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Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks:
Role of network spectral radius
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A common difficulty in applications of machine learning is the lack of any general principle for guiding
the choices of key parameters of the underlying neural network. Focusing on a class of recurrent neural
networks—reservoir computing systems, which have recently been exploited for model-free prediction of
nonlinear dynamical systems—we uncover a surprising phenomenon: the emergence of an interval in the spectral
radius of the neural network in which the prediction error is minimized. In a three-dimensional representation
of the error versus the time and spectral radius, the interval corresponds to the bottom region of a “valley.”
Such a valley arises for a variety of spatiotemporal dynamical systems described by nonlinear partial differential
equations, regardless of the structure and the edge-weight distribution of the underlying reservoir network. We
also find that, while the particular location and size of the valley depend on the details of the target system to be
predicted, the interval tends to be larger for undirected than for directed networks. The valley phenomenon can
be beneficial to the design of optimal reservoir computing, representing a small step forward in understanding
these machine-learning systems.
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I. INTRODUCTION

Recent years have witnessed a growing interest in ex-
ploiting machine-learning algorithms for predicting the state
evolution of nonlinear dynamical systems [1–10]. Reservoir
computing, a form of echo state [11,12] or liquid state [13]
machines that are fundamentally recurrent neural networks,
stands out as a viable paradigm for model-free, data-based
prediction of chaotic systems [3–6,9,14]. A general reservoir
computing scheme consists of an input layer, a reservoir
that is a high-dimensional or networked neural dynamical
system, and an output layer. The input layer maps the given,
low-dimensional time series or sequential data into the high-
dimensional phase space of the reservoir network, and the
output layer maps the evolution of the high-dimensional dy-
namical variables of the reservoir back into low-dimensional
time series as readout. During the training phase, the output is
compared with the original input data from the target system,
and parameters of the output layer are tuned to minimize
the difference. A properly trained reservoir-computing system
without any input is itself a dynamical system whose evolution
from a given set of initial conditions represents the prediction
of the state evolution of the target system from that partic-
ular initial-condition set. Since the high-dimensional neural
network system constituting the reservoir is predetermined
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and fixed, learning can be accomplished rapidly with high
efficiencies and at a low cost. Physically, reservoir computing
can be realized electronically with time-delay autonomous
Boolean systems [1] or implemented using high-speed pho-
tonic devices [2].

There are two types of parameters in reservoir computing
or in machine learning in general: a predefined, fixed set
of parameters and a set of tunable parameters whose values
are determined through the training or learning process. For
convenience, we call the former free parameters and the
latter learning parameters. An extremely challenging issue in
machine learning is the lack of general rules or criteria for
selecting the predefined parameters. The common practice is
mostly a random, brute-force type of trial-and-error process to
determine the parameter values. Because of the vast complex-
ity of the neural network dynamics associated with machine
learning, to develop any general and systematic approach to
choosing the predefined parameters has remained an outstand-
ing problem, with little possibility of viable solutions in sight.

In this paper, we report a general phenomenon associated
with reservoir computing as applied to model-free and data-
based prediction of nonlinear dynamical systems, which can
be used to guide the choice of the core component of the
neural computing system: the high-dimensional dynamical
backbone neural network constituting the reservoir. To be as
general as possible, we assume that the reservoir is described
by a complex weighted network. Because of the large size of
the network, a vastly large number of predefined parameters
(and properties) will then need to be determined, such as the
network topology, the average degree, the network size, and
the edge weights, making any systematic selection of these
parameters/properties a practically impossible task. To make
our study feasible, we consider both directed and undirected
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topology and fixed the network structure, leaving only the
edge weights as the set of free parameters. Even then, the
number of possible parameter choices is enormous. Quite
surprisingly, we find that, in spite of the large number of free
parameters, the one that is key to the success of reservoir
computing is the spectral radius of the complex neural net-
work. In particular, we find that there exists an interval of the
values of the network spectral radius within which the training
error associated with reservoir computing is minimized. In a
three-dimensional plot of the error versus the time and spectral
radius, a valleylike structure with a flat bottom of finite size
with near-zero error emerges. This means that, regardless of
the network details, insofar as its spectral radius is chosen
from the valley region, model-free prediction with reservoir
computing can be guaranteed. We establish this result through
a number of nonlinear dynamical systems arising from dif-
ferent physical contexts: spatiotemporal systems described by
the nonlinear Schrödinger equation (NLSE), the Kuramoto
Sivashinsky equation (KSE), and the one-dimensional (1D)
complex Ginzburg-Landau equation (CGLE). Considering
that general phenomena for guiding the choices of parameter
values are rare in the machine learning literature, our finding
is encouraging and may stimulate further efforts in searching
for common principles underlying the working of machine
learning not only in reservoir computing but also beyond.

II. RESERVOIR COMPUTING

There are two major types of reservoir computing systems:
echo state networks (ESNs) [11] and liquid state machines
(LSMs) [13]. The architecture of an ESN is one that is as-
sociated with supervised learning underlying recurrent neural
networks. The basic principle of ESNs is to drive a large neu-
ral network of a random or complex topology—the reservoir
network—with the input signal. Each neuron in the network
generates a nonlinear response signal. Linearly combining all
the response signals with a set of trainable parameters yields
the output signal. As for ESNs, an LSM is also a random or
complex network of neurons, with the difference being that
each neuron receives not only an external input signal but also
signals from other neurons in the network. The networked sys-
tem is thus effectively a spatiotemporal nonlinear dynamical
system, where trainable, linearly discriminant units are used
to map the spatiotemporal patterns of the network into proper
output signals. Structurewise, LSMs are more complicated
than ESNs.

For simplicity, we focus on ESNs. A schematic of a typical
ESN is shown in Fig. 1, where the reservoir computing ma-
chine consists of three components: (i) an input subsystem that
maps the low-dimensional (say M) input signal into a (high)
N-dimensional signal through the weighted N × M matrix
WIR; (ii) the reservoir network of N neurons characterized
by Wres, a weighted network matrix of dimension N × N ;
and (iii) an output subsystem that converts the N-dimensional
signal from the reservoir network into an L-dimensional signal
through the output weighted matrix WRO, where L ∼ M � N .
In Fig. 1, the three components are denoted I, R, and O,
respectively.

The working of an ESN can be described as follows. As
shown in Fig. 1, the training phase is represented by the blue

R OI

Predicting phase, feedback loop

FIG. 1. Basic structure of reservoir computing. The left blue box
represents an input subsystem that maps the M-dimensional input
data to a vector of much higher dimension N , where N � M. The
blue circle in the middle denotes the reservoir system, which can be,
for example, a complex neural network of N interconnected neurons,
whose connection structure is characterized by the N × N weighted
matrix Wres. The dynamical state of the ith neuron in the reservoir
is ri. The blue box on the right represents the output module, which
converts the N-dimensional state vector of the reservoir network into
an L-dimensional output vector, where N � L. The mapping from
the input module to the reservoir is described by the N × M weighted
matrix WIR, and that from the reservoir to the output module by the
L × N weighted matrix WRO. During the training phase, the three
blue boxes are activated. In this case, the whole computing device is
effectively a nonlinear dynamical system with external input. In the
prediction phase, the external input is cut off and the output data are
directly fed back to the reservoir (green box), so the system is one
without any external driving.

blocks. The input multidimensional data have the dimension
M × Nt , where M is the dimension of the input data vector
u(t ) at time t and Nt is the number of time steps used in the
training phase: t = 0, dt, 2dt, . . . , (Nt − 1)dt . The input data
vector to the reservoir network is WIR · u(t ). The values of
the elements in WIR are obtained from a uniform distribution
in [−α, α]. Every neuron in the reservoir receives one com-
ponent of the input data vector to the reservoir. Typically, the
reservoir is a large, sparse, directed or undirected random net-
work with average degree k, which is described by a weighted
adjacency matrix Wres, whose largest absolute eigenvalue is
the network spectral radius ρ. For a given value of ρ, we
choose the values of all the elements of Wres randomly from a
uniform distribution [U (0, 1)] and rescale all the values so that
its largest eigenvalue is ρ. The state of the whole reservoir at
time t is an N-dimensional vector r(t ), where each dimension
represents the dynamical state of an individual node. For the
ith node, its state is denoted ri(t ). The initial state of the
reservoir is r(0) = 0. The state of the reservoir is updated at
every time step dt according to

r(t + dt ) = f (Wres · r(t ) + WIR · u(t )), (1)
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where f is a function that activates every element in the
reservoir state vector, a typical choice of which is the tanh
function. After evolving Eq. (1) for all the time steps in u, we
get an N × (Nt + 1)-dimensional matrix of the reservoir state
r. We disregard the first S steps of the reservoir as transients.
Since the activation function tanh is odd, it is necessary [6]
to normalize the vector r by taking the squares of its even
elements. This leads to a new state vector r′. All the training
is done with respect to the normalized reservoir state vector
r′ and the output vector v, which updates the output matrix
WRO. The training phase is completed when the output L × N
matrix WRO has been determined.

The output matrix WRO can be calculated using the regres-
sion scheme that minimizes the loss function,

L =
Nt∑

t=d+1

‖v(t ) − WROr′(t )‖ + �‖WRO‖2, (2)

where ‖WRO‖2 is the sum of squared elements of WRO.
The parameter � is a small positive regularization constant
introduced for preventing overfitting by imposing a penalty
on large values of the fitting parameters. The regularized
regression can be described as

WRO = v · r′T · (r′ · r′T + �I)−1. (3)

There are two types of strategies to set the initial state
of the reservoir network. One can simply continue from the
training phase to predict the system, i.e., one continues to use
the reservoir state at the final time step of the training phase for
prediction, entailing a “warm start” of the prediction phase.
Alternatively, one can start the prediction from a different data
set, where the initial reservoir state is an N-dimensional zero
vector. For a number of time steps at the beginning of the
prediction phase, one uses the true state u of the system in
Eq. (1) to drive the reservoir to a functioning state. This is
essentially a “cold start” strategy.

After a warm or a cold start, the dynamical state of the
reservoir has been activated. With the WRO matrix determined
during the training phase, the output of the reservoir is given
by

v(t − dt ) = WRO · r′(t ), (4)

where r′(t ) has been updated from r(t ) with the elements in
the even rows squared. After obtaining v(t − dt ), one replaces
u(t ) with v(t − dt ) and the reservoir system can produce the
predicting time series continuously. This feedback process is
illustrated by the green block in Fig. 1.

In a recent work [6], ESNs have been applied to predict-
ing the dynamical state of the spatially extended KSE in
the chaotic regime. It was demonstrated that, with properly
chosen parameters, an ESN can predict the dynamical states
of the KSE in the entire spatial domain for several Lyapunov
time.

III. FUNDAMENTAL ROLE OF THE SPECTRAL RADIUS
OF THE RESERVOIR NETWORK IN PREDICTING

SPATIOTEMPORAL DYNAMICAL SYSTEMS

We demonstrate that the spectral radius of the reservoir
complex network plays a fundamental role in achieving suc-
cessful prediction. We substantiate this finding through a
number of spatiotemporal dynamical systems arising from
physics: the NLSE, the KSE, and the CGLE.

A. Nonlinear Schrödinger equation

The NLSE has been a paradigm to study nonlinear wave
propagation in fields such as optics and hydrodynamics [15].
Among the analytic solutions of the NLSE are physically
significant phenomena such as “breathers,” “solitons,” and
rogue waves in a finite background that has been experi-
mentally observed in nonlinear fiber optics [16–18]. To be
concrete, we investigate the feasibility of exploiting reservoir
computing for predicting finite-background soliton solutions
in the NLSE, with a particular eye towards elucidating the role
of network spectral radius in the prediction.

The finite-background soliton solutions include Akhme-
diev breathers, Kuznetsov-Ma solitons, and Peregrine soli-
tons. We consider analytic solutions of the NLSE representing
Akhmediev breathers and Kuznetsov-Ma solitons. The dimen-
sionless NLSE reads

i
∂ψ

∂x
+ 1

2

∂2ψ

∂t2
+ |ψ |2ψ = 0, (5)

where the envelope ψ (x, t ) is a function of the propagation
distance x and comoving time t . The analytic solution of the
NLSE describing general modulation instabilities in optics
was first obtained in Ref. [19] and is given by

ψ (x, t ) = eix

[
1 + 2(1 − 2a) cosh(bx) + ib sinh(bx)√

a cos(ωt ) − cosh(bx)

]
, (6)

where b = √
8a(1 − 2a), ω = √

2(1 − 2a), and the positive
parameter a determines the physical properties of the so-
lution. For example, for a = 0.25, the solution corresponds
to Akhmediev breathers, and for a = 0.7, Kuznetsov-Ma
solitons arise. To generate the true data from Akhmediev
breathers, we set x ∈ [−π, π ] and discretize the space into
64 lattice points. The spatial step size is dx = 2π/63 and the
time step is dt = π/100. To generate the true Kuznetsov-Ma
soliton data, we set T ∈ [−π, π ] and employ the same spa-
tial discretization scheme. Note that, physically, Akhmediev
breathers and Kuznetsov-Ma solitons are qualitatively similar
through an exchange of the time and space variables.

We also test a more complicated type of wave patterns,
those generated by the collision of two solitons [20,21], where
the corresponding solution can be obtained as the nonlinear
superposition of two first-order Akhmediev breathers for 0 <

a1, a2 < 0.5,

ψ12(x, t ) = ψ0 + 2(l∗
1 − l1)s1r∗

1

|r1|2 + |s1|2 + 2(l∗
2 − l2)s12r∗

12

|r12|2 + |s12|2 , (7)

where l1 = i
√

2a1, l2 = i
√

2a2, and ∗ represents the complex
conjugate. (A complete expression of solution is presented in
Appendix D.) To generate the data for the soliton collision
wave pattern, we again set x ∈ [−π, π ] and discretize the
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FIG. 2. Using reservoir computing to predict Akhmediev breathers and the emergence of an optimal interval in the spectral radius. (a) For
spectral radius ρ = 1.5, a successful case of prediction of Akhmediev breathers, where the top panel shows the time evolution of the true
solution, the middle panel displays the predicted solution from reservoir computing after training, and the bottom panel depicts the difference
between the true and the predicted solutions. The color bar indicates the scale of the spatiotemporal wave magnitude |ψ (x, t )|. (b) For 0 < ρ �
2 (ordinate), time evolution of the ensemble-averaged RMSE, denoted 〈RMSE〉, where, for each fixed value of ρ, 100 random realizations of
the reservoir system are used to calculate the average and the color bar indicates the scale of the 〈RMSE〉 values. (c) Three-dimensional view
of (b). The emergence of a valley interval in ρ with a minimized prediction error can be seen unequivocally in (b) and (c). (d) Detailed time
evolution of 〈RMSE〉 for four specific values of ρ with standard deviation. (More quantitative details can be found in Appendixes A and B.)
Other parameters of the reservoir-computing system are α = 1, N = 4992, k = 3, M = L = 64, Nt = 8010, S = 10, and � = 1 × 10−4.

space into 64 points. The time step is dt = π/40. For illustra-
tive purposes, we consider two parameter settings: (a1 = 0.14,
a2 = 0.34) and (a1 = 0.42, a2 = 0.18).

Figure 2 shows the results of using reservoir computing to
predict the spatiotemporal evolution of Akhmediev breathers
for a = 0.25. The dimension of the input data is 64; so is
that of the output data. The number of nodes (neurons) in
the reservoir network is chosen to be N = 4992 = 64 × 78,
so every dimension of the input data is connected with 78
neurons in the reservoir. We choose Nt = 8010 with the
transient time τ = 10, so the training phase contains approx-
imately 56 solitons. In the prediction phase, we choose the
“warm start” strategy to initiate the dynamical evolution of
the reservoir neural network. Figure 2(a) shows the results of
predicting 11 Akhmediev breathers over 1600 time steps (cor-
responding to t ≈ 50). We see that the occurrence in time of
approximately five solitons can be predicted with a relatively
small error.

To search for any possible general rule that can lead to pre-
diction success as exemplified in Fig. 2(a), we systematically
vary the value of the spectral radius ρ. Extensive tests reveal a
remarkable phenomenon: the emergence of an optimal inter-
val of the ρ values in which the prediction error is minimized,

as shown in Fig. 2(b), where the time evolution of the ensem-
ble average of the root mean square error (〈RMSE〉) between
true and predicted solutions for 0 < ρ � 2 is displayed. For
each fixed ρ value, we generate 100 reservoir systems with
random weights for WIR, where the reservoir network has a
random topology with randomly distributed edge weights (so
Wres is effectively a random matrix), and calculate 〈RMSE〉.
Figure 2(c) is a three-dimensional representation of Fig. 2(b),
where the existence of the optimal ρ interval with minimum
error can be identified: ρ ∈ [0.8, 1.6]. In fact, for ρ < 0.7, the
values of the error 〈RMSE〉 are dramatically large in compar-
ison with those in the valley. As the value of ρ is increased
from about 1.6, the error value grows approximately linearly.
Figure 2(d) shows the detailed time evolution of the error
〈RMSE〉 (with standard deviation) for ρ = 0.4, 0.8, 1.4, and 2,
where the case of ρ = 1.4 (in the valley) has near-zero values
of 〈RMSE〉 as well as near-zero standard deviations. The
results in Fig. 2 thus indicate that, insofar as the spectral radius
of the random reservoir network is chosen from the valley,
the reservoir system performs well for predicting Akhmediev
breathers, regardless of the network structure and edge-weight
distribution. (More detailed information about the behavior of
RMSE in this case can be found in Appendixes A and B.)

033056-4



MODEL-FREE PREDICTION OF SPATIOTEMPORAL … PHYSICAL REVIEW RESEARCH 1, 033056 (2019)

FIG. 3. Emergence of a valley in the prediction error versus the spectral radius of the reservoir network for predicting Kuznetsov-Ma
solitons and soliton collision in the NLSE. (a)–(c) True (upper panel) and predicted (middle panel) wave patterns as well as the difference
(lower panel) in wave function for Kuznetsov-Ma solitons: soliton collision for (a1 = 0.14, a2 = 0.34) and (a1 = 0.42, a2 = 0.18), respectively.
(d)–(f) Corresponding time evolution of the ensemble-averaged prediction error 〈RMSE〉 for systematically varying ρ values. For each fixed
ρ value, 100 random reservoir systems are used to calculate the average error and the color bar indicates the scale of the 〈RMSE〉 value. For
predicting the Kuznetsov-Ma solitons, if the value of ρ is chosen from the valley, then all realizations lead to near-zero errors (d). However, for
the case of predicting soliton collision, only about half of the realizations yield near-zero errors even when the value of ρ is chosen from the
valley (outside the valley, large errors arise for nearly all realizations). Other parameter values are N = 4992, k = 3, M = L = 64, Nt = 8010,
S = 10, � = 1 × 10−4, α = 1.0 for (a) and (d) and α = 3.0 for (b), (c), (e), and (f). Information about the standard deviation of 〈RMSE〉 can
be found in Appendixes A and B.

The existence of an optimal interval in the spectral radius
of the reservoir network also holds for Kuznetsov-Ma solitons
and colliding solitons. Specifically, Figs. 3(a) and 3(d) show
that a properly designed reservoir computing system can pre-
dict the solutions of the NLSE in the regime of Kuznetsov-Ma
solitons, where Fig. 3(d) reveals that the ensemble-averaged
error 〈RMSE〉 is minimized for ρ ∈ [1.98, 2.34]—the valley.
[Note that the ρ value of the reservoir network in Fig. 3(a)
is 1 with the minimum error in Fig. 3(d).] As the value of
ρ is decreased from the valley interval, the error on 〈RMSE〉
increases rapidly. However, 〈RMSE〉 tends to increase slowly
when the value of ρ is larger than the valley interval. While the
behaviors are similar to those in the prediction of Akhmediev
breathers, the locations of the valley interval for the two cases
are different, where for the regime of Kuznetsov-Ma solitons,
the valley occurs in a relatively larger interval of ρ values.

The results from predicting the patterns of colliding soli-
tons are shown in Figs. 3(b) and 3(c). While reservoir com-
puting is able to predict wave patterns, in this case there is
no guarantee that, for every random reservoir network with
a ρ value taken from the valley indicated in Figs. 3(e) and
3(f), prediction can be successful. For example, for ρ = 2.88,
about 50% of the cases can yield a good prediction result.
However, if the value of ρ is not chosen from the valley
interval, reservoir computing fails to make any meaningful
prediction. A similar behavior has been found for a different
case of colliding solitons. We note that, when predicting
Akhmediev breathers and Kuznetsov-Ma solitons, successful
prediction can be achieved for any random network whose
value of the spectral radius lies in the valley. The case of

colliding solitons in the NLSE is thus more unpredictable
than that of Akhmediev breathers and Kuznetsov-Ma solitons.
Nonetheless, in spite of the difficulty, the existence of a valley
interval leading to optimal prediction performance also holds
for the case of colliding solitons.

The solution of soliton collision in the NLSE represents a
difficult case where, as shown in Fig. 3, even for the optimal
value of the spectral radius, only about 50 of 100 ensemble
realizations lead to acceptable prediction results in terms of
both accuracy and time. The main reason is that the process
of soliton collision necessarily involves a possible change in
the “climate” of the dynamical state, as the two solitons can
bounce back from each other or merge [22]. In the case of
bouncing back, the feature or climate of the dynamical state of
the system remains unchanged before and after the collision.
In this case, the reservoir computing system is able to make
accurate predictions. In the latter case of merging, the state
climate has changed completely before and after the collision,
rendering inaccurate predictions, as the neural network was
mostly trained in the presence of two solitons.

B. Predicting spatiotemporal chaotic solutions
of the Kuramoto-Sivashinsky equation

We test reservoir-computing-based prediction of chaotic
solutions of the KSE (the original system that was used
to demonstrate the power of reservoir computing to predict
spatiotemporal chaotic systems [6]) and show the emergence
of a valley interval in the spectral radius of the reservoir
network with minimum prediction error. The KSE is a 1D
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FIG. 4. Emergence of a valley interval in the spectral radius of the reservoir network with minimum error for predicting spatiotemporal
chaotic solutions of the KSE. (a) An example of successful prediction for ρ = 0.1. Top panel: True spatiotemporal evolution of a typical
chaotic solution of the KSE. Middle panel: Predicted spatiotemporal evolution. Lower panel: Difference between the true and the predicted
solutions (true minus predicted). The color bar indicates the scale of u(x, t ). (b) Time evolution of ensemble-averaged RMSE (over 100
random realizations of the reservoir system) for systematically varying ρ values in the interval (0.0,2.0], where the color bar indicates the scale
of 〈RMSE〉. Note that the evolution time is represented as 
mt , where 
m ≈ 0.05 is the maximum Lyapunov exponent of the chaotic solution
and one unit of 
mt corresponds to one Lyapunov time. (c) Three-dimensional representation of 〈RMSE〉 in the (ρ,
mt ) plane, revealing the
emergence of a valley interval in ρ in which 〈RMSE〉 is minimized. (d) Time evolution of 〈RMSE〉 for four representative values of ρ with
standard deviations (more details are given in Appendix A). Among the four cases, the best prediction result is achieved for ρ = 0.1, where
the chaotic solution can be predicted with near-zero error for about five Lyapunov time. Other parameters of the reservoir computing system
are α = 1, N = 4992, k = 3, M = L = 64, Nt = 70 010, S = 10, and � = 1 × 10−4.

nonlinear PDE given by

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
, (8)

where u(x, t ) is a scalar field. We set the 1D spatial domain
to be x ∈ [0, 22]. To obtain the true solution u(x, t ), we
divide the spatial domain evenly using 64 grid points and
numerically solve the KSE with time step dt = 0.25. We thus
have 64 time series, one from each grid point. Due to the
chaotic nature of the KSE, even with reservoir computing
it is not possible to predict the behavior of u(x, t ) for a
relatively long time, and the demonstrated prediction horizon
is a few Lyapunov time [6], defined as 
mt , with 
m being
the largest Lyapunov exponent of the chaotic solution. An
example of successful prediction for about five Lyapunov time
is shown in Fig. 4(a), where the value of RMSE is smaller
than 0.5. Our main point is that, as for the case of the NLSE,
a valley interval in the spectral radius of the reservoir network
with minimum error emerges for the chaotic solution of the
KSE, as illustrated in Figs. 4(b) and 4(c), where the interval
is 0.02 � ρ � 0.25. For ρ < 0.02, the ensemble-averaged

prediction error 〈RMSE〉 is significantly larger, as shown in
Fig. 4(c). As the value of ρ is increased from about 0.25,
the prediction horizon decreases dramatically, as shown in
Fig. 4(b). The time evolution behaviors of 〈RMSE〉 for four
representative values of ρ are shown in Fig. 4(d). We see that,
for ρ = 0.0251, the errors are much larger than those in the
other three cases. Thus, in spite of the chaotic nature of the
solution of the KSE, the valley phenomenon associated with
reservoir-computing-based prediction still occurs, as for the
regular solutions of the NLSE.

C. Predicting spatiotemporal chaotic solutions of the complex
Ginzburg-Landau equation

The CGLE is a general model for gaining insights into a va-
riety of physical phenomena such as nonlinear waves, chem-
ical reactions, superconductivity, superfluidity, Bose-Einstein
condensation, and liquid crystals [23–25]. The equation can
generate solutions corresponding to complex physical phe-
nomena such as phase chaos, defect chaos, and coexistence of
chaos and the plane wave solution. In a system described by
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the CGLE, instabilities lead to the formation of a weakly in-
teracting and incoherent background of low-amplitude waves
which, under certain conditions, can collapse locally to gener-
ate a high-amplitude event. Because of this feature, the CGLE
has been used in previous studies to characterize the statistical
properties of the extreme events in spatiotemporal dynamical
systems [26] and to articulate control strategies [27,28].

In one spatial dimension, the CGLE is written as

∂u

∂t
= u + (1 + iα)

∂2u

∂x2
− (1 + iβ )|u|2u, (9)

where u(x, t ) is a complex function of space x and time
t , and α and β are parameters characterizing linear and
nonlinear dispersion, respectively. To be concrete, we focus
on the parameter region of defect chaos [23], e.g., α = 2
and β = −2. We set the spatial domain to be x ∈ [−9, 9].
To generate the data for the reservoir system and take into
consideration the dynamical complexity of the solutions of the
CGLE, we solve Eq. (9) numerically using the pseudospectral
and exponential-time differencing scheme [29], where the
spatial domain is divided uniformly into 32 subregions and
the integration time step is dt = 0.0001. From the numerical
solutions, we perform time-domain sampling with dt = 0.07.

Because of the complex nature of the scalar field u(x, t ),
two separate input-data streams to the reservoir system are
necessary, corresponding to the real and imaginary parts
of u(x, t ), respectively. (We have verified that the reservoir
system fails to produce any meaningful prediction if the
module |u(x, t )| is used as the input data.) Figures 5(a)
and 5(b) show an example of successful prediction over a
horizon of about four Lyapunov time, where the spectral
radius value is ρ = 0.1. The existence of an optimal valley
interval in ρ guaranteeing a similar prediction performance
is shown in Figs. 5(c) and 5(d): 0.1 � ρ � 2.5. When the
value of ρ is decreased from the left end of the interval,
the ensemble-averaged prediction error 〈RMSE〉 increases
dramatically. Likewise, when ρ is increased from the right
end of the interval (e.g., from 3.0 to 4.0), the predicted time
with 〈RMSE〉 less than about 0.5 decreases monotonically, as
shown in Fig. 5(c). Figure 5(e) presents the behaviors of the
time evolution of 〈RMSE〉 for five specific values of ρ. We see
that in the two cases where the values of the spectral radius
are outside the valley interval (i.e., ρ = 3.9811 × 10−4 and
ρ = 3.8), large prediction errors arise. In fact, the standard
deviation associated with the evolution is so large that a
scale change in the vertical axis is necessary, as done in
Fig. 5(f). For other values of the spectral radius, the standard
deviation associated with 〈RMSE〉 is small when its value
is less than about 0.5. When the value of 〈RMSE〉 becomes
large and plateaued, the values of the standard deviation are
approximately uniform. The values of 〈RMSE〉 and its stan-
dard deviation for ρ = 1 × 10−2 and ρ = 2.5 are somewhat
similar, but those for the case of ρ = 1.1 are somewhat larger.
In spite of the diverse behaviors of 〈RMSE〉 and its standard
deviation, the valley phenomenon giving rise to an optimal
interval in the network spectral radius that minimizes the
prediction error holds also for the 1D CGLE, indicating
generality of the phenomenon.

IV. EFFECT OF THE RESERVOIR NETWORK
STRUCTURE ON PREDICTION

The random reservoir networks employed in the various
examples in Sec. III all have directed edges. Will the existence
of an optimal valley interval in spectral radius persist if
the links in the reservoir network become undirected? To
address this question, we consider two types of undirected
complex networks, random and small-world networks, and
test the prediction performance for Akhmediev breathers in
the NLSE. Figures 6(a) and 6(b) show the time evolution
of the ensemble-averaged prediction error for systematically
varying values of ρ for undirected random and small-world
networks, respectively. A quite sizable valley interval in ρ

with minimum prediction error arises in each case. In fact,
in comparison with the directed network structure, the undi-
rected topology leads to a wider valley interval [e.g., compar-
ing Fig. 6(a) with Fig. 2(c)]. A comparison between Figs. 6(a)
and 6(b) indicates that the valley interval for the random net-
work structure is slightly larger than that for the small-world
topology. In general, whether the network structure is directed
or undirected not only affects the size of the valley interval,
but also leads to a different “best” value of the spectral radius
for which an absolute minimum in the prediction error can
be achieved. We have tested other dynamical patterns in the
NLSE as well as the KSE and the CGLE and found that
the existence of the best spectral radius region is robust,
regardless of whether the edges in the reservoir network are
directed or undirected.

V. ERROR IN TRAINING OUTPUT DATA

To gain insights into the behavior of the ensemble-averaged
RMSE in prediction, we examine the error associated with
the training phase. From Eq. (1), we define the time-averaged
error during the training phase as E = |WRO · r′ − v|, which
measures the difference between the generated and the true
training output state vector of the neural network, i.e., the
error in one time step after training. Figure 7(a) shows the
time-averaged error 〈E〉 versus the spectral radius ρ for the
KSE with a directed network structure, which exhibits a
nonmonotonic behavior. Note that the value of ρ minimizing
the error is within the valley interval in Fig. 4(b). The increase
in the error away from the minimum value as ρ is increased
corresponds to the decrease in the prediction horizon in
Fig. 4(b). However, the behavior of 〈E〉 as ρ is decreased
from the optimal value does not appear to explain the dramatic
increase in the ensemble-averaged RMSE in prediction in
Fig. 4(c). Figure 7(b) shows a similar behavior of 〈E〉 but for
the case where the complex neural network has an undirected
topology. At present, the behaviors of error growth on the two
sides of the valley are not analytically understood.

Figure 7 offers insights into the source of prediction error
with implications for the prediction time that reservoir com-
puting can possibly achieve. In Fig. 7, we see that the smallest
average prediction error for each step is about 6 × 10−5 for the
KSE. For the spatiotemporal chaotic solution of the KSE, the
maximum Lyapunov exponent is 
m ≈ 0.05. With time step
dt = 0.25, in the predicting phase, the error will grow to about
0.5 in five Lyapunov time. The prediction time is thus mainly
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FIG. 5. Emergence of a valley interval in the spectral radius of the reservoir network with minimum error for predicting spatiotemporal
chaotic solutions of the CGLE. (a), (b) Example of successful prediction of the spatiotemporal chaotic solution of the one-dimensional CGLE,
for which the maximum Lyapunov exponent is 
m ≈ 0.22. In (a), the true and predicted real and imaginary parts (above and below the black
horizontal dashed lines, respectively) of the spatiotemporal evolution of the solution, together with their difference, are shown. In (b), the true
and predicted magnitudes of the complex solution as well as their difference are displayed. The color bars in (a) indicate the scale of the real
and imaginary parts of u(x, t ). For both (a) and (b), the value of the spectral radius of the reservoir network is ρ = 0.1. (c) Ensemble-averaged
RMSE calculated from the magnitude value of the complex solution versus ρ and the Lyapunov time, where 100 random reservoir systems
are used for each fixed ρ value. (d) Three-dimensional view of 〈RMSE〉, where the color bar indicates its scale with the cutoff value of 3.0.
The existence of a valley interval in ρ that minimizes the prediction error is unequivocal. (e), (f) Time evolution of 〈RMSE〉 (with standard
deviation) for five ρ values. (Details of the statistical behavior of 〈RMSE〉 are presented in Appendixes A and C.) Other parameters are α = 1,
N = 9984, k = 3, M = L = 64, Nt = 80 010, S = 10, and � = 2 × 10−5.

determined by the prediction error of reservoir computing at
each time step. While the single-step prediction error can be
reduced to a certain extent by fine-tuning the parameters of
the neural network, this reduction is often incremental and
there is no general method at present to drastically reduce the
single-step error.

VI. DISCUSSION

Reservoir computing, a class of recurrent neural networks
articulated nearly two decades ago [12–14] for data-based pre-
diction of nonlinear dynamical systems, has recently gained
momentum [1–10] as stimulated by the significant growth
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FIG. 6. Emergence of the optimal valley interval in the spec-
tral radius with minimum prediction error for undirected random
reservoir networks. (a) For a undirected random reservoir network,
time evolution of the ensemble-averaged RMSE (over 100 random
reservoirs) for systematically varying values of the network spec-
tral radius for prediction of Akhmediev breathers in the NLSE.
(b) Similar plot but for undirected small-world reservoir networks,
where the value of the rewiring probability for generating the small-
world topology is 0.3. In both cases, a similar valley region arises,
indicating that the link topology of the reservoir network, directed
or undirected, has little effect on the emergence of the valley. The
location and size of the valley interval, however, do depend on the
link topology, where undirected networks tend to lead to a larger
interval. Parameter values are α = 1, N = 4992, M = L = 64, Nt =
8010, S = 10, � = 1 × 10−4, k = 3 for (a) and k = 4 for (b).

of interest and tremendous advances in modern machine
learning. For chaotic dynamical systems, traditional meth-
ods [30–33] based on delay-coordinate embedding [34] can
usually make short-term predictions, e.g., for about one Lya-
punov time. Another prediction framework is based on sparse
optimization such as compressive sensing [35,36], but this
approach requires that the system’s equations contain math-
ematically simple terms and time series data from all vari-
ables of the system are available. Reservoir-computing-based
prediction is model-free and solely data based, and it can

FIG. 7. Behavior of error during the training phase. Time-
averaged error 〈E〉 versus spectral radius ρ for a random reservoir
network with (a) a directed topology and (b) an undirected topology
with the same average degree as in (a). In each case, the network
structure is fixed but the link weights are adjusted to result in
systematic variations in the network spectral radius. In both cases,
a region of small errors arises, indicating the existence of an optimal
interval of spectral radius after training. The location and size of the
region are similar to the valley interval in, e.g., Fig. 6. Parameter
values are α = 1, N = 4992, k = 3, M = L = 64, Nt = 70 010, S =
10, and � = 1 × 10−4.

extend the horizon to about a half-dozen Lyapunov time. This
is quite remarkable, defying the conventional wisdom that
long-term prediction of the state evolution of a chaotic system
is ruled out due to the hallmark of chaos: sensitive dependence
on initial conditions. A reservoir computing system, being
fundamentally a large neural network, has a large number of
parameters whose values need to be fixed. While the values
of a subset of parameters can be determined through training
with available data, there are still many “free” parameters
whose values need to be preset. At the present, for reservoir
computing (or for machine learning), there are no general
rules that one can rely on to guide the choices of these pa-
rameters. Due to the vast complexity and nonlinear structure
of reservoir computing systems, to develop mathematical or
physical theories to guide systematic choices of the values
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of free parameters represents an outstanding and formidably
challenging problem, with no hope for solutions in sight.

To make progress, we focus on a spectral property of the
reservoir network that typically possesses a complex topology
(e.g., random or small world): the spectral radius. Such a
network is typically weighted with heterogeneous weights
distributed on the set of edges. With variations in the detailed
connecting topology and link weights, for the network alone,
the parameter space is vast. To make the exploration feasible,
we fix the connection topology and assume that only the link
weights can vary freely. Even then, combing through all possi-
ble parameter variations is a computationally prohibitive task.
We thus focus on one question: Is there a range of the spectral
radius value that can lead to optimal performance in the sense
of minimum prediction error? Note that, with a fixed value of
the spectral radius, there are still an infinite number of sets of
link weights. Computations with three representative classes
of spatiotemporal nonlinear dynamical systems (the NLSE,
the KSE, and the CGLE) reveal a remarkable phenomenon:
in all cases there exists an optimal interval in the spectral
radius that leads to minimum error. (In the three-dimensional
plot of the ensemble-averaged prediction error versus the
spectral radius and time, the interval appears as a “valley.”)
The existence of such a valley interval holds generally true for
different systems, regardless of the structure of the complex
reservoir network, e.g., directed or undirected, random or
small world. Computationally, we find that the interval tends
to be larger for undirected than for directed networks. While
the finding is purely numerical with no analytic insights, the
phenomenon is general and can be exploited for designing
optimal reservoir computing systems, representing a small
step forward in the study of these machine learning systems.

At present, we do not yet have an analytic understanding
of why the value of the spectral radius ρ of the reservoir
network needs to be in a certain interval for the neural network
system to be effective for prediction. Nonetheless, a heuristic
understanding may be attempted. In order for the reservoir
system to possess certain predictive power, it must capture
the “dynamical climate or complexity” of the target nonlinear
system through training. That is, the reservoir system must
produce state evolution whose complexity somehow matches
that of the target system. In our setting, the network topology
is fixed and the variations in the spectral radius are the result of
adjusting the edge weights. If the spectral radius is too small,
the edge weights are small and the network may be so weakly
connected that its collective dynamics are too incoherent to
match that of the target system. However, if the spectral radius
is too large, the nodal connections in the reservoir network
are so tight that the collective dynamics are too coherent,
depriving the reservoir computing system of its ability to
capture the “climate” of the state evolution of the target
system. As a balance of these factors, it is reasonable that,
given training data from the dynamical evolution of a specific
target system, in general an interval in ρ should emerge in
which an optimal match between the complexities of the two
systems is achieved. The particular location and size of the
interval would depend on the details of the target system to be
predicted.

Our work has raised more open questions. For example,
a previous work demonstrated that the echo state property

of reservoir computing can be ensured for ρ < 1 with zero
input but, for non-zero input, the value of ρ can be extended
to being larger than 1 [37]. Our study has revealed that, for
both the NLSE and the 1D CGLE, the optimal interval in
the spectral radius is located in the region ρ > 1. Another
previous speculation was to regard the spectral radius as a
kind of measure of the reservoir’s memory length of the input
signal. Consequently, if the input signals are more random
and require a larger memory for storage, one should employ a
reservoir network with a larger spectral radius for prediction
[37,38]. However, our results do not support this point of view.
For example, for the NLSE, the dynamical patterns studied are
periodic either in space or in time and are thus mostly regular
with a minimum degree of randomness, and yet the optimal
valley intervals of ρ can be quite different. Why do patterns
of similar regularity require different spectral-radius values
to be predicted? For the CGLE, in spite of the randomness
and complexity of its dynamical evolution, the valley interval
is relatively more extensive, from near-zero values to some
values far beyond 1. Why can the quite random and complex
patterns of the CGLE be predicted with reservoirs of either
long or short memory capacity?
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APPENDIX A: STANDARD DEVIATION
OF THE PREDICTION ERROR

In the text, we have presented the ensemble-averaged error
〈RMSE〉 versus the spectral radius of the reservoir network
and time, which arises from predicting various states of three
types of spatiotemporal dynamical systems. Here we show the
standard deviation associated with the error, as in Figs. 8(a)–
8(d) for the corresponding cases. In particular, in Figs. 8(a)
and 8(b), where the target states are Akhmediev breathers
and Kuznetsov-Ma solitons, respectively, the values of the
standard deviation are small in the valley region but increase
as the value of ρ moves out of the valley, indicating that
stable prediction performance can be achieved when choosing
the value of ρ in the valley. In Figs. 8(c) and 8(d), where the
dynamical states are two distinct cases of soliton collision, the
standard deviation is large for all values of ρ tested.

Results of the standard deviation for the KSE and 1D
CGLE are shown in Fig. 9, where the dynamical states to be
predicted are spatiotemporally chaotic. Again, we observe that
the standard deviation associated with the ensemble-averaged
error is markedly smaller in the valley interval in the network
spectral radius than outside the interval.

APPENDIX B: EXAMPLE OF LONG-TERM PREDICTION
OF AKHMEDIEV BREATHERS IN THE NLSE

For the dynamical state of Akhmediev breathers in the
NLSE, for properly chosen values of the spectral radius, the
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FIG. 8. Standard deviation associated with the ensemble-
averaged error in predicting different dynamical states of the NLSE.
For each fixed value of the spectral radius ρ, 100 random realizations
of the network are used to calculate the standard deviation of the
ensemble-averaged prediction error. Shown are the 3D represen-
tation of the standard deviation versus the time and ρ for four
distinct dynamical states of the NLSE: (a) Akhmediev breathers,
(b) Kuznetsov-Ma solitons, (c) a soliton-collision state for a1 = 0.14
and a2 = 0.34, and (d) another soliton-collision state, for a1 = 0.42
and a2 = 0.18.

reservoir computing system is able to make accurate long-
term predictions. An example is shown in Fig. 10.

APPENDIX C: ORIGIN OF THE STANDARD DEVIATION
IN THE ENSEMBLE-AVERAGED PREDICTION ERROR

The concept of the valley interval discussed in the text
is defined with respect to the ensemble-averaged prediction
error. That is, for any fixed value of the spectral radius, 100
realizations of the reservoir network are used to calculate
the mean error and the standard deviation. In fact, over the
different realizations, the prediction error can exhibit quite
large variations, even when the value of the spectral radius is

FIG. 9. Standard deviation associated with ensemble-averaged
prediction error for (a) the KSE and (b) the 1D CGLE. Legends are
the same as in Fig. 8.
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FIG. 10. Example of a long-term prediction of Akhmediev
breathers in the NLSE. (a) True spatiotemporal evolution pattern,
(b) reservoir-computing predicted pattern, and (c) difference in the
instantaneous state between the true and the predicted patterns.

within the valley. Several examples of predicting Akhmediev
breathers in the NLSE are shown in Fig. 11, where the error
evolution for different realizations (ordinate) is shown for four
values of the spectral radius [Figs. 11(a)–11(d)]. For the two
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FIG. 12. Time evolution of the RMSE for different statistical
realizations in predicting soliton collisions in the NLSE. Parameters
of the NLSE solution are a1 = 0.14, a2 = 0.34. Legends are the same
as in Fig. 11.

cases outside the valley interval [Figs. 11(a) and 11(d)], the
prediction error is large across almost all the realizations. For
Fig. 11(c), ρ = 1.4, the error is small for almost all the real-
izations, corresponding to the optimal ρ value in the valley.
When ρ deviates from the optimal value, large errors arise
with some realizations, as shown in Fig. 11(b) for ρ = 0.8.
When the majority of the realizations exhibit large errors, the
corresponding ρ value is regarded as being outside the valley
interval. The error variations across different realizations are
characterized by the standard deviation in the mean error.
For the optimal ρ value, the standard deviation reaches a
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FIG. 13. Time evolution of the RMSE for different statistical
realizations in predicting the spatiotemporal chaotic state of the 1D
CGLE. Parameter values of the CGLE are the same as for Fig. 5.
Legends are the same as in Fig. 11.

minimum. For ρ away from the optimal value, the standard
deviation tends to increase. We also note that the concept
of the valley interval is meaningful only in an approximate
sense: neither the ensemble-averaged error nor the associated
standard deviation presents any abrupt changes that can be
used to define sharp boundaries of the valley interval.

The variations of the prediction error across individual re-
alizations for the soliton-collision state in the NLSE are shown
in Fig. 12, and the corresponding behaviors for predicting the
spatiotemporal chaotic state of the 1D CGLE are shown in
Fig. 13.

APPENDIX D: SOLUTION OF SOLITON COLLISION IN THE NLSE

The complete solution of soliton collision in the NLSE is given by [20,21]

ψ12(x, t ) = ψ0 + 2(l∗
1 − l )s1r∗

1

|r1|2 + |s1|2 + 2(l∗
2 − l2)s12r∗

12

|r12|2 + |s12|2 , (D1)

r1(x, t ) = exp

(−ix

2

){
exp

[
i(2χ1 + κ1t − π/2 + l1κ1x)

2

]
− exp

[
i(−2χ1 − κ1t + π/2 − l1κ1x)

2

]}
, (D2)

s1(x, t ) = exp

(
ix

2
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exp
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i(−2χ1 + κ1t − π/2 + l1κ1x)

2

]
+ exp

[
i(2χ1 − κ1t + π/2 − l1κ1x)

2

]}
, (D3)

r2(x, t ) = exp

(−ix

2

){
exp

[
i(2χ2 + κ2t − π/2 + l2κ2x)

2

]
− exp

[
i(−2χ2 − κ2t + π/2 − l2κ2x)

2

]}
, (D4)

s2(x, t ) = exp

(
ix

2

){
exp

[
i(−2χ2 + κ2t − π/2 + l2κ2x)

2

]
+ exp

[
i(2χ2 − κ2t + π/2 − l2κ2x)

2

]}
, (D5)

r12(x, t ) = (l∗
1 − l1)s∗

1r1s2 + (l2 − l1)|r1|2r2 + (l2 − l∗
1 )|s1|2r2

|r1|2 + |s1|2 , (D6)

s12(x, t ) = (l∗
1 − l1)s1r∗

1 r2 + (l2 − l1)|s1|2s2 + (l2 − l∗
1 )|r1|2s2

|r1|2 + |s1|2 , (D7)

ψ0(x, t ) = exp(ix), (D8)

033056-12



MODEL-FREE PREDICTION OF SPATIOTEMPORAL … PHYSICAL REVIEW RESEARCH 1, 033056 (2019)

where l1 = i
√

2a1, l2 = i
√

2a2, κ1 = 2
√

1 + l2
1 , κ2 = 2

√
1 + l2

2 , χ1 = 1
2 arccos(κ1/2), χ2 = 1

2 arccos(κ2/2), and ∗ represents
the complex conjugate.
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[37] M. Lukoševičius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).
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