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Out-of-time ordered correlators, complexity, and entropy in bipartite systems
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There is a remarkable interest in the study of out-of-time ordered correlators (OTOCs) that goes from
many-body theory and high-energy physics to quantum chaos. In the latter case there is a special focus on the
comparison with the traditional measures of quantum complexity such as the spectral statistics. The exponential
growth has been verified for many paradigmatic maps and systems. However, less is known for multipartite
cases. On the other hand, the recently introduced Wigner separability entropy (WSE) and its classical counterpart
provide a complexity measure that treats equally quantum and classical distributions in phase space. We compare
the behavior of these measures in a system consisting of two coupled and perturbed cat maps with different
dynamics: double hyperbolic, double elliptic, and mixed. In all cases, we find that the OTOCs and the WSE have
essentially the same behavior, providing a complete characterization in generic bipartite systems and at the same
time revealing them as very good measures of quantum complexity for phase-space distributions. Moreover, we
establish a relation between both quantities by means of a recently proven theorem linking the second Rényi
entropy and OTOCs.
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I. INTRODUCTION

Nowadays, there is a huge interest in out-of-time ordered
correlators (OTOCs) within the quantum chaos community,
where they have been related to traditional measures as
spectral statistics and the like [1]. These correlators were
first introduced in superconductivity studies [2], where their
exponential growth over time was associated with chaotic
behavior. As a matter of fact, if we adopt the usual definition
of the OTOC given by

C(t ) = 〈[Â(t ), B][Â(t ), B]†〉, (1)

i.e., the thermal average 〈·〉 = Tr(·)/N of the commutator
between two operators at different times, with N the Hilbert
space dimension and Â = X̂ and B̂ = P̂ as the position and
momentum operators, respectively, it is easy to show this. The
commutator leads to the Poisson bracket at the semiclassical
level, which in turn grows exponentially at a rate of twice
the Lyapunov exponent. In Ref. [3], this exponential growth
for the (one-dimensional) quantum perturbed Arnold cat map
was shown. Also, in Ref. [4] a growth at half this rate was
discovered in the baker’s map, using projectors instead of
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position and momentum operators. Finally, there was some
controversy around the Bunimovich stadium case in Ref. [5],
which has been explained by means of replacing the thermal
average with Gaussian minimal uncertainty wave packets (the
“most classical” initial state) [6].

Previously, however, the surge in interest came from the
many-body area [7–10]. As a prominent feature, an upper
bound for the OTOC growth was conjectured in the context of
black hole models [11]. Also, the OTOCs have been related
to multiple quantum coherences and used as an entanglement
witness in NMR [12]. A path-integral approach has been
presented in which the OTOCs are expressed as coherent sums
over contributions from different mean-field solutions [13].
More recently, the OTOC behavior has been determined for
one of the simplest examples of multiparticle systems. This
corresponds to a bipartite system consisting of two strongly
chaotic and weakly coupled kicked rotors [14]. It was found
that the scrambling process has two phases: one in which the
exponential growth is within the subsystem and a second one
which depends only on the interaction.

In the spirit of algorithmic complexity, the Wigner sep-
arability entropy (WSE) [15] and the classical separability
entropy (CSE) [16] were introduced as measures of com-
plexity that put quantum and classical distributions (in phase
space) on an equal footing. We have characterized how the
WSE and the CSE behave for a bipartite system given by
two coupled and perturbed cat maps with different dynamics.
Three cases were considered: one where both maps are hy-
perbolic (chaotic) (HH), one where both are elliptic (regular)
(EE), and a mixed situation where one map is hyperbolic
and the other elliptic (HE) [17]. It is worth mentioning that
there are previous studies linking entanglement and chaos but
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they do not consider all possible dynamical scenarios or make
reference to OTOC measures (see, for example, [18]).

In this work we have set a twofold objective: On one
hand we have investigated the behavior of OTOCs for these
different scenarios; on the other hand we have compared them
with the complexity measures previously mentioned. As a
result, we have found that the OTOCs are in general good
indicators of complexity that can be related to WSE and CSE
via the so-called OTOC–Rényi-entropy (RE) theorem [19,20].
The connection between entropies and OTOCs making ref-
erence to the OTOC-RE theorem is just a guide to prove it.
Beyond the existing relation with different entropies and our
conjecture on how to demonstrate it, one of the main points of
this paper is that OTOCs behave differently according to the
kind of dynamics, and this involves the initial growth as well
as the saturation.

II. OTOCS AND WSE

In Eq. (1) we have defined these correlators in the most
commonly found way, i.e., by performing a thermal average
of the commutator of two operators, one of which evolves
with time in a Heisenberg fashion. For our purpose, which
is investigating the behavior for different kinds of dynamics
in each subsystem, it is preferable to calculate the expectation
value on a given initial state, much in the same way as we
have done previously to compute the phase-space WSE and
CSE [17]. This is accomplished by 〈·〉 = Tr(ρ·), where ρ is
the density matrix of a classical-like initial state, which we
take to be a coherent state.

Also, there is freedom in the choice of operators Â and
B̂. As mentioned, we can take X̂ and P̂ in order to formally
associate them with a Lyapunov exponential growth; however,
we will also consider B̂ = ρ̂(0), the density operator of the
initial state. The cat map is defined on the torus and we use an
approximation to the position and momentum operators in the
classical limit that makes use of the Schwinger shift operators
[21]

V̂ =
∑

q∈ZN

|q + 1〉〈q|, Û =
∑

q∈ZN

|q〉〈q|τ 2q, (2)

with τ = exp(iπ/N ). The position and momentum operators
for each one degree of freedom map can be written as

X̂ = Û − Û †

2i
, P̂ = V̂ − V̂ †

2i
. (3)

These operators are readily extended to the two degrees
of freedom bipartite space as the tensor product of similar
operators acting on each subsystem (labeled as 1 and 2)

X̂ 2D = X̂ 1 ⊗ X̂ 2, P̂2D = P̂1 ⊗ P̂2. (4)

It is worth mentioning that when the operators Â and B̂ are
Hermitian the OTOC of Eq. (1) can be expressed as the
correlators difference

C(t ) = −2[C4(t ) − C2(t )]/N, (5)

where C2(t ) = Tr[Â2(t )B̂2] (a two-point correlator) and
C4(t ) = Tr[Â(t )B̂Â(t )B̂] (a four-point correlator). Also, our
Tr(ρ·) operation, when B̂ = ρ̂(0) corresponds to a pure state,

can be proven to be equivalent to Tr(·)/2, making it similar to
the thermal average times N .

We now briefly explain the WSE and CSE definitions and
main properties. A good analog of Liouville distributions in
classical mechanics is given by the Wigner distributions in
phase space W (x), which are defined in terms of the Weyl-
Wigner symbol of the density operator as

W (x) = (2π h̄)−d/2ρ(x) = (2π h̄)−d/2Tr[R̂xρ̂], (6)

where R̂x forms a basis set of unitary reflection operators on
points x ≡ (q, p) [22,23]. The Schmidt decomposition of the
density operator is given by

ρ̂ =
∑

σnân ⊗ b̂n, (7)

where {ân} and {b̂n} are orthonormal bases for the Hilbert-
Schmidt operator spaces B(H1) and B(H2), respectively. This
directly leads to the Schmidt (singular value) decomposition
of the Wigner function given by

W (x) =
∑

n

σnan(x1)bn(x2), (8)

where {an} and {bn} are now orthonormal bases for L2(�1)
and L2(�2) (which are associated with the Hilbert space
decomposition) such that

an(x1) = Tr
[
R̂x1 ân

]
, bn(x2) = Tr

[
R̂x2 b̂n

]
.

The WSE is defined in Ref. [15] as h[W ] = −∑
n σ̃ 2

n ln σ̃ 2
n ,

where σ̃n ≡ σn/

√∫
dxW 2(x).

The WSE h[W ] provides a measure of separability of the
Wigner function with respect to a given phase-space decom-
position. One of the main properties of the WSE is that its
classical analog is the CSE (or s entropy) h[ρc] defined in
Ref. [16], where a discretized classical phase-space distribu-
tion is used instead of the Wigner function W (x). This makes
the complexity concept in both the quantum and the classical
world fully equivalent. It is very important to mention that for
a pure state ρ̂ = |ψ〉〈ψ |, h[W ] = −2SvN(ρ̂1) = −2SvN(ρ̂2),
where ρ̂1 = Tr2(ρ̂) and ρ̂2 = Tr1(ρ̂) are the reduced density
operators for subsystems 1 and 2 and SvN is the von Neumann
entropy.

III. MODEL SYSTEM

The quantum cat map [24] is paradigmatic in the quantum
chaos area [24–27]. We consider the behavior of two coupled
perturbed cat maps, a two degrees of freedom example. These
two maps can have different types of dynamics.

Each degree of freedom is defined on the 2-torus as [24](
qt+1

pt+1

)
= M

(
qt

pt + ε(qt )

)
, (9)

with q and p taken modulo 1 and

ε(qt ) = − K

2π
sin(2πqt ).

For the ergodic case we have chosen the hyperbolic map

Mh =
(

2 1
3 2

)
, (10)
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while for the regular behavior we use the elliptic map

Me =
(

0 1
−1 0

)
. (11)

Torus quantization amounts to having a finite Hilbert space of
dimension N = 1

2π h̄ , with discrete positions and momenta in
a lattice of separation 1

N [24]. In coordinate representation the
propagator is given by an N × N unitary matrix

Ujk = A exp

[
iπ

NM12
(M11 j2 − 2 jk + M22k2) + F

]
, (12)

where A = (1/iNM12)1/2 and F = (iKN/2π ) cos(2π j/N ).
The states 〈q|q j〉 are periodic Dirac δ distributions at positions
q = j/N mod(1), with j an integer in [0, N − 1].

The two degrees of freedom classical system is defined in
a four-dimensional phase space of coordinates (q1, q2, p1, p2)
[15] as (

q1
t+1

p1
t+1

)
= M1

(
q1

t

p1
t + ε

(
q1

t

) + κ
(
q1

t , q2
t

)
)

and (
q2

t+1

p2
t+1

)
= M2

(
q2

t

p2
t + ε

(
q2

t

) + κ
(
q1

t , q2
t

)
)

.

The coupling between both maps is chosen to be κ (q1
t , q2

t ) =
−(Kc/2π ) sin(2πq1

t + 2πq2
t ). The corresponding two degrees

of freedom quantum evolution is given by the tensor product
of the one degree of freedom maps, an N2 × N2 unitary matrix
U 2D

j1 j2,k1k2
= Uj1k1Uj2k2Cj1 j2 , with the coupling matrix (diagonal

in the coordinate representation)

Cj1 j2 = exp

{(
iNKc

2π

)
cos

[
2π

N
( j1 + j2)

]}
,

where j1, j2, k1, k2 ∈ {0, . . . , N − 1}. We set K = 0.25 and
Kc = 0.5 (the Anosov condition [25]), and N = 26.

IV. RESULTS

In order to reach our twofold objective we have investi-
gated the evolution of OTOCs much in the same way we have
done in Ref. [17], that is, we have evaluated their behavior for
three different dynamics. First, we consider the EE case. The
initial (pure) state is constructed by placing a coherent state on
each torus, both centered at (q, p) = (0.5, 0.5). This is a fixed
point of the hyperbolic and elliptic maps. In Fig. 1 we show
the evolution of two OTOCs for Â = X̂ 2D, having B̂ = P̂2D in
one case and B̂ = ρ̂(0) in the other, as a function of the map
time steps. Also, we can see the evolution of the linear entropy
SL = 1 − Trρ2

1,2, which is a linear approximation to the von
Neumann entropy SvN. We see clearly the same qualitative
behavior, reflecting the lack of complexity growth due to the
nature of the dynamics of both maps. We observe the same
small oscillations indicative of the rotation of the distributions
which remain localized [17]. We underline that the similarity
we find is in the average behavior. Both OTOCs have been
rescaled in Fig. 1 (and all subsequent figures) in order to make
a comparison. In Fig. 1(b) we display the log-linear version,
where no initial exponential growth can be identified for this
case.
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FIG. 1. (a) Evolution of the linear entropy SL (black solid line
with down triangles) and rescaled OTOCs for Â = X̂ 2D, with B̂ =
P̂2D (red dashed line with crosses) and B̂ = ρ̂(0) (red dot-dashed
line with squares), as a function of time t (map time steps). Here
N = 26, for the EE map case with the initial coherent state centered
at (q, p) = (0.5, 0.5). (b) The log-linear version.

It is interesting to see if the OTOC is able to detect the high
sensitivity to the region of phase space at which the initial
condition is located for the EE case, as we have previously
seen by means of the WSE [17]. In fact, this is the case, and
also the qualitative behavior is the same for the three quanti-
ties displayed in Fig. 2. There are clearly more fluctuations
in the OTOCs, which will be explained later. Moreover, in
Fig. 2(b) it can be checked that no exponential growth is
present. Despite this and fluctuations, the previously identified
inflection point where quantum effects become important at
t � 10 [17] is roughly detected by the OTOCs.

We continue with the HE map case shown in Fig. 3, which
again shows good qualitative agreement between the linear
entropy and the OTOCs behavior. The growth is slower for the
correlators at early times, resembling more the von Neumann
case, which we will see in the following. Looking at Fig. 3(b),
we cannot clearly identify an initial exponential growth of
the correlators. Nevertheless, the saturation behavior is very
similar and this shows that the OTOC detects the main feature
of the mixed dynamics scenario that we have already seen
with the WSE: Just one hyperbolic degree of freedom suf-
fices to reach maximum complexity (this is accomplished for
t � 200, not shown here).

Finally, we turn to analyze the HH case (Fig. 4), which
has also been considered in Ref. [14] very recently. Again,
the agreement between OTOCs and SL is remarkable, with the
B̂ = ρ̂(0) case being extremely good. If we look at Fig. 4(b)
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FIG. 2. (a) Evolution of the linear entropy SL (black solid line
with down triangles) and rescaled OTOCs for Â = X̂ 2D, with B̂ =
P̂2D (red dashed line with crosses) and B̂ = ρ̂(0) (red dot-dashed
line with squares), as a function of time t (map time steps). Here
N = 26, for the EE map case with the initial coherent state centered
at (q, p) = (π/4, π/4). (b) The log-linear version.
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FIG. 3. (a) Evolution of the linear entropy SL (black solid line
with down triangles) and rescaled OTOCs for Â = X̂ 2D, with B̂ =
P̂2D (red dashed line with crosses) and B̂ = ρ̂(0) (red dot-dashed
line with squares), as a function of time t (map time steps). Here
N = 26, for the HE map case with the initial coherent state centered
at (q, p) = (0.5, 0.5). (b) The log-linear version.

we can identify an initial exponential growth in full coinci-
dence with previous studies.

However, how can we explain this striking similarity be-
tween two seemingly different quantities, one coming from
a global phase-space analysis and the other being a correla-
tion related to a semiclassical interpretation based on local
dynamics? An answer comes from the so-called OTOC-RE
theorem [19,20]. It establishes an equivalence between a sum
of OTOCs (in fact, the sum of the four-point correlators
in which the OTOC can be split when the operators are
Hermitian) over a complete basis of one of the subsystems
[the operator that does not evolve is taken to be the initial state
ρ̂(0)] and the exponential of the second Rényi entropy. This
result is usually expressed in the shape

exp
(−S(′2′ )

1

) =
∑
M̂∈2

〈M̂(t )ρ̂(0)M̂(t )ρ̂(0)〉, (13)

where S(′2′ )
1 = − log Tr1ρ̂

2
1 is the second Rényi entropy, the

sum runs over a complete basis of subspace 2, and the
usual thermal average is performed. It is easy to see that
exp(−S(′2′ )

1 ) = Trρ2
1 . In the OTOC (5), we have a two-point

correlator term that in general can be considered to be con-
stant (see, for example, [3,4,14] for chaotic cases). Hence,
the OTOC becomes approximately proportional to 1 − Trρ2

1 ,
which is SL. Typically, there are more oscillations in the
OTOCs than in the linear entropy since we consider only
one operator Â(t ) that belongs to both subspaces and not
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FIG. 4. (a) Evolution of the linear entropy SL (black solid line
with down triangles) and rescaled OTOCs for Â = X̂ 2D, with B̂ =
P̂2D (red dashed line with crosses) and B̂ = ρ̂(0) (red dot-dashed
line with squares), as a function of time t (map time steps). Here
N = 26, for the HH map case with the initial coherent state centered
at (q, p) = (0.5, 0.5). (b) The log-linear version.
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FIG. 5. Comparison of rescaled von Neumann entropy SvN (red
dashed line with crosses) with the linear entropy SL (black solid line
with down triangles) behavior as a function of time t (map time
steps): (a) the EE case with the initial coherent state at (q, p) =
(0.5, 0.5), (b) the EE case with (q, p) = (π/4, π/4), (c) the HE
case with (q, p) = (0.5, 0.5), and (d) the HH case with (q, p) =
(0.5, 0.5). In all panels N = 26.

the complete basis of one of them as the OTOC-RE theorem
prescribes. The equivalence expressed in this theorem is an
indicator of an average behavior of which our calculation is a
fluctuation.

In order to establish a complete link between the OTOCs
and the WSE we show the rescaled von Neumann entropy
evolution for the previous four cases, together with the linear
entropy. We have rescaled SvN in order to better compare
it with SL [in the last two cases we use the random matrix
theory (RMT) saturation value [28]]. It becomes clear that SL

behaves much in the same way as SvN, despite being a linear
approximation. It is worth mentioning that for the HE case
[Fig. 5(c)] the OTOC initial growth is closer to SvN. This is
left for future investigation.

V. CONCLUSION

Interest in OTOCs has grown very fast in the past couple
of years, mainly motivated by their power to characterize
quantum chaotic manifestations that could have important
consequences in many-body and high-energy physics. In turn,
the quantum chaos community is looking at its previous con-
tributions from a new point of view. A third component comes
from information theory which has established a precise con-
nection between OTOCs and the second Rényi entropy via the
OTOC-RE theorem.

On the other hand, much has been done in one degree
of freedom systems regarding OTOC measures, but less is
known in multipartite cases. We have investigated a bipartite
system consisting of two coupled and perturbed cat maps
with different dynamical scenarios, which are regular and
chaotic. In all cases we have found that the behavior of
OTOCs (semiclassically related to local measures of chaos)
is qualitatively similar to that of the WSE. This latter is a
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complexity measure defined globally in phase space that treats
the quantum and the classical distributions in the same way.
This connection is explained by means of the equivalence
between von Neumann/linear entropy and OTOCs when one
of the operators considered is the initial density matrix. By
choosing a pure initial state, the WSE can be identified with
the entropies. On the other hand, the OTOC-RE theorem
describes the average behavior of the correlators for any
choice of the evolving operator. In fact, even when consid-
ering the canonical P̂ operator as the nonevolving one, the
agreement is very good, allowing one to generalize this link.
We must underline that the connection via the latter theorem
is conjectural yet. This theorem is proved for a complete basis
of one of the subspaces and at infinite temperature. We make
our calculations by considering a paradigmatic OTOC, i.e.,
the one that considers the X̂ 2D and P̂2D operators, and we use
pure and localized states instead of a thermal average. Finally,
one of the main results of this paper is that OTOCs behave
differently (initial growth and saturation) depending on the
kind of dynamics of the system.

It is worth mentioning that in many-body systems the
generic scenario involves chaotic and regular components. We
have seen that one chaotic degree of freedom is enough for
the complexity measures to reach their maximum prescribed
by RMT. However, exponential growth of the OTOCs for
localized initial conditions is absent if there is one regular
degree of freedom. In [11] a bound is set for the OTOC Lya-
punov exponential growth in black holes. In our examples we
observe that any symmetry (constant of the motion) implies
nonexponential growth for the entropy. The consequences of
this should be carefully explored.

Future investigations should include the OTOC-RE the-
orem and WSE connection in order to formalize it for
generic initial states and operators. Different symmetry
groups should be considered to obtain predictions on specific
systems.
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