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Antiunitary symmetry protected higher-order topological phases
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Higher-order topological (HOT) phases feature boundary (such as corner and hinge) modes of codimension
dc > 1. We here identify an antiunitary operator that ensures the spectral symmetry of a two-dimensional HOT
insulator and the existence of cornered localized states (dc = 2) at precise zero energy. Such an antiunitary
symmetry allows us to construct a generalized HOT insulator that continues to host corner modes even in the
presence of a weak anomalous Hall insulator and spin-orbital density-wave orderings, and is characterized by
a quantized quadrupolar moment Qxy = 0.5. Similar conclusions can be drawn for the time-reversal symmetry
breaking HOT p + id superconductor and the corner localized Majorana zero modes survive even in the presence
of weak Zeeman coupling and s-wave pairing. Such HOT insulators also serve as the building blocks of three-
dimensional second-order Weyl semimetals, supporting one-dimensional hinge modes.

DOI: 10.1103/PhysRevResearch.1.032048

Introduction. The hallmark of topological phases of matter
is the presence of gapless modes at the boundary, protected
by the nontrivial bulk topological invariant. Traditionally,
a d-dimensional bulk topological phase (insulating or gap-
less) hosts boundary modes that are localized on (d − 1)-
dimensional surfaces, characterized by codimension dc = 1
[1–7]. Nevertheless, the family of topological phases of matter
nowadays includes its higher-order cousins, and an nth-order
topological phase features boundary modes of codimension
dc = n > 1 [8], such as the corner (with dc = d) and hinge
(with dc = d − 1) states of topological insulators (electri-
cal and thermal) and semimetals [8–39]. In this language,
the traditional topological phases are first order. While the
bulk topological invariant assures the existence of boundary
modes, often (if not always) the localized topological modes
get pinned at precise zero energy due to the spectral symmetry,
which we exploit here to propose the most general setup for
a two-dimensional higher-order topological (HOT) insulator,
characterized by a quantized quadrupolar moment Qxy = 0.5
and supports four corner localized zero-energy modes. The
central results are summarized in the phase diagram, shown in
Fig. 1.

The HOT phases can be constructed (at least, in principle)
by systematically reducing the dimensionality of the boundary
modes at the cost of some discrete crystalline and fundamental
(such as time-reversal) symmetries in the bulk of the system.
For example, a two-dimensional HOT insulator, supporting
four corner localized zero-energy modes (d = 0, dc = 2), can
be realized in the presence of a fourfold (C4) and time-reversal
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(T ) symmetry breaking perturbation that acts as a mass for
two one-dimensional counterpropagating helical edge modes
(d = 1, dc = 1) of a first-order topological insulator. The
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FIG. 1. Phase diagram of a time-reversal and C4 symmetry
breaking Dirac insulator, represented by the Hamiltonian operator
H gen

HOT = ĥ0 + ĥ1 + ĥp for t = t0 = m = 1 [Eqs. (1) and (2)]. For
small �1 and �2, the system supports four zero-energy corner modes
(Fig. 3), protected by an antiunitary operator (A) and representing a
generalized higher-order topological insulator (GHOTI). For charged
fermions GHOTI is characterized by a quantized quadrupolar mo-
ment Qxy = 0.5. The bulk band gap closes either at the � point (solid
line) or along the �-M line (dashed line) (Fig. 2) beyond which
the system becomes a trivial or normal insulator (NI), with Qxy =
0 for charged fermions. The phase diagram possesses a reflection
symmetry about (�1, �2) = (0, 0), where the bands recover twofold
degeneracy [see Fig. 2 (left column)], and the system describes a
regular HOTI (red dot). The phase boundaries do not depend on �

(C4 symmetry breaking mass).
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FIG. 2. (a) Band structure of a time-reversal and fourfold symmetry breaking two-dimensional Dirac insulator (bands possess twofold
degeneracy), described by the tight-binding model from Eq. (1) for t = t0 = m = � = 1, and �1 = �2 = 0. Along the vertical axis energy is
measured in units of t . Effects of two perturbations [�1 and �2, see Eq. (2)] are shown in the rest of the panels. We set �1 = 0.50 in (b), 1.00
in (c), and 1.50 in (d), and �2 = 0 for (b)–(d). For (e)–(g) �1 = 0, but �2 = 0.75 in (e), 1.22 in (f), and 1.69 in (g). We here take the path
� → X → M → � in the Brillouin zone, where � = (0, 0), X = (0, 1) π

a , and M = (1, 1) π

a , and a is the lattice spacing. The band gap closes
either at the � point [see (c)] or along the �-M line [see (f)], respectively yielding the phase boundaries between GHOTI and NI, shown by the
solid and dashed lines in Fig. 1.

corresponding effective single-particle Hamiltonian can be
decomposed as ĥ2D

HOT = ĥ0 + ĥ1, with

ĥ0 = t
2∑

j=1

sin(k ja)� j +
⎡
⎣m + t0

2∑
j=1

[cos(k ja) − 1]

⎤
⎦�3,

ĥ1 = �[cos(kxa) − cos(kya)]�4, (1)

where � j’s are mutually anticommuting four-component
Hermitian matrices, satisfying {� j, �k} = 2δ jk for j, k =
1, . . . , 5, a is the lattice spacing (set to be unity), and k is
spatial momenta. For 0 < m/t0 < 2, ĥ0 describes a first-order
topological insulator. But, depending on the spinor basis and
the corresponding representation of � matrices (about which
more in a moment), this phase represents a quantum spin-Hall
insulator (QSHI) or a topological p-wave pairing. On the other
hand, ĥ1 lacks both C4 and T symmetries. It (1) acts as a mass
for the edge modes, since {ĥ1, ĥ0} = 0, and (2) changes sign
under the C4 rotation, thus assuming the profile of a domain
wall. Then a generalized Jackiw-Rebbi index theorem [40]
guarantees the existence of four corner localized zero-energy
modes, with dc = 2. We then realize a second-order topolog-
ical insulator. Respectively for charged and neutral fermions,
ĥ1 represents either a spin-orbital density-wave ordering and
a d-wave pairing. In the latter case, the resulting phase stands
as HOT p + id pairing [27].

We here seek to answer the following question: What
is the most general form of the Hamiltonian operator that
supports topologically protected corner modes at precise zero
energy and describes a two-dimensional HOT insulator? We
note that the corner modes are pinned at zero energy due to
the spectral symmetry of ĥ2D

HOT, generated by a unitary (U )
as well as antiunitary (A) operators, such that {ĥ2D

HOT,U } =
0 = {ĥ2D

HOT, A}. Since the maximal number of mutually
anticommuting four-component � matrices is five and only
four of them appear in ĥ2D

HOT, one is always guaranteed to
find U = �5. On the other hand, the existence of A can be

assured in the following way. Note all representations of
mutually anticommuting four-component Hermitian � ma-
trices are unitarily equivalent. Hence, without any loss of
generality, we commit to a representation in which �1 and �2

(�3 and �4) are purely real (imaginary) [41–43]. Then A = K ,
where K is the complex conjugation [44]. Identification of the
antiunitary operator A allows us to construct the most general
form of the Hamitonian operator ĥgen

HOT = ĥ2D
HOT + ĥp, such that

{ĥgen
HOT, A} = 0 (with real �1 and �2), where

ĥp = �1(i�1�2) + �2(i�3�4) ≡ �1�12 + �2�34. (2)

For small �1 and �2, the system continues to support
four zero-energy corner modes (see Fig. 3) and a quantized
quadrupolar moment Qxy = 0.5 (modulo 1). The resulting
phase then describes a two-dimensional generalized higher-
order topological insulator (GHOTI). However, for suffi-
ciently large �1 or �2, the system enters into a trivial or nor-
mal insulating phase, where Qxy = 0 (modulo 1), following a
band gap closing (see Fig. 2). These findings are summarized
in Fig. 1. The physical meanings of �1 and �2 are of course
representation dependent [45].

Charged fermions. We first focus on charged
fermions and introduce a four-component spinor
��

k = (ck
A,↑, ck

B,↑, ck
A,↓, ck

B,↓), where ck
X,σ is the fermion

annihilation operator on sublattice/orbital X = A, B with spin
projection σ = ↑,↓ and momenta k. Then ĥ0 describes a
QSHI (for 0 < m/t0 < 2), when the � matrices are �1 = σ3τ1,
�2 = σ0τ2, �3 = σ0τ3, �4 = σ1τ1, and �5 = σ2τ1. The Pauli
matrices σ(τ) operate on the spin (sublattice/orbital) degrees
of freedom. In this representation A = �1K , and �1 (�2)
corresponds to anomalous charge Hall (spin and orbital
density-wave) order.

Note that ĥ0 preserves both time-reversal (T ) and parity
(P) or inversion symmetries. Under the reversal of time, k →
−k and �k → σ2τ0�−k. Hence, T = �1�4K and T 2 = −1.
Under the spatial inversion, r → −r and �k → σ0τ3�−k,
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FIG. 3. Local density of states associated with four near (due to finite system size) zero-energy corner modes for (a) �1 = 0 = �2 (regular
HOT insulator), (b) �1 = 0.50, �2 = 0, (c) �1 = 0.85, �2 = 0, (d) �1 = 0, �2 = 0.50, and (e) �1 = 0, �2 = 0.80 [see Eqs. (1) and (2)].
With increasing �1 or �2, even though the corner localization of zero modes decreases monotonically, the system continues to describe a
GHOTI with quantized quadrupole moment Qxy = 0.5, when they are small (see Fig. 1). Also in a periodic system (devoid of a corner mode)
Qxy = 0.5, suggesting that GHOTI is a bulk topological phase. For large enough �1 or �2, the corner modes disappear (not shown explicitly)
and system becomes a trivial insulator. Numerical analyses are performed in a system with linear dimension L = 20 in both the x and y
directions, and for t = t0 = m = 1 and � = 0.50.

yielding P = �3. By contrast, ĥ1 breaks T , P , as well as dis-
crete C4 rotation about the z axis (Ĉz

4), under which (kx, ky) →
(ky,−kx ) and Ĉz

4 = exp [i π
4 σ3τ3] ≡ exp [i π

4 �12]. Nonetheless,
one can define a “pseudo” time-reversal operator Tps =
iσ2τ3K = �2�5K , under which r → −r as well, such that
[ĥ2D

HOT, Tps] = 0 and T 2
ps = −1. Consequently, the valence and

conduction bands of a HOT insulator (�1 = 0 = �2) possess
twofold degeneracy [see Fig. 2 (first column)].

Once we turn on ĥp [see Eq. (2)], the bands lose the twofold
degeneracy (see Fig. 2). Note that under T , P , and Tps, the
term proportional to �1 (�2) is odd (even), even (odd), and
odd (odd). Therefore, it is impossible to find an antiunitary op-
erator that commutes with ĥgen

HOT and squares to −1. As a result,
the energy spectra of ĥgen

HOT only contains nondegenerate bands.
Still {ĥgen

HOT, A} = 0, assuring the spectral symmetry among
the bands about the zero energy. It is worth pointing out that
ĥgen

HOT is algebraically similar to the generalized Jackiw-Rossi
Hamiltonian, yielding zero-energy modes bound to the core
of a vortex in d = 2 [42,43,46–48].

Next, we assess the stability of the HOT insulator in the
presence of two perturbations, �1 and �2. As shown in Fig. 2
(second column), despite losing the twofold degeneracy, the
bands are still gapped for small �1 and/or �2. But, at an
intermediate �1 or �2 the band gap closes either at the �

point (top row) or along the �-M line (bottom row) of the
Brillouin zone [see Fig. 2 (third column)]. The line of the band
gap closing at the � point is given by �1 = [m2 + �2

2]1/2 (see
the solid line in Fig. 1). On the other hand, the gap closing
along the �-M line takes place at momenta k = (±,±)k∗
and the corresponding phase boundary (the dashed line in
Fig. 1) is determined by �2 = [�2

1 + 2t2
0 sin2(k∗)]

1/2
, where

k∗ = cos−1 ( m−2t0
2t0

). At the gap closing points, the system
is described in terms of linearly dispersing massless two-
component Weyl fermions at low energies. For stronger �1

or �2, the system reenters into an insulating (but trivial)
phase (see the fourth column of Fig. 2). Note that the phase
boundaries between GHOTI and the trivial insulator do not
depend on �, as ĥ1 vanishes at the � point and along
the �-M line.

We now anchor the topological nature of these insulators,
separated by a band gap closing. To this end, we numerically

diagonalize the effective tight-binding model, namely, ĥgen
HOT,

on a square lattice of linear dimension L and with an open
boundary in each direction for various choices of �1 and
�2. The results are shown in Fig. 3. For �1 = 0 = �2,
the system supports four near (due to a finite system size)
zero-energy states that are highly localized near the corner
of the system, yielding a conventional HOT insulator [see
Fig. 3(a)].

A HOT insulator can be identified from the quantized
quadrupolar moment Qxy = 1/2 (modulo 1) [49–51]. In order
to compute Qxy, we first evaluate

n = Re

[
− i

2π
Tr

(
ln

{
U † exp

[
2π i

∑
r

q̂xy(r)

]
U

})]
,

(3)

where q̂xy(r) = xyn̂(r)/L2 and n̂(r) is the number opera-
tor at r = (x, y), and U is constructed by columnwise ar-
ranging the eigenvectors for the negative energy states. The
quadrupolar moment is defined as Qxy = n − nal, where nal =
(1/2)

∑
r xy/L2 represents n in the atomic limit and at half

filling. Indeed, for a HOT insulator, we find Qxy = 0.5 (within
numerical accuracy). While a quantized quadrupolar mo-
ment is solely supported by the C4 symmetry breaking Dirac
mass (ĥ1), the antiunitary operator (A) allows us to construct
GHOTI.

For finite but small �1 and/ or �2, the system continues
to support four corner localized zero-energy modes, and de-
scribes a GHOTI [see Figs. 3(b)–3(e)], with Qxy = 0.5. How-
ever, with increasing �1 or �2, they gradually lose support
at the corners. But, the system still continues to describe a
GHOTI up to critical values of �1 and �2. Finally, beyond
the band gap closing the system enters into a trivial insulating
phase, where Qxy = 0. Hence, ĥgen

HOT describes a HOT phase
for small �1 or �2.

Before leaving the territory of charged fermions, we
demonstrate the applicability of the above construction of
GHOTI in the context of the original model of the two-
dimensional HOT insulator introduced in Ref. [8], the
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Belancazar-Bernevig-Hughes (BBH) model. The correspond-
ing Hamiltonian operator reads ĥBBH

HOT = ĥ′
1 + ĥ′

2, with

ĥ′
j = λ1 sin(k ja)γ j + [β + λ2 cos(k ja)]γ2+ j, (4)

for j = 1, 2, where γ j’s are mutually anticommuting four-
component Hermitian matrices, satisfying {γ j, γk} = 2δ jk .
Notice ĥ′

j describes a Su-Schrieffer-Heeger (SSH) chain in the
x and y directions, respectively, for j = 1 and 2. Specifically
for |β/λ2| < 1, each SSH chain supports two endpoint zero-
energy modes [52]. Decoupled x and y SSH chains respec-
tively support a string of such endpoint zero modes along
the y and x directions. However, the BBH model supports
zero-energy modes only at the four corners, where both SSH
chains place endpoint zero modes, yielding a second-order
topological insulator. This is so, since ĥ′

1 acts as mass for
the zero modes of ĥ′

2 and vice versa as {ĥ′
1, ĥ′

2} = 0. Notice
ĥBBH

HOT assumes the form of ĥ2D
HOT [see Eq. (1)], with �1 = γ1,

�2 = γ2, �3 = γ+, �4 = γ−, where γ± = γ3 ± γ4, and t =
λ1, m = β + 2t0, t0 = � = λ2/2. Therefore, our discussion
on the GHOTI is equally germane to the BBH model. With-
out exploiting this correspondence, we can choose (without
loss of generality) γ1,2 (γ3,4) to be purely real (imaginary),
and construct GHOTI from the BBH model, respecting the
spectral symmetry generated by A = K and described by the
Hamiltonian ĥBBH

HOT + i�1γ1γ2 + i�2γ3γ4.
HOT pairing. As a penultimate topic, we focus on two-

dimensional HOT superconductor, for which the Nambu
spinor is ��

k = (ck,↑, ck,↓, c∗
−k,↓,−c∗

−k,↑) and c∗
k,σ (ck,σ ) is

the creation (annihilation) operator for the fermionic quasi-
particles with momenta k and spin projection σ = ↑,↓.
The � matrices are �1 = η1σ1, �2 = η1σ2, �3 = η3σ0, �4 =
η2σ0, and �5 = η1σ3. The Pauli matrices η operate on the
Nambu or particle-hole index. The parameter t (�) from
Eq. (1) represents the amplitude of the p (d)-wave pairing,
and the term proportional to t0 yields a Fermi surface for
0 < m/t0 < 2. Under that circumstance, a weak coupling
p + id pairing takes place around the Fermi surface and
we realize a second-order topological superconductor, sup-
porting four corner localized Mojorana zero modes [27].
It is worth noting that a mixed parity time-reversal odd
p + is pairing, by contrast, only supports gapped Majorana
fermions [53].

In the above-mentioned representation, �1 denotes the
Zeeman coupling, while �2 corresponds to the amplitude of
spin-singlet (real) s-wave pairing. Hence, our discussion on
GHOTI suggests that a two-dimensional HOT pairing can
be realized in the form of p + s + id pairing even in the
presence of (sufficiently weak) Zeeman coupling, at least
when the amplitude of the s-wave pairing is small enough.
Therefore, a quantum phase transition between HOT and a
trivial paired state can be triggered by tuning the Zeeman
coupling between the quasiparticles and external magnetic
field.

Note that when a d-wave pairing sets in, it also causes a
lattice distortion or electronic nematicity in the system that
in turn induces a (small) s-wave pairing [54]. Nonetheless,
the amplitude of the s-wave pairing can be amplified and
the system can also be tuned through the HOT-trivial pairing

0.0
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0.4

�1 �0.5 0 0.5 1
0.0

Qxy

0.5

kz ( )

(b)
(a)

FIG. 4. (a) Energy spectra (vertical axis) of a second-order Weyl
semimetal, supporting one-dimensional zero-energy hinge modes
between two Weyl nodes, located at (0, 0, ± π

2 ). The corner local-
ization (in color) of the hinge modes decreases monotonically as
one approaches the Weyl nodes from the center of the Brillouin
zone. (b) Quadrupolar moment (Qxy) as a function of kz, showing
a quantized value of 0.5 between two Weyl nodes and 0 for |kz| >

π/2. We set t = t0 = tz = 1, m = 0, � = �1 = �2 = 0.5, and
Lx = Ly = 28.

critical point by applying an external uniaxial strain along the
〈11〉 directions, for example.

Three dimensions. Using two-dimensional GHOTI as the
building blocks, one can construct three-dimensional HOT
phases, by stacking them along the kz direction in the mo-
mentum space. This is accomplished by replacing the term
proportional to �3 in Eq. (1) by

�3[tz cos(kza) + m + t0{cos(kxa) + cos(kya) − 2}].
For example, when �1 = �2, the system describes a second-
order Weyl semimetal (since all bands are nondegener-
ate) with two Weyl nodes at (0, 0,±k∗

z ), where k∗
z =

cos−1(|m|/tz ) for tz > |m| and m/t0 < 1. It supports localized
one-dimensional hinge modes for |kz| < k∗

z [see Fig. 4(a)].
However, the corner localization of the hinge modes decreases
monotonically as one approaches the Weyl nodes from the
center of the Brillouin zone (kz = 0), similar to the situation
with the Fermi arcs of a first-order Weyl semimetal (WSM)
[55,56]. Within this range of kz, the quadrupolar moment is
quantized to 0.5, but vanishes for |kz| > k∗

z [see Fig. 4(b)]. By
contrast, for �2 = 0, four Weyl nodes appear at (0, 0,±kα

z ),
where kα

z = cos−1([m + α�1]/tz ) for α = ±. Four pairs of
Weyl nodes can be found at (±k0,±k0,±k0

z ) when �1 =
0, where k0 = sin−1 (�2/[

√
2t0]) and k0

z = cos−1([m − 2t0 −
2t0 cos(k0)]/tz ). A complete analysis of three-dimensional
second-order Weyl semimetals in the (�1,�2) plane is left
for a future investigation. It should be noted that so far only
second-order Dirac semimetals (supporting linearly touching
Kramers degenerate valence and conduction bands) have been
discussed in the literature [23,27,29], whereas we here demon-
strate that it is conceivable to realize its Weyl counterparts
(yielding linear touching between Kramers nondegenerate
bands), protected by an antiunitary symmetry.

Summary and discussions. To summarize, we identify an
antiunitary operator (A) that assures the spectral symmetry
of a two-dimensional HOT insulator [see Eq. (1)] and pins
four corner modes at precise zero energy. Such an antiunitary
symmetry allows us to construct a GHOTI for charged as well
as neutral fermions, in terms of two additional perturbations
[see Eq. (2)], that continues to support the corner localized
zero-energy mode (see Figs. 1 and 3), at least when they are
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small. In particular, our findings suggest that the corner local-
ized Majorana zero modes of a HOT p + id superconductor
survive even in the presence of a weak Zeeman coupling and a
parasitic or strain engineered s-wave pairing. Concomitantly,
a transition between a HOT to trivial paired state can be
triggered by tuning the strength of the external magnetic field
or uniaxial strain, which can be instrumental for topologi-

cal quantum computing based on Majorana fermions. The
proposed anitiunitary symmetry protected corner and hinge
modes can also be observed in highly tunable metamaterials,
such as electrical circuits [57].
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