat the response
within a harmonic approximation; i.e., we will approximate
the probe signal response as that of a harmonic oscillator
with parameters depending on the driving tone amplitude.
This approximation is sufficient to explain the oscillations
of the SQUID’s resonance frequency f.s with the increasing
power of the driving tone. Next, the sidebands and unstable
regions seen in the experiments will be described within a
more detailed analysis.

1. Harmonic approximation

The two signals applied to the SQUID are the driving tone
@qr sin (wg;?) and the probe signal of the VNA ¢@pey. The
response is assumed to be of the form ¢ = ¢, sin (wgt + 6) +
@pr- Equation (1) then takes the following form:

@ar sin(wqrt) + Pprext
CL)2
= @usin(@at +8) + ¢pr — —-gusin(@at +8)

geo

o2 + 2 s ~1;
geoPpr T ¢a cos(wat +8) + @, @pr
C

(6)

For a weak probe signal, the response ¢, will be small.
Expanding up to the first order in ¢y, the nonlinear term of
(6) becomes

+ IBL sin ((pa Sin(wdrt + 6) + @pr)-

sin (@, sin(wgt + 6)) + cos (@, sin(wgrt + 8))@pr.  (7)

At this point, a key assumption enters the calculation: Since
the VNA signal is very weak and |y | < ¢,, its presence
does not significantly alter the state of the SQUID. It is hence
assumed that the Eq. (4) is still valid. By substituting Egs. (4)
and (7) into Eq. (6), we obtain an effective equation for the

response ¢y, to the VNA signal:

Pprext = Ppr a)g_e%,(;bpr + o, 1prr
®)

This equation with a time-dependent, periodic coefficient is
known as Hill’s equation [30]. Solutions of the homogeneous
part of this equation can be unstable in the sense that their
amplitude exponentially grows in time [30,31]. These insta-
bilities, however, only occur for specific values of wqr, ¢,, and
. and will be studied in next subsection. Here, solely the
special solution to (8) is of interest, and only the time average
of cos (¢, sin(wt + §)) over one period, i.e., the zeroth Fourier
mode, will be taken into account. We use the Jacobi-Anger
identity [28]

+ Br cos (¢, sin(wgrt + 8))@pr.

c0s (¢, sin (wgrt + §))

= Jo(@) + 2 Ju(@a) cos Qn(wat +8))  (9)

n=1
and approximate Eq. (8) by

Oprext = [1 + BrJo(@a)]lep: + w;](ppr + a)g_i)ﬁbpr- (10)

The frequency of the resonant drop of the probe signal’s
transmission coefficient S»; then is

2
wgeo

> -
207

Wgeo

fres = 7

\/[1 + Brdo(@a)] — (11
This result gives the shift of the resonance frequency as
a function of the amplitude of the driving response ¢,
[see Eq. (5)]. In the experimental data, however, the transmis-
sion coefficient S, is plotted against the power of the driving
tone, P. We thus introduce a coupling constant C by means of

Qar = C\/I—)

When fitting Eq. (11) to experimental data, C is the only free
parameter. It has to be obtained independently for every driv-
ing tone frequency, since the transmission through microwave
cables and devices is frequency dependent.

In Figs. 3-5, the SQUID resonance frequency predicted by
Eq. (11) is plotted blue. Unsurprisingly, the analysis presented
so far describes the experiment best at high driving tone
frequencies (Fig. 3), since in this regime the time-dependent
terms in the expansion of Eq. (9) are expected to average out.
However, even at low driving tone frequencies Eq. (11) isina
good accord with experimental results (Figs. 4 and 5).

12)

2. Parametric instabilities of the SQUID response

At certain values of the driving frequency wy, and the
driving amplitude @q;, the solution to the homogeneous part of
Eq. (8) becomes unstable [30]. To describe this phenomenon,
called parametric instability or parametric resonance [31], we
take into account the n = 1 term in the expansion of Eq. (9),
which oscillates with the frequency of 2wq,. The effective
probe signal equation (8) then becomes

Pprext = [1+ Brdo(@a) + J2(@a) cos (derl‘)]%r

1 - 2.
+ @ Ppr + wgeo‘ppr‘

13)
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It is well known [30,31] that the parametrically unstable
regions of such a Mathieu-type equation occur at driving
frequencies of

-+ Awy, (14)
m

where m is an integer number and Aw_ is a small frequency
interval whose value depends on the driving tone amplitude
¢a. By applying the stability criterion of Ref. [31] to Eq. (13),
estimations on Aw. are obtained. For m = 1, we have

BrI2(Pa)res ‘
2[1 4 Brlo(@)1|

The m =1 instability occurs when @ ~ wps ¥ wgeo holds
for the driving frequency. It is therefore not surprising that
the intervals given by Eq. (15) coincide with the instability
regions already discussed in the Sec. IV A.

For the m = 2 instability, however, we observe a different
behavior. In this case, the interval of instability is not symmet-
ric:

wy = ‘ s5)

2

A 1 BrI2(Pa)Wres
vy =—|——1,
24 12[1 + Brdo(¢a)]
2
Aw_ = i M . (16)
2412[1 + BrJo(¢a)]

Figure 4 shows the experimental data obtained at a driving
tone frequency of 6 GHz. The m = 2 instability is clearly seen
as a gap in the resonance curve around 12 GHz at a driving
power of approximately 0 dBm. The gap in the blue curve
which shows the resonance frequency as given by Eq. (11)
indicates the unstable region predicted by Eq. (16). Further-
more, higher order instabilities were observed for m = 3 and
m =4 at driving frequencies of 4 and 3 GHz respectively.
While reaching an instability in the m = 1 case just indicates a
jump to another stable state predicted by Eq. (5), in the higher
order cases (5) does not predict any multistabilities. Thus, the
m = 2,3, ... instabilities suggest that the SQUID response
in the region of these instabilities is more complicated than
assumed in deriving Eq. (5). In fact, we demonstrate below
that the resonant drop seen in Fig. 4 above the gap and at
powers above 0 dBm indicates that a fraction of the SQUIDs
occupies a state where harmonics with frequencies wg, and
2wq; are approximately equally strong. Such a state indeed
goes beyond the approximations, leading to (5).

3. A new, symmetry-breaking bistability in the SQUID response

To explain the bistability observed at a driving frequency
of 6 GHz (see Fig. 4), it is necessary to go beyond the approx-
imate ansatz of Eq. (2). The bistability appears when, while
increasing the driving amplitude, the resonance frequency fies
is tuned to twice the driving frequency fg4. At the same time,
the frequency of the second harmonic of the response with a
frequency of 2 fy;, too, becomes approximately equal to the
resonance frequency. The amplitude of the second harmonic
can therefore be expected to grow in this regime. In fact,
numerics show that the resonant drop in Fig. 4, which is
not described by Eqgs. (11) or (21), results from a SQUID
state where the amplitudes @,;, @,», of the first and second

harmonics with frequencies wg; and 2wg; have the same order
of magnitude. We therefore use the ansatz
@(t) = @a1 Sin (wart + 81) + @a2 8in Qwa,t +62)  (17)

to describe this state. The frequency of the resonant drop is
obtained analogously to (11) and given by

Wgeo

fres = 7

|:1 + Brdo(@a1 )o(@a2)

o0 1/2
+2B1 Y Jan(@a1)J2n(a2) cOs (2n(28; — 52))} :
n=1

(18)

The amplitudes ¢,; and ¢, are obtained numerically as
Fourier coefficients of the first and second harmonics of the
solution to Eq. (1). For the numerical analysis, we used the
standard fourth-order Runge-Kutta method and generated a
solution () of Eq. (1). To find the amplitudes ¢, and @,
we projected the solution ¢(¢) onto the Fourier modes, e.g.,

1 nT
¢ = [- / dt sin (2wt)(p(t)]
nJo

2

2

nT
+ [l/ dt cos(2wt)<p(t)] , (19)
nJo

where T = 27 /w and n is the number of periods over which
the solution was averaged. The green solid line in Fig. 4 shows
the resonance as described by Eq. (18) in comparison with
experimental results.

The fact that a strong second-order harmonic can be
generated by the SQUIDs without a dc magnetic field be-
ing applied is rather remarkable. Such a state dynamically
breaks the ¢ — —¢ centrosymmetry of Eq. (1). Dynamical
symmetry breaking is a phenomenon known from the theory
of nonlinear oscillators [32,33]. In fact, the observation of
this bistability demonstrates the advantages of the two-tone
spectroscopy over frequency-amplitude and frequency-phase
measurements, in which it cannot be imaged with such ease.
We expect that other irregularities in the weak signal response,
e.g., the ones seen in Fig. 5, can similarly be explained in
terms of states with a strong response at harmonics of the
driving tone.

4. Sideband resonances

Figure 5 shows the response to the probe signal at a
low driving tone frequency wg < w,. We observe side-
band resonances approximately 2 GHz above and below the
main resonance. These sidebands appear due to the term
J2(@,) cos (2wg,t) in the probe signal equation (13). The term
mixes the oscillation at wp, with modes at frequencies sepa-
rated from it by a multiple of 2wq,. To calculate the positions
of the sidebands, we therefore use the ansatz

@(t) = asin (wpt) + by sin (wpet + 2wqrt)
+ b, sin (Q)prl — 2wqrt) (20)

and @prexi = @pr Sin (wpet). To describe the sidebands nearest
to the main resonance, modes with frequencies further away
from wpy, ie., wp £ 4wg, wp £ 6we, and so on can be
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neglected. Since the dissipation is rather small, one can ne-
glect phase shifts ¢ in the above ansatz.

We substitute (20) into (13) and solve for a(gp). With
dissipation being neglected, resonances occur at those fre-
quencies w,; at which a(g,) o ¢y diverges, or, equivalently,

¢pe(a) = 0. 21

Solving Eq. (21) involves finding the roots of a sixth-order
polynomial in w,,, which is done numerically. For most values
of the driving tone frequency wg and power P, Eq. (21)
has three positive roots, corresponding to the main resonant
response and two sidebands. The resonance and sideband
curves predicted by Eq. (21) for the driving tone frequency
of 1 GHz are plotted in Fig. 5 (the white solid line) and are
in good agreement with the experiment. For higher driving
tone frequencies (Fig. 4), the sidebands are outside of the
experimentally accessible frequency range. The main reso-
nance curves given by Eq. (21) (white solid line) and Eq. (11)
(blue solid line) agree with each other rather well. In unstable
regions, the roots found solving Eq. (21) are complex, and
hence no resonances can be observed. The region of paramet-
ric instability determined in this way is consistent with the
region determined by the conditions of Eqs. (15) and (16).

V. CONCLUSIONS

We presented the results of a two-tone spectroscopy of
an rf-SQUID metamaterial consisting of 54 single SQUIDs
placed in a transmission line. The power of the pump (driving)
tone was typically much higher than the power of the probe
signal used to measure the transmission spectrum.

We observed that the resonance frequency of the meta-
material, seen as a drop in the transmission spectrum of the
probe signal at frequencies between 10 and 15 GHz, shows a
characteristic oscillatory dependence on the power of a pump
tone. The frequency of the pump tone was varied between 1
and 20 GHz, changing the shape of the resonance curve.

For pump tone frequencies below or in the region of
the resonance frequencies, i.e., for our parameters fy <
14.5 GHz, we observed the gaps in the resonance curves
of the transmission spectrum. A bistability in the response

was directly observed at an intermediate range of the pump
frequency (6 GHz). At low pump frequencies fy. sidebands
located approximately 2 fy above and below the main reso-
nance curve were found.

Most of our observations are well described theoretically
by an approach based on an approximate analytical model
for the response of a SQUID to strong external driving [9].
Whereas the shape of the resonance curves naturally followed
from an extension of the model to two tones of different ampli-
tudes, the gaps could be explained as parametric instabilities
of the SQUID response. The observed bistability is shown to
appear as a result of the existence of a symmetry-breaking
state with strong second-harmonic generation.

We believe that the described effects have multiple applica-
tions. The instability-induced gaps can be used to create meta-
materials with tunable transparancy. The symmetry breaking
second-harmonic generation can be employed in frequency
doublers. Last but not least, the remarkably clear small signal
response at even the highest pump powers shows that a study
of parametric amplification in the highly nonlinear regime
could be a worthwhile endeavor.

To summarize, at high driving power levels SQUID meta-
materials exhibit a rich spectrum of features tunable by the
power and the frequency of the pump tone. The nonlinear two-
tone spectroscopy is a powerful method for studying these
features and can be applied to other systems. The high degree
of nonlinearity and the unique multistable behavior make
superconducting circuits an exciting playground for studies of
tunable metamaterials.
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