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Large fluctuations of the first detected quantum return time
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How long does it take a quantum particle to return to its origin? As shown previously under repeated projective
measurements aimed to detect the return, the closed cycle yields a geometrical phase which shows that the
average first detected return time is quantized. For critical sampling times or when parameters of the Hamiltonian
are tuned this winding number is modified. These discontinuous transitions exhibit gigantic fluctuations of the
return time. While the general formalism of this problem was studied at length, the magnitude of the fluctuations,
which is quantitatively essential, remains poorly characterized. Here, we derive explicit expressions for the
variance of the return time, for quantum walks in finite Hilbert space. A classification scheme of the diverging
variance is presented, for four different physical effects: the Zeno regime, when the overlap of an energy
eigenstate and the detected state is small, and when two or three phases of the problem merge. These scenarios
present distinct physical effects which can be analyzed with the fluctuations of return times investigated here,
leading to a topology-dependent time-energy uncertainty principle.
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I. INTRODUCTION

The return time is the time it takes a quantum [1,2] or
classical particle [3,4] to return to its origin. For diffusive
particles this time determines chemical reaction rates while
for celestial mechanics the return of a comet is a classical
problem. For a quantum particle, say on a graph, the definition
of the return time needs the introduction of a measurement
protocol. A well-investigated approach is to consider mea-
surements on the original node, repeated stroboscopically un-
til the first detection. The problem is to find the distribution of
the number of attempts n till first detection [5–18]. This sheds
light on the backfire of measurement on unitary evolution,
and on time processes in quantum mechanics. Besides its
fundamental aspect this line of research became important
in the context of quantum search [19–21], where one of the
basic questions is whether repeated measurements destroy or
enhance the success of quantum search [5–8,17,22]. For that
one would like to know the average of n and its fluctuations.

Recently, Grünbaum et al. [1,2] demonstrated how this
problem is related to a new class of geometrical phases. In
the quantum return problem the particle performs a loop, as it
starts and is measured on the same spot, so a cycle is found.
However, unlike other approaches [23–26] to topology here
unitary evolution is pierced by measurements. The result is
that the average of n is equal to a winding number w, which in
turn is equal to the number of distinct phases exp(iEkτ ) in the
system. Here Ek are the energy levels of the time-independent
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Hamiltonian H , and τ is the sampling time; h̄ is set to 1 in this
paper. So 〈n〉 = w is quantized.

The goal of this paper is to investigate the fluctuations
of the number of measurements needed till the first return
is recorded, namely the variance of n. It was shown previ-
ously that these can be very large close to critical sampling
parameters even for small systems [1,13]. Here we provide
formulas for the blowups of the fluctuations, using an elegant
mapping of the quantum problem to a classical charge theory
[1]. For critical values of the Hamiltonian’s parameters or the
sampling time, one finds discontinuities in the mean detected
return time, namely w → w + α, where α is a nonzero inte-
ger, typically in the examples studied below α = ±1 or ± 2.
Close to these nonanalytical points, the fluctuations diverge.
We classify different scenarios for critical behavior; using
a one-, two-, three-, or many-charge theory, the physics in
each case yields very different insights on the mechanism
of the fluctuations’ blowups. As we discuss below, from
an engineering point of view, the critical fluctuations are a
nuisance since they deem the quantum search as nonpractical,
and our work shows how to avoid them.

II. MODEL AND FORMALISM

A. Model

The system is initially prepared in state |ψin〉, for example
on a node of a graph. Every τ units of time we perform a
measurement in an attempt to detect the particle in its initial
state. Between the measurements the evolution is unitary with
Û (τ ) = exp(−iHτ ). The Hamiltonian H is time-independent,
and we assume a finite Hilbert space, so energy levels are dis-
crete. While the main results presented below are general, as
examples we will consider Hamiltonians describing a particle
hopping on a ring and a model system describing two interact-
ing bosons in the process of tunneling. The measurements are
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FIG. 1. A sketch of the measurement protocol. Measurements
M are performed every τ units of time, between which the system
evolves unitarily with Û (τ ). In the lower part of the figure we present
the effect of collapse, with failed detection. The system in mind is a
quantum walk on a line with 21 sites and the measurements are made
on site x = 11. The process is continuous until the first successful
measurement. From collapse theory we get a wipeout of the wave
function on this site when the particle is not detected. This is shown
in the subfigures indicated by the arrows with a label M.

strong, performed via the projector D̂ = |ψin〉〈ψin|; namely,
we use the collapse postulate. The probability of detecting
the particle at some time t is as usual the squared absolute
value of the amplitude of finding the particle in the detected
state. For example if we measure on a node |r〉 of a graph,
this is given by |〈r|ψ〉|2, and since we are dealing here with
the return problem we also have |ψin〉 = |r〉. If the particle
is detected, we are done. If not, the amplitude on the detected
state is zero and the wave function is renormalized (see details
in [13] and schematics of the process in Fig. 1). The outcome
of this procedure is a string of measurements “failure, failure,
. . .” and in the nth attempt a “success.” The time nτ is called
the first detected return time, which is random.

B. Recap: General formalism

After presenting the model, we provide a primer on the
quantum return time rederiving the results obtained in [1] us-
ing standard mathematical tools. The first detection amplitude
yields the statistics of the problem and is denoted φn [1,11,13].
We now discuss its properties. The probability to detect the
particle for the first time at the nth attempt is the squared
absolute value of this amplitude, Fn = |φn|2, and the mean
number of detection attempts till success is 〈n〉 = ∑

nFn.
We remark that the normalization condition

∑∞
n=1 Fn = 1 is

valid for finite Hilbert space and for the return problem under
investigation [1,27]. The amplitude φn is given by [1,11,13]

φn = 〈ψin|[Û (τ )P̂]n−1Û (τ )|ψin〉, P̂ = 1 − D̂. (1)

This shows that the unitary evolution, represented by Û (τ ),
is interrupted by projective measurements via the operation
(1 − D̂) for (n − 1) times until the nth success.

A useful tool is the discrete Fourier transformation of φn,

φ̃(eiω ) :=
∞∑

n=1

eiωnφn = 〈ψin|(eiτH−iω − P̂)−1|ψin〉. (2)

Using the identity (1 + B)−1 = 1 − B(1 + B)−1 (B is a ma-
trix) we get

φ̃(eiω ) = 〈ψin|(eiτH−iω − P̂)−1|ψin〉
= 〈ψin|(eiτH−iω − 1)−1|ψin〉

− 〈ψin|(eiτH−iω − 1)−1|ψin〉φ̃(eiω ), (3)

or equivalently,

φ̃(eiω ) = 〈ψin|(eiτH−iω − 1)−1|ψin〉
1 + 〈ψin|(eiτH−iω − 1)−1|ψin〉 . (4)

Now we notice that 〈ψin|(eiτH−iω − 1)−1|ψin〉 = ∑∞
n=1 uneinω,

where un is defined as follows:

un := 〈ψin|e−inHτ |ψin〉 =
w∑

k=1

pke−inEkτ . (5)

un is the return amplitude describing dynamics free of mea-
surements; i.e., exp(−inHτ )|ψin〉 is the system’s wave func-
tion at time nτ in the absence of measurements. Here we
define the overlaps pk = ∑gk

l=1 |〈ψin|Ekl〉|2, and {|Ekl〉} are the
eigenstates of H corresponding to the eigenvalue Ek with 0 <

l � gk , where gk is the degeneracy. w is the number of distinct
phases eiEkτ with corresponding nonzero pk . This means that
if we modify τ in such a way that exp(iEkτ ) = exp(iEk′τ ) for
k �= k′, w will be reduced by one. This effect is called merging
of phases [1]. In a disordered system with no degeneracy in the
sense exp(iEkτ ) �= exp(iEk′τ ) for all energy states, and when
all pk are nonzero, w is the dimension of the Hilbert space. In
general

ũ(eiω ) : =
∞∑

n=1

einωun = 〈ψin|(eiτH−iω − 1)−1|ψin〉

=
w∑

k=1

pk

eiEkτ−iω − 1
. (6)

With this formula, φ̃(eiω ) can be reexpressed as

φ̃(eiω ) = ũ(eiω )

1 + ũ(eiω )
= eiω

∑w
k=1 pk/(eiEkτ − eiω )∑w

k=1 pkeiEkτ /(eiEkτ − eiω )
.

(7)

One can easily find that [ũ(eiω )]∗ = −[1 + ũ(eiω )] or
|φ̃(eiω )| = 1, and this in turn gives the normalization∑

n Fn = 1.
We now switch exp(iω) → z and write φ̃(z) = N (z)/D(z).

φ̃(z) is called the generating function of φn [1,13]. The nu-
merator N (z) and the denominator D(z) are related. Using
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Eq. (7), it is easy to show that

N (z) : = ũ(z)
w∏
k

(eiEkτ − z) = z
w∑

k=1

pk

w∏
j = 1
j �= k

(eiEjτ − z),

D(z) : = [1 + ũ(z)]
w∏
k

(eiEkτ − z)

=
w∑

k=1

pk eiEkτ

w∏
j = 1
j �= k

(eiEjτ − z). (8)

A straightforward calculation shows

D(z) = exp(iγ )(−1)w−1zw

[
N

(
1

z∗

)]∗
, (9)

where γ = ∑w
k=1 Ekτ . Clearly N (z) is a polynomial which is

now rewritten as

N (z) = z
w−1∏
i=1

(zi − z), (10)

where {zi} are the zeros of φ̃(z), which are complex numbers
within the unit disk. Mathematically these zeros determine the

fluctuations of n; see Eq. (17) below. Using Eq. (9) we find a
useful identity [1,13]

φ̃(z) = e−iγ z
∏w−1

i=1 (zi − z)∏w−1
i=1 (1 − z∗

i z)
. (11)

We will discuss the zeros {zi} more carefully soon, as they are
key to our main results.

In this paper we investigate the fluctuations of n and for
that aim we now find the moment-generating function which
is the discrete Fourier transform of Fn. Applying the Fourier
transform to the first detected return probability and using
Fn = |φn|2,

F̃ (ϕ) :=
∞∑

n=1

einϕ |φn|2 =
∞∑

n=1,m=1

einϕφnφ
∗
mδnm

= 1

2π

∫ π

−π

∑
n=1

φnein(ω+ϕ)
∑
m=1

φ∗
me−imω dω

= 1

2π

∫ π

−π

φ̃(ei(ω+ϕ) ) [φ̃(eiω )]∗ dω

= 1

2π

∫ π

−π

ũ(ei(ω+ϕ) )

1 + ũ(ei(ω+ϕ) )

1 + ũ(eiω )

ũ(eiω )
dω, (12)

where we used Eq. (7). To compute the integral, we set eiω →
z, and with the useful factorization Eq. (11), Eq. (12) becomes

F̃ (ϕ) = 1

2π i

∮
|z|=1

1

z

eiϕ
∏w−1

j=1 (z j − zeiϕ )∏w−1
j=1 (1 − z∗

j zeiϕ )

∏w−1
j=1 (1 − z∗

j z)∏w−1
j=1 (z j − z)︸ ︷︷ ︸

I(z)

dz. (13)

Since |z j | < 1, the residues of the integrand I (z) are Res[I (z), z0] = eiϕ (where the trivial pole z0 = 0) and Res[I (z), zk] =
−eiϕz−1

k

∏w−1
j=1

(z j−zkeiϕ )(1−z∗
j zk )

(1−z∗
j zkeiϕ )

∏w−1
j=1, j �=k (z j − zk )−1 for 1 � k � w − 1, which give a rather formal result

F̃ (ϕ) =
w−1∑
k=0

Res[I (z), zk] = eiϕ − eiϕ (1 − eiϕ )
w−1∑
k=1

⎡
⎣w−1∏

j=1

1 − z∗
j zk

1 − z∗
j zkeiϕ

⎤
⎦ w−1∏

j=1, j �=k

z j − zkeiϕ

z j − zk
. (14)

Recall that

F̃ (ϕ) =
∞∑

n=1

exp(inϕ) Fn =
∞∑

n=1

(1 + inϕ − n2ϕ2/2 + · · · ) Fn

= Pdet + iϕ〈n〉Pdet − ϕ2〈n2〉Pdet/2 + · · · , (15)

where Pdet = ∑∞
n=1 Fn is the detection probability, appearing here since the expectation values are actually conditional moments:

〈nm〉 := ∑∞
n=1 nmFn/Pdet, and Pdet = 1 in our case study. Expanding Eq. (14) around ϕ = 0 yields

F̃ (ϕ) = 1 + iϕw + ϕ2

⎡
⎣−w2

2
−

w∑
i, j=1

ziz∗
j

1 − ziz∗
j

⎤
⎦ + · · · . (16)

A comparison between Eq. (15) and Eq. (16) shows [1]

〈n〉 = w, Var(n) = 〈n2〉 − 〈n〉2 =
w∑

i, j=1

2ziz∗
j

1 − ziz∗
j

. (17)

First of all, the mean of n is quantized, namely, is equal to the
number of the zeros of φ̃(z) or as mentioned the number of
distinct energy phases corresponding to nonzero pk . Further,
w has a topological meaning [1] as it is the winding number
of the generating function of φn; see Appendix A. Second, to
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(a) (b)

FIG. 2. A system with five distinct phases eiE jτ . These phases give the positions of positive charges on the unit circle whose magnitudes
are overlaps of energy states with the initial condition. In the unit disk we have four nontrivial zeros of the corresponding force field; these
are on {zi} here denoted with empty circles [1]. Once we obtain the zeros, we have the quantum fluctuations using Eq. (17) while the mean is
〈n〉 = w = 5. Here we show (a) the single-charge theory, where the red colored charge is weak, hence a zero zs is found close to the unit circle
(see arrow); then (b) the two-charge theory, where the green colored charges are merging, namely exp(iE1τ ) 	 exp(iE2τ ); accordingly a zero
zp is close to the unit circle (see arrow). Both in turn mean that we have large fluctuations in the system as the variance of n Eq. (17) will be
large when |zs| → 1 or |zp| → 1.

compute the variance, one needs to get the zeros of φ̃(z) and
then use the second equation in Eq. (17). Via the procedures
above, we can regard Eq. (14) as a “moment-generating
function” of n, which in principle gives 〈nk〉 in terms of zeros
{zi} by merely expanding to an order ϕk , namely, 〈nk〉 =
(−i)kF̃ (k)(0)/F̃ (0) with F̃ (0) = 1 the normalization. Notice
that if one or more zeros approach the unit circle |zi| → 1 we
obtain a large variance and this will be the topic of our work.

We now discuss the zi’s. Generally finding the zeros can
be difficult, since these are roots of the polynomial N (z)
Eq. (8) [or equivalently the zeros of φ̃(z)]. Grünbaum et al. [1]
presented a mapping of the problem of finding the zeros {zi}
to a classical charge theory. This allows us to find the zeros
using our physical intuition from electrostatics. From Eq. (7)
we see that {zi} are solutions of

0 =
w∑

k=1

pk

eiEkτ − z
= ũ(z)

z
. (18)

Now the terms pk/(eiEkτ − z) can be thought of as two-
dimensional Coulomb forces, generated by positive “charges”
pk located on the unit circle, namely on the phase exp(iEkτ ).
The force field generated by the w charges all on the unit circle
is

0 = F (z) =
w∑

k=1

pk

eiEkτ − z
. (19)

So we are searching for the stationary points of the clas-
sical force field. Integration of F (z) with respect to z re-
veals a two-dimensional Coulomb potential V (z) = ∑w

k=1 pk

ln |eiEkτ − z|.
To recap, in the electrostatic picture shown schematically

in Fig. 2, we have w charges located on the unit circle,
positioned at exp(iEkτ ) and with magnitude pk . In the unit
disk we find w − 1 stationary points of the force field located
on the zeros {zi} and 〈n〉 = w. Once we find these stationary

points, i.e., the {zi} of the force field, we can use Eq. (17)
to obtain the variance. When a zero approaches the unit
circle, the fluctuations of n are large because the denominator
of the variance formula in Eq. (17) vanishes [1]. The goal
now is to find out explicitly the magnitude of these fluc-
tuations, and to better understand when the fluctuations are
large.

III. ASYMPTOTIC FORMULAS FOR THE VARIANCE OF n

A. Single-charge theory

Assume that one of the overlaps denoted p0, associated
with energy E0, is small, p0 
 1, and in particular much
smaller than all the others. We will later present simple
Hamiltonians which exhibit this property. In the electrostatic
language we have a weak charge on exp(iE0τ ). We put E0 =
0. Clearly, as shown in Fig. 2(a), we find a zero close to this
charge, denoted zs 	 1 with s standing for single. On zs, the
electrostatic force vanishes, because the force of the weak
charge balances all other forces (in analogy, the equilibrium
point in the sun-earth system is much closer to earth than to
the sun). It follows that for this single-charge scenario, we
have

Var(n) ∼ 2|zs|2
1 − |zs|2 , p0 → 0. (20)

Using Eq. (19) with perturbation theory, presented in Ap-
pendix B 1, we find

zs ∼ 1 − p0∑
j �=0 p j/[1 − exp(iE jτ )]

, (21)

hence

Var(n) ∼ 1

2p0

⎧⎨
⎩1 +

⎡
⎣∑

j �=0

p j cot[(Ej − E0)τ/2]

⎤
⎦2⎫⎬

⎭. (22)
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This is the first main result of this paper. As expected the vari-
ance depends on all charges p j . The blowup of the variance
is easy to understand from the classical picture, but what is
the physics in the quantum problem? Roughly speaking, the
process of repeated measurements may drive the system into
a state that has considerable overlap with |E0〉. Nevertheless,
since p0 is small, the particle is not efficiently detected. A
typical outcome of n may be much larger than 〈n〉 (= w),
which implies large fluctuations of n for small p0, given by
Eq. (22). Notice that when |Ej − E0|τ 	 2πk for some k, we
get a large contribution from the cot(· · · ) in Eq. (22) (see
Remark 1). In the electrostatic picture this is because two
phases (and hence two charges) are merging and this is the
topic of the next section, where we do not assume that p0 is
small.

B. Pair of charges

Another mechanism leading to the blowup of the variance
is the case when two energy levels, denoted E1 and E2, satisfy
the resonance condition exp(iE1τ ) 	 exp(iE2τ ) [1,13]. Note
that this can be achieved by modifying τ or some other
parameter of H . When exp(iE1τ ) = exp(iE2τ ) exactly, the
winding number is reduced by one, and in the vicinity of this
jump in w = 〈n〉 we get large fluctuations. The jump in 〈n〉 is
not directly measurable, since it is found only for an isolated
value of the control parameter, say τ [see Fig. 3(c) for an
example]. The investigation of the variance is thus crucial as
it presents the signature for this transition in its vicinity. In
our case we have two charges p1 and p2 close to each other,
both located on the unit circle. So we expect to find a zero,
denoted zp with p standing for pair, in their neighborhood.
This is because the point of zero force is largely determined
by this pair. In analogy, the equilibrium point between two
neighboring stars is determined to leading order by these and
not by other distant stars. See Fig. 2(b) for this case.

Since zp 	 1 but |zp|2 < 1 we have from Eq. (17) Var(n) ∼
2|zp|2/(1 − |zp|2). We need to find an approximation for zp as
δ → 0, where δ = (E2τ − E1τ )/2 mod 2π . At δ = 0 the two
phases merge. As explained in Appendix B 2, a second-order
expansion of Eq. (19) in δ yields

zp ∼ 1 + i
p1 − p2

p1 + p2
δ +

⎡
⎣ 4p1 p2

(p1 + p2)3

∑
j �=1,2

p j

eiEjτ − 1
− 1

2

⎤
⎦δ2.

(23)

The leading order term is unity because we choose the zero
energy as (E1 + E2)/2 = 0. The first correction term depends
only on p1 and p2 as expected, while the last term is already
sensitive to all the other charges p j with j �= 1, 2. Importantly
the first-order term has no real part, unlike the single-charge
theory case. Since we are actually interested in |zp|2 the
expansion must be carried out to second order. Here enters
a little magic: using the normalization condition

∑
j p j = 1

and 1/(exp[ix] − 1) = −1/2 − icot(x/2)/2, we find |zp|2 and
the variance is

Var(n) ∼ 2
(p1 + p2)3

p1 p2

1

τ 2(Ē2 − Ē1)2
, (24)

(d)

(a) (b)

(c)

FIG. 3. (a) Interacting two-boson model schematics, (b) charge
configurations, (c) the mean of n, and (d) the fluctuations of n as
a function of the interaction strength U with J = 1 and τ = 3. The
red horizontal line in (c) presents 〈n〉 for nonexceptional U , and the
green crosses are the reduced winding number found for special U ’s.
The peaks in (d) correspond to the discontinuous reduced w in (c);
i.e., whenever w = 2 we get diverging variance. As shown in the
upper right corner (b), when U is large an overlap or charge (colored
red) becomes small corresponding to single-charge theory and hence
the zero zs is approaching this charge. Simultaneously, two phases
corresponding to a pair of charges (blue) merge when U → ∞, and
this means that a second zero zp is also approaching the unit circle.
The theory for Var(n), i.e., the sum of Eqs. (22) and (24), perfectly
matches exact results when U is large.

where Ē jτ = Ejτ mod 2π . Surprisingly the background
charges (all the p j’s, for j �= 1, 2) cancel out in the final
formula. The asymptotic variance is not sensitive to their
presence, in contrast with Eq. (22). However these charges
cannot be neglected in the calculation; see Eq. (23). To put
this differently: had the charges not satisfied the normalization
condition, the final result would be sensitive to all the charges.
So in this sense we are dealing with a classical charge theory,
but with three important constraints: all charges are positive,
their sum is one, and they are on the unit circle. More impor-
tantly Eq. (24) exhibits the blowups of the variance close to
resonances which can be controlled for example by varying τ .
We now demonstrate these results with two examples.
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(e)

(a)

(c)

(b)

(d)

(f)

FIG. 4. (a)–(d) Charge configurations, (e) the mean of n, and (f) the variance of n versus τ for the quantum return problem on a ring of size
eight with γ = 1. As presented in (e), the winding number (red horizontal line) remains constant for general τ . Then isolated jumps, shown
by vertical lines with colors corresponding to scenarios (a)–(d), appear at some critical τ , around which one finds diverging fluctuations of n
in (f). When the variance is large, corresponding to merging phases, we find rich physical behaviors which are captured by our theory: (a) for
the Zeno regime τ → 0 we have a five-charge theory described by the bound Eq. (31) (dashed cyan line), (b) purple curves represent the
two-charge theory Eq. (24), (c) blue is the double two-charge theory, and (d) green peaks are the triple-charge theory Eq. (28). Our formulas
perfectly match the exact results presented with the red curve.

C. Two interacting bosons in a Josephson junction

Two particles can occupy two states, left and right, and are
governed by the Hamiltonian

H = −J

2
(â†

l âr + â†
r âl ) + U (n̂2

l + n̂2
r ), n̂l,r = â†

l,r âl,r, (25)

where â†
l,r (âl,r ) is the creation (annihilation) operator on the

left (l) or right (r) well.
The Fock space is spanned by |2, 0〉 and |0, 2〉, i.e., both

bosons on the left or right of the junction, and |1, 1〉 one
boson on each site. This well-known system is described by
tunneling elements J and the interaction energy U ; see sketch
in Fig. 3(a) and further details in Appendix C 1. We start
with two particles on the left and investigate the first return
of this pair as we vary U , i.e., |ψin〉 = |2, 0〉. Since we have
three distinct energy levels, the winding number is 〈n〉 = w =
3 except for special values of U where the variance of n
diverges; see Fig. 3(c).

In the limit of large U , one of the overlaps or charges,
which we call p0, becomes very small and the single-charge
theory applies. Here, p0 is the overlap of the detected state
|ψin〉 with the ground state |E0〉. The vanishing overlap is
understood easily. For large U , the ground state is almost
|1, 1〉 and orthogonal to |ψin〉 = |2, 0〉. More precisely, p0 =
|〈2, 0|E0〉|2 ∼ J2/8U 2 
 1. As we increase U a second ef-
fect takes place; it is easy to show that two excited en-
ergy levels approach each other |E1 − E2| ∼ J2/(2U ) → 0,
so we get a contribution also from the two-charge theory (see
Appendix C 1). As shown in Fig. 3(b) the two effects imply
two zeros approaching the unit circle separately, and hence

we can add up the two contributions Eq. (22) and Eq. (24)
to reach excellent agreement between exact results and theory
presented in the figure. As demonstrated in Fig. 3 whenever
we have a nonanalytical jump 〈n〉 = 3 → 2 on isolated U we
find large fluctuations in the vicinity of the critical parameters.
As mentioned, since the discontinuous jump in 〈n〉 is found for
an isolated point (of measure zero), the measurement of the
variance is the way to demonstrate the qualitative transition of
the topological number w in the system.

D. The ring

A nearest-neighbor tight-binding model on an eight-site
ring has the Hamiltonian

H = −γ

7∑
x=0

[|x〉〈x + 1| + |x + 1〉〈x| − 2|x〉〈x|], (26)

where |0〉 = |8〉, and γ is the hopping rate. This Hamiltonian
describes hopping between nearest neighbors. Consider a
particle initially localized on a site of the ring |ψin〉 = |0〉 and
we investigate how Var(n) is controlled by the sampling time
τ . In this model we have five distinct energy levels because of
degeneracies (the energy levels are Ek/γ = 2 − 2 cos[πk/4]
with k = 0, . . . , 7). This means that except for the special
sampling times the winding number is 〈n〉 = w = 5. The
exceptional sampling times are given by �Eτ = 2π j, where
�E = |Ek′ − Ek|τ for any pair of energies in the system.
When τ approaches this limit, we find large fluctuations (see
Fig. 4).
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There are no effectively small charges, so we expect to
find the scenario of the two-charge theory. However, in reality
the physics of this system (and of other simple examples) is
richer than what we have found so far. As shown in Fig. 4
we have four categories. When τ → 0 we have the Zeno
regime [28]; in this case all five phases exp(iE jτ ) converge to
unity, so here in principle we must locate the stationary points
arising from a configuration of five charges [see Fig. 4(a)].
We also have cases where three phases approach each other
on the unit circle [Fig. 4(d)]. So our theory based on a pair
of charges or a single charge is not sufficient and we will
soon consider these interesting cases in some detail. We also
find cases where two pairs of charges converge at different
locations on the unit circle [see Fig. 4(c)]; here we may use
our results and sum up the two contributions. Finally we have
the cases where the two-charge theory holds. The comparison
in Fig. 4(f) between our theory and an exact diagonalization
of the problem shows excellent agreement. Note that for the
Zeno regime (five-charge theory), we have plotted a lower
bound to be discussed soon. Motivated by these observations
we now extend further the basic theory, revealing two more
mechanisms for the blowup of the fluctuations.

E. Triple-charge theory

It is common that three (or more) phases merge on the
unit circle, for example in systems with commensurate energy
levels or in the τ → 0 limit. The corresponding zeros {zi}
may exhibit interference effects as the off-diagonal terms in
Eq. (17) may become important. Consider the case where
three phases are close by on the unit circle. Here, we will
consider a symmetrical situation to reduce the number of free
parameters. The three energy levels are E0 = 0 and E± =
±E with phases e0 and e±iEτ = e±i2πk±iδ , where k is an
integer and δ is our small parameter. This configuration of
charges or phases yields two zeros called z±

d , and d stands
for dimer. These are located in the vicinity of the unit circle,
as expected from basic electrostatics; see Fig. 4(d). We denote
p0 = |〈ψin|E0〉|2 and p = |〈ψin|E±〉|2; this corresponds to the
example of the ring. Using Eq. (17) in this case we have

Var(n) ∼
∑
σ=±

2
∣∣zσ

d

∣∣2

1 − ∣∣zσ
d

∣∣2 +
(

2z+
d (z−

d )∗

1 − z+
d (z−

d )∗
+ c.c.

)
︸ ︷︷ ︸

M

. (27)

From the example’s symmetry we have z+
d = (z−

d )∗. A de-
tailed calculation, presented in Appendix B 3, shows that as
long as p is not small,

Var(n) ∼ 16
(p0 + 2p)2

p

1

τ 2(Ē+ − Ē−)2
. (28)

Again, this describes gigantic fluctuations as the three phases
are merging and perfectly matches those peaks in Fig. 4(f).
The mixed terms become negligible in the limit; more
specifically as shown in Appendix B 3, limδ→0 M = −2 +
p/[p0(p0 + 2p)]. The physical reason is that in the limit the
two zeros overlap and then they cannot interfere.

Remark. Note that the former three formulas Eqs. (22),
(24), and (28) are correlated. In Eq. (22), assuming some l ,
(Elτ − E0)τ 	 2πk with k an integer, namely, (Ēlτ − Ē0)τ =

FIG. 5. Schematic sketch of the six-site ring with one defect.
The circle colored blue shows where the defect is. The introduction
of defect �ξ breaks the original rotational invariance, resulting in
reflection symmetry (see the dashed line).

δ with δ → 0, using cot(δ/2) ∼ 2/δ, we obtain Var(n) ∼
2p2

l /[p0(Ēl − Ē0)2τ 2]. Then recalling Eq. (24), if pl 
 1 and
pl ′ is finite, further simplification gives the same expression.
As to Eq. (28), if the upper and lower charges p are small
but p0 is finite, we get Var(n) ∼ 16p2

0/[p(Ē+ − Ē−)2τ 2]. This
is consistent with the single-charge theory Eq. (22) but with
two “single charges”; namely, we have two zs [see Eq. (21)].
Since we have the middle charge close by the two charges with
small p, applying the same approximation of cot(. . . ), we get
Var(n) ∼ 4p2

0/[p(Ē0 − Ē+)2τ 2]; here (Ē0 − Ē+)τ is half of
(Ē+ − Ē−)τ , and thus it is consistent with the single-charge
theory.

F. Symmetry breaking in a ring system with defect

We now consider a ring with six sites as our final example.
One site denoted |0〉 is a defect in the sense that its on-site
energy is �ξ , while other on-site energies are zero. Hopping
is between neighboring sites similar to previous example. The
schematics of our system is shown in Fig. 5. The Hamiltonian
reads

H = −γ

5∑
x=0

[|x〉〈x + 1| + |x + 1〉〈x| − �ξ |0〉〈0|], (29)

where |6〉 = |0〉, satisfying the periodical boundary condition,
and �ξ > 0. In this system we break the symmetry of H
when �ξ �= 0. We now address how this influences return
time statistics.

We consider the return problem for three cases, choosing
|ψin〉 = |0〉, |1〉, and |3〉. Importantly, when we measure on |0〉
and |3〉 we do not break the reflection symmetry of the system,
while when we measure on |1〉 we do. First let us consider
the mean 〈n〉 = w. The first thing to do is to search for the
energy levels of the system. While when �ξ = 0 we have
four energy levels, the perturbation breaks symmetry and now
we have six distinct energy levels (when the splitting is small
corresponding to weak �ξ we expect two-charge theory to
hold, as degenerate energy levels split into two). When �ξ is
large we find a state very much localized on the defect, which
suggests that weak-charge theory is expected to play a role.
While these effects are certainly present, a more subtle feature
is related to symmetry. Solving for the energy states we find
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FIG. 6. Variance of n for six-site ring model with one defect. Here γ is set to 1, and the defect strength �ξ ranges from 0 to 50. (a) When
the detector is set at site x = 0, where the defect is located; (b) when the detected or initial state is |1〉, the neighbor of the defect; (c) when the
state |3〉 is the target. The figures show perfect matching between our theory (purple curves) and exact results (orange crosses). Note that in
this system, the quantum fluctuations are gigantic even far from resonances. In case (b) the measurements break the reflection symmetry of the
system, making the qualitative features of statistics of returns different from the measurements maintaining the symmetry. See further details
in the text.

that two eigenstates of H are {0, 1/2,−1/2, 0, 1/2,−1/2},
{0,−1/2,−1/2, 0, 1/2, 1/2}, corresponding to eigenvalues
γ ,−γ , respectively. See Appendix C 3 for further details.
Now recall that the charges are the overlaps of the energy
eigenstates and the detected state. From this we see that if
the detection is on site |0〉 or |3〉 two charges will have zero
magnitude. The consequence is that

w =
{

4, if |ψin〉 = |0〉 or |3〉,
6, if |ψin〉 = |x〉 with x �= 0, 3.

(30)

As explained, this result is valid as long as the phases of
the system exp(iEkτ ) �= exp(iEk′τ ) do not overlap. When this
happens we get a blowup of the variance presented in Fig. 6.

The variance of n for the two classes of initial conditions
exhibits qualitatively different behavior. When detection does
not break symmetry we have clusters of three peaks, and
for symmetry-breaking measurement we have five, i.e., when
|ψin〉 = |1〉; see Fig. 6. This is related to the fact that when
symmetry is preserved the effective dimension of the Hilbert
space is reduced (w = 4) if compared with the symmetry-
breaking case (w = 6). An interesting effect for Var(n) is
found for weak perturbations �ξ 
 1. As shown in Fig. 6(b)
the fluctuations blow up in this limit when we break the sym-
metry, i.e., |ψin〉 = |1〉. The opposite is found when symmetry
is maintained, Figs. 6(a) and 6(c): now there is no blowup
of fluctuations. To explain this, note that when symmetry is
not broken, w for �ξ = 0 is a constant equal to four and it
remains four also for �ξ > 0. In contrast, when we break
symmetry, we have a transition from w = 4 for �ξ = 0 to
w = 6 when �ξ is small (due to removal of degeneracies,
and nonzero overlaps). Since large fluctuations are found
when w performs a discontinuous jump, we find diverging
fluctuations only when the detected state breaks symmetry.
Our theory works nearly perfectly and thus in Fig. 6 it is
hard to distinguish between predictions and exact solutions.
The details of the theory and classification into weak-charge,
two-charge theory, etc., are provided in Appendix C 3.

G. Zeno regime

As we increase the number of merging charges, the calcula-
tion of the variance becomes exceedingly hard. Such a case is
the Zeno regime, τ → 0, when all phases exp(iEkτ ) coalesce.
Basic electrostatics tells us that all zeros are located in the
convex hull of the charges [1], the area of which vanishes as
τ → 0 (see schematic diagram in Appendix B 4). We may use
this to our advantage and obtain a lower bound using basic
geometry (see Appendix B 4 for further details),

Var(n) � (w − 1)[2 cot2 (�Emτ/2) − w + 2], (31)

where �Em = Emax − Emin is the width of the energy spec-
trum. This useful bound shows that the variance diverges as
τ → 0. It is plotted in Fig. 4(f) for the ring example.

H. Time-energy uncertainty

On the right-hand side of Eq. (31), we can further simplify
cot(· · · ) by using cot(x) ∼ 1/x with x 
 1; then we obtain an
uncertainty-like relation of time and energy:

(�Em)2(�tdet )
2 � 8(w − 1)h̄2, (32)

where �tdet is the standard deviation of the first detected
return time, which is defined as �tdet =

√
〈(nτ )2〉 − 〈nτ 〉2 =

τ
√

Var(n). Here we recover the h̄ to formulate the relation
Eq. (32). In the derivation we assume �Emτ 
 h̄. In the
uncertainty principle we relate the variance of the first de-
tected return time tdet, the width of the energy spectrum,
the topological number w, and the Planck constant h̄. In the
mathematical limit w = 1, there is only one energy level; then
�tdet = 0 as the particle is detected at the first attempt, so
n = 1 with probability one for any sampling time τ . Indeed
the right-hand side of Eq. (32) gives 0 in this limit, so the
presence of the factor w − 1 is physically reasonable.

IV. DISCUSSION

We provided a valuable theoretical background which
gives explicit formulas for the large quantum fluctuations of
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the first detected return times. The protocol of measurement
relies on unitary evolution pierced by repeated measurements,
a theme that is now used in many theoretical works. As the
interest in quantum information and monitoring increases, a
deeper understanding of the measurements’ backfire and its
influence on the dynamics become essential. Our work shows
how this combination can yield diverging fluctuations.

With the development of experimental techniques, it is now
possible to perform single-atom quantum walk experiments in
the laboratory, e.g., in Refs. [29,30], and single-atom imaging
has been perfectly achieved with single-site resolution. In
Ref. [30] the same model as in our first example, the Bose-
Hubbard model, was employed in experimental research with
a number of particles. And the investigation of this boson
model involved the Mott-insulating state, a phase in which
the on-site interacting strength U is much greater than the
tunneling element J . This is also discussed in this paper,
with a smaller scale of two wells and a pair of bosons,
namely a few-particle system rather than a many-body sys-
tem. Recent works [18,31–33] indicate a growing awareness
of repeated measurements piercing unitary evolution, such
experiments being based on single-photon or coherent-laser
pulses. The ring model with six sites has been implemented
in [32]. Reference [18] nicely demonstrated the effects of
repeated local measurements on unitary dynamics, similar
to the projective measurement under study here. Therefore,
with the techniques of single-atom and single-site imaging,
or single-photon and coherent-laser-pulse platforms, or even
other approaches mentioned in Ref. [34], the theory developed
here could be tested via these discrete-time quantum dynamics
setups.

We hope that others will elaborate more on this theme, as
many open questions remain to be explored. For example,
are the observed effects discussed here relevant to other
measurement protocols? In the limit of small sampling time
τ , Dhar et al. [11] showed that the repeated measurement
protocol is equivalent to the well-known non-Hermitian [35]
description of leaking, i.e., non-norm-conserving systems.
The latter approach is used extensively in quantum optics
[36], where the radiative decay rate plays the role of 1/τ ,
while in other systems the non-Hermitian dynamics is related
to a sink term, e.g., in light-harvesting systems [37]. Our
preliminary results in this direction show that the Zeno limit
of the current work is well suited to describe non-Hermitian
dynamics. Second, what is the effect of disorder? If the
disorder is static, localization plays an important role. Then
overlaps of energy states with localized measurement are
typically small, leading to what we termed “small charge”
(however here we have more than one small charge). In this
case the zeros zi are random, and further work is needed
to evaluate their distribution. However, the basic formalism,
especially the weak-charge limit, is expected to be of value
also in this direction. Many other topics remain to be explored,
like the effects of weak measurements [38] or coupling to the
environment [39–41], or random sampling times [8] on the
quantum return time. The last one could modify the effects
discussed here within the two- and three-charge theories,
since these effects are related to partial revivals of the wave
packet. In contrast the physics of weak charges is expected
to be more robust to changes in the protocol of measurement,

since weak overlaps imply small probability of recording the
particle.

To summarize, our classification describes rich physics.
Based on the stroboscopic measurement protocol, the inves-
tigation of the statistics of first detected return times shows
that the mean 〈n〉 is equal to the winding number w [1],
its value fixed apart from exceptional parameter values. In
contrast, the variance exhibits rich physical behaviors. It
diverges whenever the winding number changes. Our theory is
based on four layers: single-charge theory where the variance
is sensitive to the background charges Eq. (22), two-charge
theory describing the variance when two phases merge on the
unit circle and the variance is insensitive to the background
charges Eq. (24), triple-charge theory where a dimer is found
to describe two zeros in the vicinity of the unit circle Eq. (28),
and finally a bound for the Zeno regime Eq. (31), a many-
charge scenario, in which we also provide a time-energy
uncertainty relation Eq. (32). The latter exploits the fact that
the return time is fluctuating, while in the standard uncertainty
relation �E�t > h̄, �t is actually fixed. Further it provides
a relation that relates uncertainty to the topology; i.e., the
winding number w enters in our relation.
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APPENDIX A: WINDING NUMBER

Here we provide a topological interpretation for the mean
of n: winding number, and an alternative derivation for the
quantization of 〈n〉. As mentioned above, the mean of n is
equal to the winding number of φ̃(eiω ) with −π � ω � π :

〈n〉 = (−i)∂ϕF̃ (ϕ)|ϕ=0 =
[

1

2π i

∫ π

−π

∂ϕ

φ̃(ei(ω+ϕ) )

φ̃(eiω )
dω

]
ϕ=0

=
[

1

2π i

∫ π

−π

∂ϕei[ f (ω+ϕ)− f (ω)] dω

]
ϕ=0

= 1

2π

∫ π

−π

∂ω f dω.

(A1)

Here we use the property |φ̃(eiω )| = 1 so that we can write as
φ̃(eiω ) = ei f (ω). This equation represents “winding” behaviors
of the generating function with z on the unit circle in the
complex plane. From the spectral decomposition Eq. (7),
using the identity 1/[exp(ix) − 1] = [−1 − i cot(x/2)]/2, we
get

f (ω) = 2 ArcTan

[
w∑
k

pk cot
Ekτ − ω

2

]
. (A2)

We use below the standard domain of the principle value of
−π/2 < ArcTan(x) < π/2. Note that there exists a unique
ωk = Ēkτ such that cot[(Ekτ ∓ ε − ωk )/2] → ∓∞ for
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ε → 0+. Using ArcTan[±∞] = ±π/2 we notice that in the
small vicinity of ωk = Ēkτ ,

lim
ε→0

[ f (Ēkτ + ε) − f (Ēkτ − ε)] = −2π, (A3)

provided that pk �= 0. We see that on ωk , f (ω) experiences a
jump of size 2π , so clearly in this representation f (ω) is not
smooth in [−π, π ]. Since in Eq. (A1) we take a derivative of
f (ω) the formula must be treated with some care. We perform
the integral by parts:

〈n〉 = w = 1

2π
lim
ε→0

[∫ Ē1τ−ε

−π

∂ω f dω +
∫ Ē2τ−ε

Ē1τ+ε

∂ω f dω + · · ·
∫ π

Ēwτ+ε

∂ω f dω

]

= 1

2π
lim
ε→0

[ f (Ē1τ − ε) − f (−π ) + f (Ē2τ − ε) − f (Ē1τ + ε) + · · · + f (π ) − f (Ēwτ + ε)]. (A4)

Note that f (−π ) − f (π ) = 0 and using Eq. (A3) we see that
〈n〉 = w.

APPENDIX B: PERTURBATION METHOD

We now determine the fluctuations of n for the different
classification schemes discussed in the text, namely single-
charge theory, pair-of-charge theory, etc. Using Eq. (19) or
equivalently the first line in Eq. (8), the zeros are given by

w∑
k=1

pk

∏
j �=k

(eiEjτ − zi ) = 0. (B1)

We will also apply the perturbation method to this equation
for simplicity in calculation.

1. Single-charge theory

This case, as mentioned in the main text, is set with one
effective weak charge p0 
 1; the corresponding energy is
E0 = 0. From the force balance F (z) = 0, Eq. (19), we find

0 = p0

1 − z
+

∑
k

′ pk

eiEkτ − z
, (B2)

where �′ means summation over all k except for k = 0.
Assuming that zs ∼ 1 − ε, we find in leading order

0 = p0

ε
−

∑
k

′ pk

1 − eiEkτ
, (B3)

which yields

ε ∼ pk∑′
k pk/(1 − eiEkτ )

. (B4)

Alternatively, we can plug the ansatz zs ∼ 1 − ε into Eq. (B1)
to obtain

0 = p0 − ε
∑

k

′ pk

1 − eiEkτ
, (B5)

which gives the same result. From here the results Eqs. (21)
and (22) follow.

2. Pair of charges

When a pair of charges is nearly merging, say exp(iE1τ ) 	
exp(iE2τ ), a zero denoted zp will approach the unit cir-
cle in the vicinity of the charges; see schematic Fig. 2(b).
For simplicity, as mentioned in the text, we assign the

zero energy (E1 + E2)/2 = 0, then rewrite exp(iE1τ ) =
exp(−iδ), exp(iE2τ ) = exp(iδ), and δ 
 1 is the small pa-
rameter of the problem. Note that 2δ = Ē2τ − Ē1τ . Inserting
zp = 1 − C1δ − C2δ

2 into Eq. (B1) and regrouping the δ, δ2

terms, we find

0 = [(p1 + p2)C1 + i(p1 − p2)]A1,2δ

+
{[

(p1 + p2)C2 − p1 + p2

2

]
A1,2

+
∑
j �=1,2

p j
(
1 + C2

1

)
Bj,1,2

⎫⎬
⎭δ2 + O(δ3), (B6)

where

A1,2 =
∏

k �=1,2

(eiEkτ − 1), Bj,1,2 =
∏

k �= j,1,2

(eiEkτ − 1). (B7)

Solving Eq. (B6), we get

C1 = −i
p1 − p2

p1 + p2
, C2 = 1

2
− 4p1 p2

(p1 + p2)3

∑
j �=1,2

p j

eiEjτ − 1
.

(B8)

Then with some further algebra we get Eqs. (23) and (24).

3. Triple-charge theory

To start with the calculation, we reduce the number of free
parameters. We consider the symmetric case first; namely, the
three energy levels are assigned as E0, E± = ±E . When the
corresponding phases are merging, we rewrite eiE±τ = e±iδ .
These charges imply that two zeros can be found close to
the unit circle zσ

d with σ = ±; see the schematics in Fig. 7.
Inserting the expansion zσ

d = 1 − Aσ δ − Bσ δ2 into Eq. (B1)
we find to third order in δ

Aσ = −iσ
√

p0

p0 + 2p
,

Bσ = B = p0 + p

2(p0 + 2p)
− p

(p0 + 2p)2

∑′ p j

eiEjτ − 1
, (B9)

where the primed sum excludes the three charges indices.
Hence,∣∣zσ

d

∣∣2 = |1 − Aσ δ − Bδ2|2 = 1 − p

(p0 + 2p)2
δ2 � 1.

(B10)
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FIG. 7. Three merging charges on the unit circle create a dimer:
two zeros denoted z±

d .

Recall the off-diagonal term M in Eq. (27); substituting
zσ

d = 1 − Aσ δ − Bδ2 into it yields

M
∣∣
δ→0+ = 2

[
−2 + 1

1 − z+
d (z−

d )∗
+ 1

1 − (z+
d )∗z−

d

]
δ→0+

= −4 + 2

[
1

(B + B∗ − A2+)δ2 + 2A+δ
+ c.c.

]
δ→0+

= −3 + B + B∗

|A+|2 = −2 + p

p0(p0 + 2p)
, (B11)

which is finite as mentioned. Therefore, we can indeed neglect
M in Eq. (27) as |τ (Ē1 − Ē2)| → 0. Then plugging Eq. (B10)
into Eq. (27) yields Eq. (28).

4. Zeno regime

We investigate the Zeno regime, where τ is small though
finite, seeking a lower bound for the fluctuations. We can
generally rewrite the second line in Eq. (17) as

Var(n) =
w−1∑

j,k

V jk, (B12)

where

V jk = z jz∗
k

1 − z jz∗
k

+ z∗
j zk

1 − z∗
j zk

. (B13)

Let z j = r jeiθ j and then

V jk = −1 + 1 − r2
j r

2
k

1 + r2
j r

2
k − 2r jrk cos �θ jk

, (B14)

where �θ jk = |θ j − θk|. As presented in Fig. 8, we have
the bounds cos(�Emτ/2) � r j < 1, 0 � �θ jk < �Emτ , with
�Em = Emax − Emin, and Emax or Emin is the maximum or
minimum of the discrete energy levels. Recall that we con-
sider finite systems where the spectrum is bounded, energy
levels are discrete, and hence 〈n〉 = w finite. For the diagonal
terms, namely when j = k, every element

V j j �
2r2

j

1 − r2
j

∣∣∣∣
r2

j =cos2(�Emτ/2)

= 2 cot2(�Emτ/2), (B15)

FIG. 8. In the limit of small τ the charges on the unit circle will
coalesce. As shown the zeros are within a convex hull whose vertices
are the charges. When τ → 0 these zeros will approach the unit circle
and thus the fluctuations of n are large. The calculation of the zeros,
while a possibility for small systems with numerics, is nontrivial
since we are dealing with a many-charge theory. Still we can obtain
a useful bound for the fluctuations using geometrical arguments.

and for the off-diagonal terms ( j �= k),

V jk > −1, (B16)

since the second term on the right-hand side of Eq. (B14) is
always positive. Thus the sum is bounded as

Var(n) =
w−1∑

j,k

V jk > 2(w − 1) cot2(�Emτ/2)

− (w − 1)(w − 2), (B17)

which is Eq. (31).

APPENDIX C: DETAILS ON THE EXAMPLES

1. Interacting two-boson model

Two bosons in a Josephson tunneling junction, governed by
the Hamiltonian Eq. (25), are our first example. We focus here
on the quantum return problem of |ψin〉 = |2, 0〉; namely, we
consider a detector that records two particles on the left (other
measurements are of course possible and they will be treated
elsewhere). The energy levels of this system are

E0 = 3U −
√

U 2 + J2, E1 = 4U,

E2 = 3U +
√

U 2 + J2. (C1)

The subscript 1 or 2 means the first or second excited state.
Since there are three energy levels here, the average of n is
〈n〉 = w = 3, except for special τ ’s, U ’s, and J’s; see details
below. As shown in Fig. 3 we investigate Var(n) varying
the on-site interacting energy U (while τ, J are fixed). In
this example we find that when U becomes large one of the
overlaps approaches zero (one-charge theory) but at the same
time two charges merge (two-charge theory), so we have two
effects taking place at the same time.

Specifically, exp(iE1τ ) = exp(iE2τ ) when U =
J2τ/4πk − πk/τ when k = 1, 2, . . . and notice that
this merging may take place only when Jτ > 2π

(we consider only U > 0). The merging of two
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FIG. 9. The overlaps pj versus interacting strength U for the
interacting two-boson model with J = 1. The green curve represents
p0, and the blue and red ones are p1 and p2. As shown, p0 decays
along with the increase of U . When U is large, p0 is almost 0, while
p1, p2 are finite.

other phases exp(iE1τ ) = exp(iE0τ ) happens when
U = −J2τ/4πk + πk/τ . Finally, exp(iE2τ ) = exp(iE0τ )
will merge when U =

√
π2k2/τ 2 − J2. Since we choose

J = 1, τ = 3 only the last two cases are relevant in Fig. 3 in
the main text. Note that the overlaps of |Ej〉 with |2, 0〉 are
also parameterized by U, J:

p0 = J2

4
√

U 2 + J2(
√

U 2 + J2 + U )
, p1 = 1/2,

p2 = J2

4
√

U 2 + J2(
√

U 2 + J2 − U )
. (C2)

We plot the overlaps p j changing with U , as shown in Fig. 9.
So as mentioned in the main text we also have one-charge
dominance here. The critical U ’s give |E1 − E0|τ = 2πk or
|E2 − E0|τ = 2πk, and these are described by the single-
charge theory, Eq. (22). Note that when U becomes very large,
E1 	 E2, as mentioned in the main text. This leads to large
fluctuations of n coming from two sources: two phases are
merging on the unit circle, together with single charge effects
since p0 is also small. Thus the final approximation is the sum
of Eq. (22) and Eq. (24), namely,

Var(n) ∼ 1 + {∑
j=1,2 p j cot[(Ej − E0)τ/2]

}2

2 p0

+ 2
(p1 + p2)3

p1 p2

1

τ 2(Ē1 − Ē2)2
. (C3)

In Fig. 3 we show that the approximation perfectly matches
the exact results when U is large.

2. The eight-site ring

The Hamiltonian of the eight-site ring model, Eq. (26),
gives the energy levels Ek = 2 − 2 cos(πk/4), i.e., E0 =
0, EI = E1 = E7 = 2 − √

2, EII = E2 = E6 = 2, EIII = E3 =
E5 = 2 + √

2, and EIV = E4 = 4 when γ = 1. So here as
mentioned, 〈n〉 = w = 5 except for special sampling times
given by τ = π j/2, 2π j/(2 + √

2), π j/
√

2, π j,
√

2π j, and

2π j/(2 − √
2) with j an integer. The corresponding eigen-

states are

|Ek〉 =
7∑

x=0

eiπxk/4|x〉/2
√

2; (C4)

hence, |〈ψin|Ek〉|2 = 1/8 with k = 0, 1, . . . , 7. However, we
have a degeneracy so we define p0 = pIV = 1/8, pI = 1/4,
pII = 1/4, pIII = 1/4. Thus on the unit circle we have five
charges: two with charge 1/8 and three with charge 1/4; these
merge for the mentioned special sampling times τ .

We now explain how to get the approximations presented
in Fig. 4(f), for which we find Var(n) close to resonances.

(1) When τ is equal to π , 2π , or
√

2π there are only
three phases on the unit circle. Hence close to these sampling
times we get the blowup of Var(n). Specifically in these cases
(e0, ei2τ , ei4τ ) and (ei(2−√

2)τ , ei2τ , ei(2+√
2)τ ) merge. Hence in

this case we use the triple-charge theory Eq. (28). These cases
are the peaks colored in green in Fig. 4(f).

For the first case, consider τ 	 π ; the parameters in
Eq. (28) are p0 = p2,6 = 1/4, p = 1/8, so Var(n) ∼ 2/(π −
τ )2, while when τ 	 2π we get Var(n) ∼ 2/(2π − τ )2. The
configurations of charges and zeros are shown in Figs. 4(a)–
4(d). For the case τ 	 √

2π with p0 = p = 1/4, Var(n) ∼
9/[2(

√
2π − τ )2].

(2) When τ 	 2π j/(2 + √
2) with j = 1, 2, 3, we have

two zeros separately approaching the unit circle as we have
two couples of phases or charges merging on the unit circle.
These correspond to the three blue peaks in Fig. 4(f). Using
Eq. (24) we find the approximation Var(n) ∼ 27/{4[2π j −
(2 + √

2)τ ]2}. Here the contributions from the two zeros add
up. We use j = 1, 2, 3 since we consider τ in the interval
(0, 2π ); see Fig. 4.

(3) When τ 	 π/2, π/
√

2, 3π/2, we have the two-charge
theory, namely one zero approaching the unit circle Eq. (24);
these correspond to the three peaks colored in pink in
Fig. 4(f). We find the corresponding approximations Var(n) ∼
1/[8(π/2 − τ )2], Var(n) ∼ 1/[2(π/

√
2 − τ )2], and Var(n) ∼

1/[8(3π/2 − τ )2], respectively.
(4) When τ 	 0, namely in the Zeno regime, we apply

Eq. (31), which gives Var(n) > 8 cot2(2τ ) − 12 as a lower
bound.

All this information is presented Fig. 4(f) perfectly match-
ing the exact solution.

3. Symmetry breaking in a ring system with defect

The final example in the main text is governed by the
Hamiltonian Eq. (29). The defect will increase the original
energy levels of the clean system. As mentioned, the defect re-
moves the degeneracy of the system. For �ξ = 0 the number
of distinct energy levels is four while when �ξ �= 0 we have
six levels. Figure 10(a) shows the influences of the defect on
the energy levels.

In the following we consider the mean of n and its
fluctuations for three different cases: first when the initial
state is |ψin〉 = |0〉 (namely on the defect) and then when
|ψin〉 = |1〉 (the nearest neighbor), |ψin〉 = |3〉 (the oppo-
site); see Fig. 5 for notations. Figures 10(b) and 10(c) de-
scribe the corresponding overlaps pk as a function of the
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FIG. 10. (a) The energy levels, (b)–(d) the overlaps pk of eigenstates {|Ek〉} and the detected state versus the defect strength �ξ for six-site
ring with one defect. See Fig. 5 for notations and schematics of this system. Here γ in Eq. (29) is set to 1, and �ξ ranges from 0 to 50. (b) When
the detector is set at site x = 0, where the defect is located; (c) when the detected or initial state is |1〉, the neighbor of the defect; (d) when the
state |3〉 is the target. Notice the color coding, e.g., color blue for an energy level and the same color for the corresponding overlap. See further
details in the text.

defect �ξ , and Fig. 6 gives the fluctuations of n versus
�ξ , from which one finds gigantic variance around some
special �ξ . Due to symmetry breaking the return time is not
translation-invariant.

As mentioned, with the introduction of the defect at site
x = 0, the degenerate energy levels of the original clean
system split. For the “perfect” six-site ring, i.e., �ξ =
0, E (k) = −2γ cos(πk/3) with k = 0, 1, 2, 3, 4, 5, so there
are four energy levels −2γ (1),−γ (2), γ (2), 2γ (1), and the
numbers in parentheses are degeneracies. With the defect,
we have six nondegenerate energy levels. To determine the
winding number w we need to find the number of dis-
tinct energy levels whose overlaps with the detected state
are not zero. We notice that two exact solutions to |H −
λI| = 0 of the Hamiltonian Eq. (29) are γ ,−γ , and the
corresponding eigenvectors are {0, 1/2,−1/2, 0, 1/2,−1/2},
{0,−1/2,−1/2, 0, 1/2, 1/2}, which indicates one property of
the model: reflection symmetry. Therefore, when the detected
state is |0〉 or |3〉, owing to the vanished charges or overlaps
p(γ ), p(−γ ), the mean of n or the winding number is 4, the
same as the perfect ring. This is valid for nearly any �ξ ; the
exceptions are singular points where two phases of the prob-
lem merge. Specifically, for the former case |ψin〉 = |0〉, there
are three weak charges, and one strong charge corresponding
to the largest energy, as �ξ becomes large; see Fig. 10(b).
Then there are three zeros close to the three weak charges,
making dominant contributions to the variance. The final
approximation is the summation of all three 2|zi|2/(1 − |zi|2),

or Eq. (22):

Var(n) ∼
∑

k=1,3,5

1

2pk
(1 + {p6 cot[(E6 − Ek )τ/2]}2). (C5)

Here the indices are from sorting energy levels from small
to larger; i.e., E1 is the ground energy, p1 is the overlap of
its eigenstate with |0〉. Inside the bracket, we only use the
charge p6, the strong charge, since other pk (k = 1, 3, 5, p2 =
p4 = 0) are small and not merging with one another under
our case, making nonsignificant contributions. For the latter
case, where the target is |3〉, we have simply one weak charge,
corresponding to the largest energy, when �ξ becomes large.
This is easy to understand, since its eigenvector has a large
overlap with |0〉; the other overlaps with other position states
should be effectively small. As a result, applying Eq. (22)
gives a perfect asymptotic description for the fluctuations of
n in Fig. 6(c). Note that all the peaks in the variance figures
for the two cases are caused by the merging of weak charge(s)
and strong charge(s), when the winding number is reduced
by 1.

When the initial state is |1〉, we have a different behavior.
And this is because the location of the detector breaks the
reflection symmetry of the system. We have six charges on
the unit circle as long as �ξ > 0. This means that when
�ξ changes from zero to be positive, there is a jump of the
winding number from 4 to 6, around which we find enormous
variance of n as expected. Here we apply the two-charge
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theory to two pairs of charges merging at different locations,
which gives us an excellent agreement between exact solution
and our theory [see Fig. 6(b)]. Furthermore, from Fig. 10(c),
we see that depending on the value of �ξ we have different
small charges (red line when �ξ 	 √

2 and blue when �ξ �

1). Notice that the charge represented by the red line decreases
to 0 when �ξ = √

2, leading to w = 5 at this critical value.
Thus we sum over the contributions of both dominating zeros
to provide an approximation. The global asymptotic formula
is

Var(n) ∼ 1

2p5

⎧⎨
⎩1 +

⎡
⎣ 6∑

k=1,k �=5

pk cot[(Ek − E5)τ/2]

⎤
⎦2⎫⎬

⎭ + 1

2p6

⎧⎨
⎩1 +

[
5∑

k=1

pk cot[(Ek − E6)τ/2]

]2
⎫⎬
⎭

+ 2
(p2 + p3)2

p2 p3

1

τ 2(Ē2 − Ē3)2
+ 2

(p4 + p5)2

p4 p5

1

τ 2(Ē4 − Ē5)2
. (C6)

See the matching in Fig. 6(b). Note that the clusters of five peaks in the variance of n are due to the merging of the weak charge
of the largest energy and the other five charges.
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