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We present a comparison between stochastic simulations and mean-field theories for the epidemic threshold
of the susceptible-infected-susceptible model on correlated networks (both assortative and disassortative) with
a power-law degree distribution P(k) ∼ k−γ . We confirm the vanishing of the threshold regardless of the
correlation pattern and the degree exponent γ . Thresholds determined numerically are compared with quenched
mean-field (QMF) and pair quenched mean-field (PQMF) theories. Correlations do not change the overall
picture: The QMF and PQMF theories provide estimates that are asymptotically correct for large sizes for
γ < 5/2, while they only capture the vanishing of the threshold for γ > 5/2, failing to reproduce quantitatively
how this occurs. For a given size, PQMF theory is more accurate. We relate the variations in the accuracy of
QMF and PQMF predictions with changes in the spectral properties (spectral gap and localization) of standard
and modified adjacency matrices, which rule the epidemic prevalence near the transition point, depending on the
theoretical framework. We also show that, for γ < 5/2, while QMF theory provides an estimate of the epidemic
threshold that is asymptotically exact, it fails to reproduce the singularity of the prevalence around the transition.

DOI: 10.1103/PhysRevResearch.1.033024

I. INTRODUCTION

Metabolic chains of protein interactions [1], collaborations
among scientists, co-starring in a movie [2], and person-to-
person contacts [3] are all examples of interacting systems that
can be modeled using complex networks [2]. A large number
of networks representing real systems show a heavy-tailed
degree distribution described by a power law P(k) ∼ k−γ

[4,5], usually with strong levels of correlations [6,7]. Degree
correlations are encoded in the conditional probability P(k′|k)
that a vertex of degree k is connected to a vertex of degree
k′ [6]. Technological networks, such as the Internet, show in
general disassortative mixing [6,7], i.e., vertices of large de-
gree tend to be connected with those of small degree and vice
versa. Assortative mixing occurs in social networks, where
connections preferentially occur among vertices exhibiting
similar degree. Since uncorrelated networks usually simplify
theoretical approaches, they are typical benchmarks for the
investigation of dynamical processes on networks and have
been considered in many studies [8–10]. However, the ubiqui-
tousness of correlations in real networks naturally calls for the
investigation of the effect of correlated interaction patterns.
While the effects of degree correlations have been considered
for several dynamical processes [11–16], a full understanding
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of their effects on the performance of theoretical approaches
is still missing.

A basic approach to investigate dynamical processes on
networks is the heterogeneous mean-field (HMF) theory, in
which degree heterogeneity and correlations are taken into
account through the distributions P(k) and P(k|k′), respec-
tively [8,9,17,18]. A more refined approach is provided by the
quenched mean-field (QMF) theory [19–21], which considers
the full topology as described by the unweighted adjacency
matrix (defined as Ai j = 1 if vertices i and j are connected and
Ai j = 0 otherwise) and thus takes into account the detailed
connectivity structure.

A crucial question in this context is the ability of theories to
accurately predict the epidemic threshold of the susceptible-
infected-susceptible (SIS) dynamics, the most basic epidemic
process with an absorbing-state phase transition [21–28]. For
random uncorrelated networks, such as those created accord-
ing to the uncorrelated configuration model [29], when γ <

5/2 the two theories tend to agree, predicting a vanishing
threshold as the network size diverges [22]. For γ > 3 instead,
QMF theory correctly predicts again the asymptotic vanishing
of the epidemic threshold [30], while the HMF theory fails,
predicting the existence of a finite threshold. In spite of being
qualitatively correct, QMF theory is however not able to ac-
curately predict the effective finite-size epidemic threshold in
this case [25]. A further quantitative improvement of the QMF
theory has been achieved in Ref. [26] [hereafter called of pair
QMF (PQMF) theory] by means of the explicit inclusion of
pairwise dynamical correlations [31–33]. See [34] for a recent
application of the PQMF theory in epidemic containment.
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In this work we investigate the ability of the aforemen-
tioned approaches (HMF, QMF, and PQMF) to quantita-
tively predict the value of the epidemic threshold for both
uncorrelated and correlated networks generated using the
Weber-Porto model [35] and for real-world topologies. We
find that correlations do not change qualitatively the sce-
nario found on uncorrelated networks. The epidemic thresh-
old vanishes asymptotically with the system size for both
assortative and disassortative correlations. For γ < 5/2, both
QMF and PQMF theories seem to provide an asymptotically
exact estimate of the numerical threshold, while they are
only qualitatively correct for γ > 5/2. As in the case of
uncorrelated networks [26], PQMF theory outperforms the
other theories. The amplitude of the discrepancies between
numerics and theory is correlated with violations of the
assumptions underlying them, revealing that both theories
tend to be more accurate if the principal eigenvector of the
(effective) adjacency matrix is not strongly localized or the
spectral gap is large. The same scenario is found to hold when
SIS dynamics is considered on a set of real-world topologies.
In addition, we analyze the singularity of the prevalence near
the transition point through the critical exponent β, defined as
ρ ∼ (λ − λc)β . Interestingly, we find that for γ < 5/2, even if
the QMF theory provides an asymptotically exact estimate of
the position of the epidemic threshold, the QMF prediction for
the prevalence exponent, β(QMF) = 1 [23,36], is correct only
not too close to the transition.

The rest of the paper is organized as follows. Section II
describes the models used to generate correlated heavy-tailed
networks, the implementation of the SIS model, and the
theoretical approaches. A comparison between simulations
and theory on synthetic and real networks in presented in
Sec. III. A summary is given and conclusions are drawn in
Sec. IV. The Appendix summarizes the properties of the real
networks investigated.

II. MODELS AND METHODS

A. Weber-Porto configuration model

The degree correlations encoded in the conditional prob-
ability P(k′|k) can be more easily interpreted by the simple
metrics of the average degree of the nearest neighbors as a
function of the vertex degree [6], defined as

κnn(k) =
kmax∑

k′=kmin

k′P(k′|k), (1)

where kmin and kmax are the lower and upper cutoffs of the
degree distribution. If κnn(k) increases or decreases with k,
the networks are assortative or disassortative, respectively. In
the case of uncorrelated networks we have [6]

P(k′|k) = Pe(k′) = k′P(k′)/〈k〉, (2)

which implies that κnn = 〈k2〉/〈k〉 = 〈k〉e does not depend
on k. We use here the edge distribution average 〈A(k)〉e =∑

k A(k)Pe(k), where Pe(k) is the probability that an edge ends
on a vertex of degree k.

We are interested in heavy-tailed networks with degree
distribution P(k) ∼ k−γ and correlation given by κnn(k) ∼ kα .
These networks can be generated using an algorithm proposed

100 101 102 103

k
100

101

102

103

κ nn

α=−0.2
α=0
α=0.2
~k-0.20

~k0.20

FIG. 1. Average degree of the nearest neighbors as a function
of the degree for networks built with the WPCM algorithm [35]
for power-law degree distributions with γ = 2.3 (top curves) and
γ = 3.5 (bottom curves). The network size is N = 106 and the lower
cutoff is kmin = 3. The upper cutoff is given by kmax = 2

√
N for

γ = 2.3 and NP(kmax) = 1 for γ = 3.5.

by Weber and Porto [35], hereafter called the Weber-Porto
configuration model (WPCM). The degree of each vertex is
drawn according to the degree distribution P(k) and initially
each node has k unconnected stubs. Two stubs are randomly
chosen and connected with probability

Plink(q′, q) = f (q′, q)

fmax
, (3)

where q and q′ are the respective degrees of the chosen
vertices and fmax is the maximum value of

f (q, q′) = 1 + [κnn(q) − 〈k〉e][κnn(q′) − 〈k〉e]

〈kκnn〉e − 〈k〉2
e

, (4)

computed over the whole network. Self- and multiple con-
nections are forbidden. In the absence of degree correlations,
we have κnn = 〈k〉e, implying f (q, q′) = 1 and Plink = 1. See
Ref. [35] for more details.

Figure 1 shows κnn as a function of k for networks obtained
with the WPCM algorithm [35] using different values of γ

and α, with lowest degree kmin = 3. We adopt different upper
cutoffs for the degree distribution. For γ < 3, the structural
cutoff kmax = 2

√
N [37] is used, while for γ > 3, a rigid

cutoff is determined by the condition NP(kmax) = 1 [38]. The
first choice allows us to enhance the effects of hubs and
to approach faster the thermodynamic limit while fulfilling
the criterion kmax <

√〈k〉N necessary to produce uncorrelated
networks in the case α = 0 [37]. The second choice is justified
by numerical reasons explained in Sec. II B. The predeter-
mined scaling law κnn(k) ∼ kα is very well reproduced. Small
deviations for positive or negative α are due to the network
finite size that prevents κnn from decaying or increasing indefi-
nitely with k. The range of the power-law behavior is extended
as the network size increases.
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B. SIS simulations

In the SIS model, each edge of an infected vertex transmits
the epidemic with rate λ, while infected nodes recover spon-
taneously with constant rate μ. The latter is fixed to μ = 1
without loss of generality. The model can be simulated with
the optimized Gillespie scheme proposed in Ref. [22]. See
also Ref. [39] for more details.

We consider quasistationary simulations [40] in which the
dynamics returns to a previously visited active configuration
whenever the absorbing state, consisting of all vertices sus-
ceptible, is visited. This strategy permits us to circumvent the
difficulties of dealing with the absorbing state, which is the
only true stationary state for any finite-size networks. More
details can be found in Refs. [39,41].

The effective transition point λc(N ), above which the epi-
demic remains in an active phase for very long periods, can be
estimated using the position of the maximum of the dynamical
susceptibility [22]

ψ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉 . (5)

The choice of structural (for γ < 3) and rigid (for γ > 3) up-
per cutoffs allows the determination of the epidemic threshold
unambiguously, avoiding multiple peaks and the smearing of
the transition that can appear for SIS on power-law degree dis-
tribution networks, especially with large values of γ [22,27].

C. Mean-field theories for correlated networks

In this section we summarize the predictions of the theo-
retical approaches that will be compared to numerical simula-
tions in Sec. III. For QMF and PQMF approaches, the equa-
tions for uncorrelated and correlated networks are formally
the same: Correlations have only the effect of modifying the
entries of the adjacency matrix Ai j .

1. Correlated heterogeneous mean-field theory

Heterogeneous mean-field theory takes into account
nearest-neighbor correlations by the explicit consideration of
the conditional probability P(k′|k). The HMF equation for the
density of infected vertices with degree k, ρk , is given by [42]

dρk

dt
= −ρk + (1 − ρk )λ

∑

l

kP(l|k)ρl , (6)

which yields an epidemic threshold given by

λcϒ
(1) = 1, (7)

where ϒ (1) is the largest eigenvalue of the connectivity ma-
trix Ckl = kP(l|k). For WPCM networks we have P(l|k) =
Pe(l ) f (l, k), and therefore

Ckl = klP(l )

〈k〉 f (l, k). (8)

In the absence of correlations, Ckl = klP(l )
〈k〉 , implying that

λc = 〈k〉
〈k2〉 [11,42]. It has been shown [11] that the HMF

threshold vanishes for scale-free networks with 2 < γ < 3 in
the thermodynamic limit, irrespective of degree correlations.

2. Quenched mean-field theory

According to the QMF theory, which neglects pairwise
dynamical correlations, the evolution of the probability ρi that
a vertex i is infected is given by [20]

dρi

dt
= −ρi + λ(1 − ρi )

N∑

j=1

Ai jρ j, (9)

where N is the network size. The epidemic threshold is given
by

λQMF
c 
(1) = 1, (10)

where 
(1) is the largest eigenvalue (LEV) of the adjacency
matrix Ai j . In the steady state we have

ρi = λ
∑

j Ai jρ j

1 + λ
∑

j Ai jρ j
. (11)

Using Eq. (11), Goltsev et al. [23] have shown that ρi ∼ v
(1)
i

for λ � λQMF
c , where {v(1)

i } is the principal eigenvector (PEV)
corresponding to the LEV of Ai j ,

∑
i Ai jv

(1)
j = 
(1)v

(1)
i . Thus,

the order parameter ρ = ∑
i ρi/N of the QMF theory vanishes

at λQMF
c as

ρ � a1(λ
(1) − 1), (12)

where

a1(N ) =
∑N

i=1 v
(1)
i

N
∑N

i=1

[
v

(1)
i

]3 . (13)

This same result was obtained independently in Ref. [36].
Within the QMF framework, Eq. (12) works well, close

to the threshold λQMF
c , under the hypothesis that the network

presents a spectral gap, i.e., the second largest eigenvalue of
Ai j is much smaller than the first, 
(1) � 
(2). According to
Eqs. (12) and (13), the QMF theory predicts the existence of
an endemic state, with a finite fraction of infected vertices
above the threshold λQMF

c = 1/
(1), only if a1 ∼ O(1), which
occurs when the PEV is delocalized. Localization can be
quantified by the inverse participation ratio (IPR) for the
normalized PEV [23], defined as

Y4 =
N∑

i=1

[
v

(1)
i

]4
. (14)

If the PEV is delocalized then Y4 ∼ N−1, while Y4 ∼ O(1) if
the PEV is localized on a finite number of vertices, but weaker
forms of localization can be observed [43].

For random uncorrelated power-law networks the PEV is
always localized [43]. For γ < 5/2 it is (weakly) localized
on a subextensive set of nodes coinciding with the maximum
K-core, a subgraph of strongly mutually interconnected nodes
with degree larger than or equal to K [44]. In such a case
Y4 ∼ N (γ−3)/2. For γ > 5/2 it is instead strongly localized
on the largest hub plus its nearest neighbors and Y4 ∼ O(1)
[45]. Hence, within QMF theory the threshold separates
the absorbing phase from an active but strictly nonendemic
state. However this does not imply that QMF predictions
are necessarily flawed. Equation (9) factorizes the state of
nearest neighbors and thus neglects dynamical correlations
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among them. These dynamical correlations actually transmit
the infection from the localized PEV to the rest of the network
and thus may in principle transform the active but localized
state just above λQMF

c into a full-fledged endemic state [25,46].

3. Pair quenched mean-field theory

An improvement with respect to QMF theory is obtained
by taking into account some dynamical correlations using
the pairwise approximation developed in Ref. [26], where all
derivation details can be found. Consider the probability φi j

that a vertex i is susceptible and a neighbor j is infected. The
dynamical system to be solved is

dρi

dt
= −ρi + λ

∑

j

φi jAi j (15)

and

dφi j

dt
= −(2 + λ)φi j + ρ j + λ

∑

l

ωi jφ jl

1 − ρ j
(Ajl − δil )

−λ
∑

l

φi jφil

1 − ρi
(Ail − δl j ), (16)

where ωi j = 1 − φi j − ρi.
Here we develop a bit further the theory to analyze the

steady state near the critical point. Keeping only leading terms
up to second order in ρi in Eq. (16), we obtain

φi j ≈ (2 + λ)ρ j − λρi

2 + 2λ
− ρiρ j + O(ρ3, λρ2), (17)

where we kept only leading order in λ ≈ λc 
 1 [26] for
quadratic terms in ρi. Plugging Eq. (17) in Eq. (15) with
dρi/dt = 0, we obtain

ρi = λ
∑

i Bi j (λ)ρ j

1 + λ
∑

i Bi j (λ)ρ j
, (18)

where

Bi j = 2 + λ

2λ + 2

Ai j

1 + λ2ki
2λ+2

� Ai j

1 + λ2ki
2

(19)

is an effective weighted adjacency matrix. The last passage in
Eq. (19) assumes λ 
 1.

Equation (18) has exactly the same form of the stationary
ρi in Eq. (11), obtained for QMF theory, replacing Ai j by Bi j .
Therefore, all the spectral analysis described in Sec. II C 2
found for QMF theory can be extended to the PQMF case with
the replacement of spectral properties of Ai j by those of Bi j .
For example, the epidemic threshold is given by

λPQMF
c �(1)

(
λPQMF

c

) = 1, (20)

where �(1) is the largest eigenvalue of Bi j . One can check
that this result is exactly the same presented in Ref. [26]
expressed in a different way. For λ � λPQMF

c we have that
ρi ∼ w

(1)
i , where {w(1)

i } is the PEV of Bi j (λPQMF
c ) and

ρ � b1(λ�(1)(λPQMF
c ) − 1), where b1(N ) has the same form

as Eq. (13) replacing vi by wi. Thus, the IPR of {w(1)
i },

denoted by Y4[Bi j], allows us to quantify the localization in
the PQMF theory.
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FIG. 2. Threshold as a function of the network size for (a) γ =
2.3 and (b) γ = 3.5 and different values of α. The lower cutoff is
kmin = 3 for all curves, while the upper cutoff is kmax = 2

√
N for γ <

3 and kmax ∼ N1/γ for γ > 3. Curves are averages over ten networks;
error bars are smaller than symbols.

III. RESULTS

A. Accuracy of theoretical estimates for the epidemic threshold

Figure 2 shows the dependence of the epidemic threshold
as a function of the network size obtained in simulations with
different values of γ and α. We concentrate for the moment on
two values of γ , representative of the cases γ < 5/2 and γ >

3, for which the physical mechanisms underlying the epidemic
transition are clear [47]. Later we will discuss the case 5/2 <

γ < 3, whose interpretation is hampered by extremely long
crossover phenomena in the spectral properties. As we can see
from this figure, all thresholds vanish as N diverges, regardless
of the correlation level α and heterogeneity γ . Compared to
the uncorrelated case, assortative networks (α > 0) have a
smaller threshold, while the threshold is larger for α < 0, i.e.,
disassortative mixing, in agreement with the behavior of the
LEV of the adjacency matrix [14,23]. In the case γ > 3, this
phenomenology can be qualitatively explained by considering
the mechanism of long-range mutual reinfection of hubs
[25,46,48], which triggers the epidemic transition. According
to this mechanism, the subgraph consisting of the hub plus
its nearest neighbors can sustain in isolation an active state
for times long enough to permit the activation of other hubs,
even if they are not directly connected. This mechanism
is at work independently of degree correlations, as long as
distances among hubs increase slowly enough with network
size. In assortative networks, communication among hubs is
enhanced since they have higher probability to be closer; for
disassortative topology the converse is true and larger values
of λ are needed to trigger the transition.

The accuracy of HMF theory is tested with respect to
simulations in Fig. 3. For γ = 2.3, we see a non-negligible
asymptotic discrepancy between HMF theory and simulations
in the case of correlated networks. Interestingly, the HMF
theory appears to overestimate the threshold for disassortative
networks, while it underestimates it for assortative ones. For
larger values of γ the discrepancy is conspicuous and the
epidemic threshold is significantly overestimated, as can be
seen in the insets of Fig. 3.

Comparisons between QMF and PQMF theories and simu-
lations are shown in Figs. 4(a) and 5(a) in the range of network
size 103 � N � 108. For γ = 2.3, both QMF and PQMF
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FIG. 3. Ratio between thresholds of HMF theories (λMF
c ) and

simulations (λc) as a function of the network size for different values
of γ and α. The main panel and the right and left insets correspond
to γ = 2.3, 2.8, and 3.5 respectively. An upper cutoff kmax = 2

√
N

is considered for γ < 3, while for γ = 3.5, kmax ∼ N1/γ . Averages
correspond to ten network realizations and error bars are smaller than
symbols.

theories appear to converge asymptotically to the epidemic
threshold observed in simulations. The PQMF theory displays
a faster convergence than the QMF theory, this effect being en-
hanced for smaller values of α. For γ = 3.5, the predictions of
PQMF and QMF theories succeed, qualitatively, in predicting
that the threshold approaches zero in the thermodynamic limit
even in the presence of correlations. However, the theoretical
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FIG. 4. (a) Comparison of the QMF and PQMF mean-field theo-
ries, (b) IPR, and (c) spectral gap of Ai j and Bi j against size for γ =
2.3 and different values of α. Averages correspond to ten network
realizations. In (b), solid lines are power-law decays Y4 ∼ N−ν , with
ν = (3 − γ )/2 and Y4 ∼ N−1 corresponding to localization in the
maximum K-core and finite set of vertices, respectively. Solid lines
and open symbols correspond to the QMF theory and Ai j analysis,
while dashed lines and closed symbols correspond to the PQMF
theory and critical Bi j .
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FIG. 5. (a) Comparison of the QMF and PQMF theories, (b) IPR,
and (c) spectral gap of Ai j and Bi j against size for γ = 3.5 and
different values of α, using an upper cutoff kmax ∼ N1/γ . Averages
correspond to ten network realizations. Solid lines and open symbols
correspond to the QMF theory and Ai j analysis, while dashed lines
and closed symbols correspond to the PQMF theory and critical Bi j .

threshold estimates depart from simulation results leading to
decreasing ratios λMF

c /λc in the large network limit. We expect
this ratio to decrease asymptotically as 1/ ln(kmax) [46], in
agreement with recent rigorous results [49]. Again, PQMF
theory performs better than QMF theory. In this case, the
improvement of PQMF over QMF theory grows with α.

B. Relation to spectral properties

What is the origin of the discrepancies between theoretical
predictions and numerical results observed in Sec. III A? In
this section we investigate which spectral feature is correlated
with the performance of the theoretical approaches. We con-
sider both QMF and PQMF theories, testing their accuracy
against the spectral properties of adjacency matrices Ai j and
Bi j , respectively.

Let us consider first the case γ = 3.5. The real threshold
is not the QMF one because the PEV is localized. As pointed
out in Ref. [23], this in principle implies that the actual
threshold coincides with the inverse of the largest eigenvalue
corresponding to a delocalized PEV, coinciding with the
HMF threshold λHMF

c = 〈k〉/〈k2〉. Actually, however, the
QMF approach neglects dynamical correlations, which have
the effect of allowing mutual reinfection events among
different hubs in the network. In this way an endemic global
state can be established due to the long-range interactions
among localized states [46] setting the actual threshold to
an intermediate value: λQMF

c < λc < λHMF
c . With this picture

in mind, we can predict that, if the localization is stronger
(higher values of the IPR Y4), the actual threshold will be
farther from λQMF

c and thus the performance (accuracy) of the
QMF approach will be reduced.

We plot the dependence of Y4 on the system size N
for γ = 3.5 in Fig. 5(b): The IPR of Ai j converges to a
finite value in the thermodynamic limit, irrespective of the
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correlation degree, representing a PEV localized on a finite set
of vertices [23,43]. The saturation with size occurs earlier for
disassortative correlations and later for assortative, compared
to the uncorrelated case. In general, for a given size N , Y4 is
larger for smaller α. As expected, a better QMF performance
occurs for smaller Y4.

The IPR analysis for the PQMF theory, involving Bi j , has
a qualitatively similar behavior to QMF theory, but presents
lower values for the IPR. Hence, the PQMF steady-state
solution is less localized than that of the QMF theory. Cor-
respondingly, the PQMF performance is better than the QMF
performance. We also calculate, in Fig. 5(c), the dependence
of the spectral gap on the system size, for both the adjacency
matrix Ai j (involved in QMF theory) and Bi j (in PQMF the-
ory). The spectral gap is defined as the difference 
(1) − 
(2)

between the largest and second largest positive eigenvalues of
the adjacency matrices. The gap of the adjacency matrix Ai j is
small and it decreases as N grows, as predicted by Ref. [50].
The gap is smaller for smaller α. The dependence of the spec-
tral gap of Bi j on size is qualitatively similar to the gap of Ai j .

Notice that, while the amplitude of the spectral gap matters
for the validity of the QMF prediction for the prevalence
above the critical point [Eq. (12)], it does not play any role in
the determination of λQMF

c . Therefore, there is no conceptual
reason for expecting a correlation between QMF performance
and spectral gap size. We find numerically such a correlation
in Fig. 5, but we cannot attribute a causal meaning to it.

Let us consider now γ = 2.3. In this case the physical
mechanism underlying the epidemic transition is different, as
it does not involve the interaction between distant hubs but
rather the extension of activity from the maximum K-core to
the rest of the network. The connection between QMF theory
performance and localization is not easily predictable.

As shown in Fig. 4(b), the IPR for γ = 2.3 follows a power
law Y4 ∼ N−ν , with ν ≈ (3 − γ )/2, which corresponds to the
IPR localized in the maximum K-core of the network [43].
Correlations leave the scaling exponent unchanged, altering
only the prefactor: The smaller the α, the smaller the IPR. This
means that the PEV is still localized on a subextensive fraction
of nodes. However, since Y4 increases with α, the PEV is more
localized for positive α than for negative. The same is true for
the matrix Bi j of the PQMF theory. Interestingly, the effect on
the performance of the theoretical approaches is opposite. The
QMF theory works better for larger Y4 and the PQMF theory
works better for smaller Y4. We have no simple interpretation
for this result.

Figure 4(c) shows the spectral gap for the WPCM networks
with γ = 2.3. In this case the gap increases with network size
and it is smaller for smaller α. This is true also for the spectral
gap of the PQMF theory. Finally, let us observe that there is
almost no difference between the spectral properties of Ai j and
Bi j for γ = 2.3. This is indeed not surprising for α = 0 since
the term λ2ki in the denominator of Eq. (19) is asymptotically
negligible, because λ2

ckmax ∼ k2γ−5
max → 0 as N → ∞ for γ <

5/2.

C. Intermediate case 2.5 < γ < 3

As for the other values of γ , in this range the vanishing of
the threshold with N is observed regardless of the correlation
pattern. The localization phenomenon of the PEV in the case
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FIG. 6. (a) Comparison of the QMF and PQMF theories, (b) IPR,
and (c) spectral gap of Ai j and Bi j against size for γ = 2.8 and
different values of α, using an upper cutoff kmax = 2

√
N . Averages

correspond to ten network realizations. Solid lines and open symbols
correspond to the QMF theory and Ai j analysis, while dashed lines
and closed symbols correspond to the PQMF theory and critical Bi j .

5/2 < γ < 3 is asymptotically analogous to the case γ > 3.
However, very strong crossover effects are observed in this
case, because of the presence of a localization process on
the maximum K-core (as for γ < 5/2) competing with the
localization around the hub [43]. As a consequence, already in
the uncorrelated case, the PEV gets strongly localized around
the largest hub only for very large values of N . Correlations
further complicate the picture: Figure 6(b) shows that disas-
sortative correlations accelerate the convergence to the final
localized state. For α > 0 instead, Y4 is a decreasing function
of N . The upward bend of the curve hints at an incipient
crossover, but one cannot exclude that the asymptotic behavior
is different for α > 0. A similar pattern is observed for the
case of the spectral gap [Fig. 6(c)].

With regard to the performance of the theoretical ap-
proaches, for negative or zero correlations the scenario per-
fectly matches what happens for γ > 3: All theories somehow
fail in capturing the way the threshold vanishes, with the
PQMF theory being less inaccurate than the others. In the case
α = 0.2 numerical results seem to suggest that both theories
describe quite well how the threshold changes with the system
size. However, the large crossover effects mentioned above do
not allow one to draw any firm conclusion.

We can summarize our findings by stating that the perfor-
mance in predicting the behavior of epidemic threshold of the
QMF and PQMF theories on WPCM networks is correlated
with the size of the spectral gap and the IPR of the PEV of the
respective Ai j and Bi j matrices that rule the prevalence near
the transition point. A large spectral gap or a low IPR leads
to a good performance of the mean-field theories, while the
converse, small gap or large IPR, leads to deviations from the
theoretical predictions. The QMF theory seems to be more
correlated with the spectral gap, while the PQMF theory is
with the IPR, at least in the regime where the gap is significant
and the theories are accurate.
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FIG. 7. Scatter plots for a set of 99 real networks (see Appendix). Each point corresponds to a single network. (a) Spectral gap and (b) IPR
of the matrix Bi j plotted versus the corresponding values for the matrix Ai j . (c) Relative errors of QMF and PQMF theoretical predictions with
respect to the simulation, defined by Eq. (21). Dashed red lines denote the diagonal. Relative errors of the QMF theory are plotted vs (d) the
spectral gap, (e) the IPR, and (f) the Pearson coefficient.

D. Real networks

We extend our analysis to a set of 99 real-world networks
encompassing a broad range of origins, sizes, and topological
features (see the Appendix). The spectral gap and IPR of
matrices Ai j and Bi j are compared in the scatter plots shown
in Figs. 7(a) and 7(b). We see that the spectral gap is almost
the same for both adjacency matrices, while the IPR extracted
from Bi j is smaller than the one extracted from Ai j , in particu-
lar in the range of large IPR values. This shows that the PQMF
matrices Bi j are less localized than the matrix Ai j , relevant for
QMF theory. The relative errors between the QMF or PQMF
theory and simulations, defined as

ε = λc − λMF
c

λc
, (21)

are compared in the scatter plot shown in Fig. 7(c). As in the
case of random networks, the PQMF theory outperforms the
QMF theory for all networks investigated.

On this set of networks we test the relation observed for
synthetic correlated networks, connecting qualitatively the
accuracy of QMF and PQMF threshold predictions with the
properties of the adjacency matrices (spectral gap and IPR),
respectively, and with the Pearson coefficient P, measuring
network topological correlations. Here P is defined as [2]

P =
∑

i j

(
Ai j − kik j

N〈k〉
)
kik j

∑
i j

(
kiδi j − kik j

N〈k〉
)
kik j

. (22)

The Pearson coefficient lies in the interval −1 < P < 1, being
negative for disassortative, null for uncorrelated, and positive

for assortative networks. The analyses for QMF theory are
shown in the scatter plots of the relative error ε against the
corresponding topological properties in Figs. 7(d) and 7(e).
Qualitatively similar patterns obtained for PQMF theory are
not shown. We can see that in real networks, the correlation
between the performance of the theoretical prediction and
the spectral gap is on average the same as that observed
for the WPCM: A larger spectral gap is associated with
a higher accuracy. The inverse correlation with the IPR is
again preserved: A smaller Y4 corresponds to a more accurate
prediction. We do not find a significant correlation with the
Pearson coefficient. Statistical analyses were performed using
the correlation coefficients obtained from either power law, in
the case of the spectral gap and IPR, or from exponential, in
the case of the Pearson coefficient, regressions of the scatter
plots. We obtain strong statistical correlations with |r| �
0.70 (p < 10−5) for both QMF and PQMF theories using
either the IPR or spectral gap of the corresponding matrices.
Values r � 0.2 (p > 0.05) for correlation with the Pearson
coefficient of the network confirm no significant statistical
correlations.

E. Epidemic prevalence near the epidemic threshold

Figure 2 shows that the QMF prediction for the epidemic
threshold tends to the same limit of numerical simulations for
both uncorrelated and correlated networks for γ = 2.3. This
observation naturally leads to one wonder whether the QMF
theory is asymptotically an exact description for SIS dynamics
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FIG. 8. Rescaled average density as a function of the distance
from the epidemic threshold. Quasistationary simulations for differ-
ent sizes are indicated in the legend. The solid line is a numerical
integration of the QMF theory [Eq. (9)] for N = 107, while the
dashed line is a power law with exponent predicted analytically
in Ref. [51]. We used uncorrelated networks (α = 0) with degree
exponent γ = 2.3 and kmax = 2

√
N .

on random networks with γ < 5/2. In order to answer this
question we test the exactness of the other prediction of the
QMF theory, Eq. (12), stating that the fraction of infected indi-
viduals decays to zero linearly as the threshold is approached
from above. Numerical results, for the case of uncorrelated
networks α = 0 are shown in Fig. 8, where the density and
the infection rates are rescaled to conform to Eq. (12). We can
clearly see the existence of two scaling regimes. For λ
1 −
1 
 1 the density scales with an exponent larger than the
prediction β(QMF) = 1. The observed exponent is consistent
with the exact result of Ref. [51], β = 1/(3 − γ ), which is
also (probably accidentally) the value predicted by HMF the-
ory [52]. This exponent is observed in a regime very close to
the transition, where the system is kept asymptotically active
only by virtue of the quasistationary method. We performed
a nonperturbative analysis by integrating the QMF equations
using a fourth-order Runge-Kutta method for λ > 1


(1) for
N = 107. A comparison with simulation results confirms that
the QMF theory correctly predicts the linear behavior of
the prevalence ρ around the epidemic transition, but only
sufficiently far from it. In the immediate neighborhood of the
threshold the decay is more rapid.

IV. CONCLUSION

The determination of the epidemic threshold in models of
disease spreading in complex topologies is a nontrivial prob-
lem in network science. Several theoretical approaches have
been proposed, applying approximations with different levels
of stringency, that provide contrasting predictions on the
epidemic threshold. Among the main theoretical approaches
at the mean-field level we can consider, in decreasing order
of approximation, the heterogeneous mean-field theory,
neglecting dynamical correlations and the actual pattern of
connections in the network (preserving only its statistical

properties); the quenched mean-field theory, also neglecting
dynamical correlations but keeping the network structure;
and the pair quenched mean-field theory, which incorporates
dynamical correlations between pairs of connected nodes. In
this paper we have presented a comparison of the predictions
of these three approximate theories for the case of the
susceptible-infected-susceptible epidemic model, focusing on
the case of networks with a power-law degree distribution
and degree correlations, representative of many real network
systems.

Comparing the predictions with actual stochastic simula-
tions of the SIS process, we observed that, independently of
the degree of correlations, the predictions of PQMF theory
are more accurate than those of QMF theory, while both
outperform HMF theory, which fails to predict the vanishing
threshold observed for a degree exponent γ > 3. While over-
all PQMF theory is more accurate than QMF theory, the two
approximations show different levels of accuracy when com-
pared in networks with different levels of correlations. Thus,
for the case of synthetic networks generated with the Weber-
Porto algorithm [35], we observed that, for fixed network
size and degree heterogeneity, QMF predictions are more
accurate in assortative networks than in disassortative ones.
On the other hand, PQMF theory is increasingly accurate in
the presence of disassortative correlations for small degree
exponent, while it is more accurate when correlations are
assortative if the degree exponent is large.

We proposed a criterion for the accuracy of the QMF and
PQMF approaches based on the spectral properties of the net-
works. We observed that the accuracy is positively correlated
with the amplitude of the spectral gap of the adjacency matrix
and is inversely related to the degree of localization of the
principal eigenvalue, as measured by the inverse participation
ratio. This general observation was corroborated by the anal-
ysis of a large set of real correlated networks, covering a wide
range of sizes and topological features.

Additionally, we investigated the behavior of the order pa-
rameter of the transition, measured in terms of the prevalence
or density of infected nodes in the steady state, for γ < 5/2.
We observe that, in uncorrelated synthetic networks, the linear
decay (critical exponent β = 1) predicted by QMF theory
is observed in stochastic simulations not very close to the
transition. When fluctuation effects become more important,
i.e., very close to the transition, the observed exponent β

crosses over to the value β = 1/(3 − γ ), in agreement with
rigorous mathematical results [51].
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TABLE I. Properties of the set with 99 networks of distinct types. We show the network size N , the average degree 〈k〉, the Pearson
coefficient P, the IPRs of both Ai j (IPRA) and critical Bi j (IPRB) matrices, the spectral gap of Ai j (�
1,2

A ), and the thresholds of simulations
(λc), QMF theory (λQMF

c ), and PQMF theory (λPQMF
c ).

Network N 〈k〉 P IPRA IPRB �
1,2
A λc λQMF

c λPQMF
c

Karate club 34 4.59 −0.476 0.0730 0.0649 1.75 0.235 0.149 0.181
Radoslaw Email 167 38.9 −0.295 0.0133 0.0132 45.2 0.0191 0.0165 0.0168
Spanish B 12643 8.70 −0.290 0.0246 0.0174 47.5 0.0105 0.00897 0.00951
Spanish A 11558 7.45 −0.282 0.0190 0.0150 57.5 0.0113 0.00985 0.0103
US Air Transportation 500 11.9 −0.268 0.0176 0.0173 29.3 0.0251 0.0208 0.0214
Little Rock Lake 183 26.6 −0.266 0.0148 0.0145 14.6 0.0291 0.0242 0.0249
Japanese 2698 5.93 −0.259 0.0296 0.0214 21.7 0.0281 0.0233 0.0250
English 7377 12.0 −0.237 0.0120 0.0103 65.3 0.0101 0.00914 0.0094
French 8308 5.74 −0.233 0.0351 0.0200 26.3 0.0197 0.0165 0.0179
Jung 6120 16.4 −0.233 0.0478 0.0335 46.9 0.00810 0.00703 0.00743
JDK 6434 16.7 −0.223 0.0484 0.0341 47.6 0.00810 0.00696 0.00737
Political blogs 1222 27.4 −0.221 0.00701 0.00687 14.1 0.0153 0.0135 0.0137
Internet 22963 4.22 −0.198 0.0146 0.0116 18.4 0.0165 0.0140 0.0148
AS Caida 26475 4.03 −0.195 0.0240 0.0140 18.5 0.0173 0.0144 0.0157
EU email 224832 3.02 −0.189 0.00340 0.00328 15.2 0.0107 0.00975 0.0101
UC Irvine 1893 14.6 −0.188 0.00643 0.00608 28.6 0.0233 0.0208 0.0214
Linux, mailing list 24567 12.9 −0.185 0.00395 0.00386 147 0.00490 0.00448 0.00452
AS Oregon 6474 3.88 −0.182 0.0868 0.0429 19.1 0.0281 0.0216 0.0249
Linux, soft. 30817 13.8 −0.175 0.0256 0.0197 94.1 0.00670 0.00585 0.00616
Gnutella, 25 August 2002 22663 4.83 −0.173 0.000815 0.000464 1.79 0.108 0.0916 0.104
Les Miserables 77 6.60 −0.165 0.0492 0.0482 3.05 0.123 0.0833 0.0919
Petster-cats 148826 73.2 −0.164 0.00687 0.00635 405 0.000900 0.000847 0.000855
C. Elegans, neural 297 14.5 −0.163 0.0189 0.0176 10.1 0.0511 0.0410 0.0434
Libimseti 220970 156 −0.139 0.000406 0.000398 348 0.00110 0.00106 0.00106
David Copperfield 112 7.59 −0.129 0.0473 0.0397 7.57 0.103 0.0760 0.0844
Political books 105 8.40 −0.128 0.0444 0.0419 0.313 0.133 0.0838 0.0927
Google 15763 18.9 −0.122 0.0430 0.0303 65.1 0.00670 0.00575 0.00608
Social 3 32 5.00 −0.119 0.0665 0.0568 2.16 0.265 0.167 0.205
Euron 33696 10.7 −0.116 0.00379 0.00361 43.9 0.00910 0.00844 0.00859
Web Stanford 255265 15.2 −0.116 0.0245 0.0230 117 0.00250 0.00223 0.0023
Bay Wet 128 32.4 −0.112 0.0151 0.0147 25.6 0.0301 0.0252 0.0259
Bay Dry 128 32.9 −0.104 0.0148 0.0145 25.7 0.0301 0.0249 0.0256
Gnutella, 30 August 2002 36646 4.82 −0.104 0.000672 0.000604 2.19 0.0897 0.0773 0.0856
Gnutella, 31 August 2002 62561 4.73 −0.0927 0.000921 0.000731 1.85 0.0881 0.0759 0.0844
Petster-hamster 1788 14.0 −0.0889 0.0100 0.00938 21.6 0.0249 0.0217 0.0223
Petster-dogs 426485 40.1 −0.0884 0.00176 0.00157 300 0.00140 0.00135 0.00136
Network Science 379 4.82 −0.0817 0.0794 0.0705 2.21 0.230 0.0964 0.110
AS Skitter 1694616 13.1 −0.0814 0.00746 0.00709 251 0.00160 0.00149 0.00151
Slashdot zoo 79116 11.8 −0.0746 0.00229 0.00218 42.8 0.00830 0.00767 0.00778
Wikipedia, edits 113123 35.8 −0.0651 0.00295 0.00266 169 0.0027 0.00253 0.00255
CiteSeer 365154 9.43 −0.0632 0.0177 0.0110 4.54 0.0202 0.0172 0.0183
Cora 23166 7.70 −0.0553 0.0100 0.00898 3.66 0.0381 0.0317 0.0334
Thesaurus 23132 25.7 −0.0477 0.0017 0.00156 44.7 0.0105 0.0100 0.0102
DBLP, citations 12495 7.93 −0.0461 0.0282 0.0174 12.0 0.0277 0.0234 0.0251
Dolphins 62 5.13 −0.0436 0.0526 0.0493 1.26 0.231 0.139 0.164
DBpedia 3915921 6.42 −0.0427 0.201 0.0840 153 0.00190 0.00140 0.00180
Wikipedia, pages 2070367 40.9 −0.0418 0.00477 0.00294 194 0.00130 0.00124 0.00127
Epinions 75877 10.7 −0.0406 0.00219 0.00211 79.8 0.00570 0.00543 0.00548
Slashdot 51083 4.56 −0.0347 0.144 0.0347 20.2 0.0219 0.0170 0.0201
Hep-Th, citations 27400 25.7 −0.0305 0.00931 0.00705 20.3 0.00990 0.00899 0.00922
S 838 512 3.20 −0.0300 0.179 0.0340 0.889 0.382 0.200 0.297
Gowalla 196591 9.67 −0.0293 0.0180 0.00764 60.0 0.00650 0.00585 0.00609
Amazon, 12 March 2003 400727 11.7 −0.0203 0.118 0.0381 7.97 0.0273 0.0178 0.0227
Amazon, 6 June 2003 403364 12.1 −0.0176 0.0891 0.0279 7.87 0.0252 0.0175 0.0219
Amazon, 5 May 2003 410236 11.9 −0.0169 0.0843 0.0309 7.79 0.0249 0.0172 0.0214
Air traffic 1226 3.93 −0.0152 0.0191 0.0154 1.38 0.152 0.109 0.127
Gnutella, 4 August 2002 10876 7.35 −0.0132 0.00469 0.00377 4.26 0.0685 0.0586 0.0637
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TABLE I. (Continued.)

Network N 〈k〉 P IPRA IPRB �
1,2
A λc λQMF

c λPQMF
c

Gnutella, 24 August 2002 26498 4.93 −0.00778 0.214 0.0800 8.68 0.0865 0.0511 0.0700
Hep-Ph, citations 34401 24.5 −0.00644 0.00421 0.00323 3.61 0.0143 0.0131 0.0133
S 420 252 3.17 −0.00591 0.0542 0.0172 0.398 0.400 0.229 0.320
Amazon, 2 May 2003 262111 6.87 −0.00248 0.106 0.0114 0.771 0.0605 0.0425 0.0508
S 208 122 3.10 −0.00201 0.0419 0.0301 0.475 0.437 0.244 0.338
Digg 29652 5.72 0.00265 0.00457 0.00346 12.5 0.0369 0.0324 0.0348
US Power grid 4941 2.67 0.00346 0.0409 0.0386 0.874 0.396 0.134 0.157
Gnutella, 5 August 2002 8842 7.20 0.0146 0.00931 0.00855 7.68 0.0505 0.0425 0.0453
Jazz 198 27.7 0.0202 0.0143 0.0141 12.6 0.0301 0.0250 0.0257
Gnutella, 9 August 2002 8104 6.42 0.0331 0.00782 0.00737 13.1 0.0409 0.0351 0.0370
Gnutella, 8 August 2002 6299 6.60 0.0355 0.00795 0.00752 13.7 0.0413 0.0352 0.0371
LiveJournal 5189808 18.8 0.0394 0.00157 0.00157 42.7 0.00240 0.00186 0.00186
High school, 2012 180 24.7 0.0464 0.0102 0.0101 4.49 0.0401 0.0332 0.0344
Open flights 2905 10.8 0.0489 0.00963 0.00942 20.6 0.0181 0.0159 0.0162
Gnutella, 6 August 2002 8717 7.23 0.0516 0.0103 0.00957 3.20 0.0545 0.0447 0.0478
URV email 1133 9.62 0.0782 0.00956 0.00865 3.78 0.0581 0.0482 0.0512
High school, 2011 126 27.1 0.0829 0.0173 0.0171 11.6 0.0361 0.0294 0.0304
DBLP, collaborations 1137114 8.83 0.0964 0.00797 0.00840 0.0594 0.0113 0.00847 0.00855
MathSciNet 332689 4.93 0.103 0.0110 0.0103 1.56 0.0347 0.0277 0.0291
Social 1 67 4.24 0.103 0.0486 0.0418 0.975 0.292 0.179 0.223
Cond-Mat, 1993–2003 21363 8.55 0.125 0.0103 0.00947 7.41 0.0309 0.0264 0.0275
Protein 1 95 4.48 0.129 0.0723 0.0670 0.314 0.384 0.187 0.232
Cond-Mat, 1995–1999 13861 6.44 0.157 0.0163 0.0146 3.34 0.0509 0.0400 0.0424
College football 115 10.7 0.162 0.00977 0.00967 1.50 0.124 0.0928 0.102
Cond-Mat, 1995–2003 27519 8.44 0.166 0.00917 0.00847 6.09 0.0293 0.0248 0.0258
US Patents 3764117 8.77 0.168 0.0103 0.0100 8.05 0.0113 0.00885 0.00899
Facebook links 63392 25.8 0.177 0.00143 0.00140 25.8 0.00810 0.00754 0.00762
Cond-Mat, 1995–2005 36458 9.42 0.177 0.00814 0.00761 12.7 0.0223 0.0195 0.0201
Hep-Th, 1995-1999 5835 4.74 0.185 0.0523 0.0523 3.70 0.0913 0.0554 0.0587
AstroPhys, 1993–2003 17903 22.0 0.201 0.00447 0.00432 18.9 0.0117 0.0106 0.0108
Protein 2 53 4.64 0.209 0.0536 0.0500 0.722 0.305 0.172 0.210
Facebook wall 43953 8.30 0.216 0.00229 0.00214 7.86 0.0277 0.0252 0.0261
Dublin 410 13.5 0.226 0.0263 0.0261 3.62 0.0601 0.0428 0.0448
Actor coll. net. 374511 80.2 0.226 0.000600 0.000599 429 0.00120 0.00118 0.00118
Astrophysics 14845 16.1 0.228 0.00504 0.00494 5.64 0.0155 0.0135 0.0138
PGP 10680 4.55 0.238 0.0166 0.0163 4.25 0.0301 0.0236 0.0243
Hep-Th, 1993–2003 8638 5.74 0.239 0.0312 0.0312 8.03 0.0669 0.0322 0.0333
Reactome 5973 48.8 0.241 0.00414 0.00413 27.2 0.00550 0.00481 0.00483
Flickr 105722 43.8 0.247 0.00105 0.00105 101 0.00170 0.00162 0.00163
E. coli, transcription 97 4.37 0.412 0.0854 0.0807 0.327 0.328 0.153 0.184
Hep-Ph, 1993–2003 11204 21.0 0.630 0.00389 0.00389 153 0.00450 0.00408 0.0041
GR-QC, 1993–2003 4158 6.46 0.639 0.0209 0.0209 7.49 0.0273 0.0219 0.0225

APPENDIX: SUMMARY OF REAL
NETWORK PROPERTIES

We consider 99 real networks with diverse structural prop-
erties, based on the lists of Refs. [53,54]. Here we investi-
gate their giant connected components, after symmetrizing all

edges (weighted and/or directed) and avoiding multiple and
self-connections. The list of networks with some topological
properties and epidemic (SIS) parameters is shown in Table I.
For detailed information about the original references for all
the networks, see Refs. [53,54].
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