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Out of equilibrium higher-order topological insulator: Floquet engineering and quench dynamics
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Higher-order topological (HOT) states, hosting topologically protected modes on lower-dimensional bound-
aries, such as hinges and corners, have recently extended the realm of the static topological phases. Here we
demonstrate the possibility of realizing a two-dimensional Floquet second-order topological insulator, featuring
corner-localized zero quasienergy modes and characterized by quantized Floquet qudrupolar moment QFlq

xy = 0.5,
by periodically kicking a quantum spin Hall insulator (QSHI) with a discrete fourfold (C4) and time-reversal (T )
symmetry breaking Dirac mass perturbation. Furthermore, we show that QFlq

xy becomes independent of the choice
of origin as the system approaches the thermodynamic limit. We also analyze the dynamics of a corner mode
after a sudden quench, when the C4 and T symmetry breaking perturbation is switched off, and find that the
corresponding survival probability displays periodic appearances of complete, partial and no revival for long
time, encoding the signature of corner modes in a QSHI. Our protocol is sufficiently general to explore the
territory of dynamical HOT phases in insulators and gapless systems.

DOI: 10.1103/PhysRevResearch.1.032045

Introduction. Topological states of matter in equilibrium
are characterized by the bulk-boundary correspondence: A
nontrivial topological phase in two (three) dimensions sup-
ports gapless edge (surface) modes of codimension one, pro-
tected by the bulk topological invariant [1,2]. This principle is
operative for gapped, such as insulators and superconductors,
as well as to the gapless topological states, which for instance
include Dirac, Weyl and nodal loop semimetals [3]. The realm
of topological states also encompasses the systems out of
equilibrium, with Floquet topological insulators realized in
the periodically driven systems standing as its paradigmatic
representative [4–11]. In such systems, the bulk-boundary
correspondence is more subtle, since bands featuring a trivial
static topological invariant may sustain topological boundary
modes, due to the nontrivial winding of the wavefunctions in
the time direction.

Recently, the notion of topological states in static systems
was extended to so-called higher-order topological (HOT)
phases, featuring gapless modes on the boundaries of codi-
mension (dc) higher than one [12–26]. For example, a three-
dimensional second- (third-) order topological insulator hosts
gapless modes on the hinges (at the corners), characterized by
dc = 2 (3), in contrast to its conventional or first-order coun-
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terpart that accommodates two-dimensional massless Dirac
fermions on the surface with dc = 1. While elemental Bi has
emerged as the prominent candidate for a three-dimensional
second-order topological insulator [13], HOT states can also
be realized in other, noncrystalline, setups [27–33]. A set of
fundamentally important questions then arises quite naturally.
(a) Can Floquet HOT phases be engineered via periodic
driving? (b) Can HOT phase leave any signature after a
sudden quench to a lower-order phase? Due to experimental
advancements on the Floquet techniques [5,10,11,34,35] and
quench dynamics [36,37], extending the reach of HOT phases
to dynamical (out-of-equilibrium) systems has also become
experimentally pertinent. This is the quest we seek to venture
in this work, which is still at its infancy [38–42].

In this paper, we promote a general mechanism of
engineering Floquet HOT phases by periodically kicking
[Fig. 1(a)] a first-order topological phase with a suitable

FIG. 1. (a) Schematic representation of a periodic kick by C4

and T symmetry breaking perturbation V (t ) in a quantum spin
Hall insulator, given by Eq. (2), supporting one-dimensional edge
modes [see Fig. 2(b)], giving rise to corner-localized quasimodes at
stroboscopic time t = T [see Fig. 2(d)]. (b) Sudden quench of such
a perturbation at time t = 0, as described by Eq. (10), leading to the
survival probability of one corner mode for t > 0 (see Figs. 4 and 5).
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FIG. 2. Floquet engineering of a two-dimensional second-order topological insulator, supporting four zero quasienergy (μn = 0) corner
modes [see (c) and inset], from an initial QSHI that hosts one-dimensional chiral edge modes of energy En = 0 [see (a)]. In (a) and (c), n is
the index for energy (En) and quasienergy (μn), respectively. Local density of states: (b) the chiral edge mode associated with a static QSHI
[see Eq. (1)] of energy En = 0, and (d) zero quasienergy states (μn = 0) of the Floquet operator U (T ) [see Eq. (3)] at the stroboscopic time
t = T , obtained by periodically kicking a QSHI by a C4 and T symmetry breaking perturbation [see Fig. 1(a) and Eq. (2)]. We here set
t0 = t1 = m = 1, � = 0.3, and T = 0.628. The corresponding frequency ω = 2π/T ≈ 10 � t0,1, yielding the high frequency regime.

symmetry breaking mass perturbation. As a demonstrative
example, we show that a two-dimensional second-order Flo-
quet topological insulator, supporting zero quasienergy corner
states [Fig. 2(d)], can be generated by periodically kicking a
quantum spin Hall insulator (QSHI), hosting one-dimensional
edge modes [Fig. 2(b)], with a C4 and T symmetry breaking
mass perturbation. Our proposed general protocol for engi-
neering Floquet HOT phases is distinct from the three-step
driving procedure in a QSHI [38] or a C4 and T symmetry
breaking trivial insulator [41]. The resulting higher-order
topological insulator (HOTI) is characterized by quantized
Floquet quadrupolar moment QFlq

xy = 0.5 [within numerical
accuracy, see Fig. 3(a)], which is independent of system size
(L), see Fig. 3(b). Furthermore, a minor origin dependence
of QFlq

xy inside the topological phase [Fig. 3(c)] disappears as
the system approaches the thermodynamic limit (L → ∞),
as shown in Fig. 3(d). We also study the dynamics of a
zero-energy corner mode following a quench [43–49], such
that the final state is first order. In particular, we compute its
survival probability for time t > 0 (Fig. 4), after suddenly
switching off the C4 and T symmetry breaking perturbation
at t = 0 [Fig. 1(b)]. Due to the edge propagation of the corner
mode (see Fig. 5) in the postquench QSHI phase, the survival
probability displays periodic appearances of complete, partial
and no revival for long time. Therefore our results should open
up a route to study the Floquet HOT phases and quenching dy-
namics of HOT states in different setups (such as semimetals)
and dimensions.

Floquet HOTI. We begin with a two-dimensional QSHI,
described by the Hamiltonian

HSHI = t1

2∑
j=1

� jS j − t0�3

⎡
⎣m −

2∑
j=1

Cj

⎤
⎦ ≡ N(k) · �, (1)

where S j ≡ sin(k ja) and Cj ≡ cos(k ja), a(= 1) is the lat-
tice spacing, k js are components of momentum. The four-
component mutually anti-commuting Hermitian � matrices
are �1 = σ3τ1, �2 = σ0τ2, �3 = σ0τ3. The Pauli matrices τ

(σ) operate on the sublattice/orbital (spin) degrees of free-
dom. For 0 < |m| < 2, the system describes a QSHI. It sup-
ports two counterpropagating edge modes for opposite spin
projections [see Fig. 2(b)], effectively described by two copies
of one-dimensional massless Dirac fermions [50]. We drive
such a QSHI by a periodic kick of amplitude � and periodicity

T [see Fig. 1(a)]

V (t ) = V12 �4

∞∑
r=1

δ(t − r T ), (2)

where V12 = �(C1 − C2), r is an integer and �4 = σ1τ1.
If we neglect the time dependence of V (t ), then the Hamil-

tonian HStat = HSHI + �4V12 describes a static HOTI. Since
{HSHI, �4} = 0, the term proportional to � acts as a mass
for chiral edge states, and breaks the C4 as well as time-
reversal (generated by T = iσ2τ0K , where K is the complex
conjugation) symmetries. It changes sign four times across
the corners of a square lattice system. Then a generalized
Jackiw-Rebbi index theorem [31,51] ensures the existence
of four zero-energy corner modes, and we realize a static
second-order topological insulator.

The robustness of such zero modes can be ensured from
the spectral or particle-hole symmetry of HStat, generated by
the unitary operator �5, as {HStat, �5} = 0, where �5 = σ2τ1.
The zero-energy corner modes are eigenstates of �5 with
eigenvalues +1 and −1. We also identify an antiunitary oper-
ator A = �1K , such that {HStat, A} = 0 [52]. In the following
discussion on Floquet HOTI, this antiunitary operator plays
an important role, about which more in a moment.

To demonstrate the possible realization of a Floquet HOTI
in the presence of a periodic kick [see Fig. 1(a) and Eq. (2)],
we focus on the corresponding Floquet operator

U (T ) = TO

(
exp

[
−i

∫ T

0
[HSHI + V (t )]dt

])

= exp(−iHSHI T ) exp(−iVxy�4), (3)

where ‘TO’ stands for the time-ordered product. The Floquet
operator after a single kick takes a compact form

U (T ) = CT [n0 − in4�4] − iST

3∑
j=1

[n j� j + mj� j4], (4)

where � jk = [� j, �k]/(2i), CT = cos(|N(k)|T ), ST =
sin(|N(k)|T ), n0 = cos(V12), n4 = sin(V12), and

(n j, mj ) = Nj (k)(cos(V12), sin(V12))/|N(k)|
for j = 1, 2, 3. The effective Floquet Hamiltonian (HFlq) can
be obtained from the relation U (T ) = exp(−iHFlqT ) ≈ 1 −
iHFlqT + O(T 2). In the high-frequency limit (T → 0), one
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FIG. 3. (a) Floquet quadrupolar moment (QFlq
xy ) in a system with

linear dimension L = 20 in the x and y directions, with a choice
of origin (x0, y0 ) = (0, 0) for |m| � 3. Floquet HOT (trivial) insu-
lator is realized for |m| < 2(|m| > 2) with QFlq

xy = 0.5(0.0). (b) For
(x0, y0) = (0, 0), QFlq

xy is independent of L inside the Floquet HOT
(m = 1.0) and trivial (m = 3.0) insulating phases. (c) Origin de-
pendence of QFlq

xy in a system with L = 24 inside a Floquet HOTI
(supporting corner modes in open system) for m = 1. Unless the
origin of the system is chosen around its center, we find QFlq

xy = 0.5.
(d) Scaling of the fraction of the area (β) in the (x0, y0 ) plane,
yielding QFlq

xy = 0.5 for various choices of m that support Floquet
HOTI (hosting zero quasienergy corner modes in open system), with
1/L. As the system approaches the thermodynamic limit (L → ∞),
β → 1 and QFlq

xy = 0.5 becomes independent of the choice of the
origin. Inside the Floquet trivial phase QFlq

xy = 0.0 is independent
of the choice of origin for any L. We always compute QFlq

xy in
a periodic system. Similar behavior of the quadrupolar moment
(Qxy) has already been reported for static crystalline and amorphous
HOTI [31].

can neglect the higher-order terms in T , and comparing with
Eq. (4), we find [53]

HFlq =
3∑

j=1

Nj (k)� j + V12

3∑
j=1

Nj (k)� j4 + V12

T
�4. (5)

While arriving at the final expression we assumed that
T,� → 0, but �/T is finite. Notice that HFlq looses the
spectral symmetry with respect to the unitary operator �5, but
still satisfies {HFlq, A} = 0. This observation ensures the spec-
tral symmetry among Floquet quasienergy modes, and sug-
gests possible realization of corner-localized zero quasienergy
modes and a Floquet HOTI.

We now anchor this anticipation by numerically diagonal-
izing the Floquet operator from Eq. (3), satisfying

U (T ) |φn〉 = exp(iμnT ) |φn〉, (6)

where |φn〉 is the Floquet state with quasienergy μn, with
open boundaries in both directions. In Fig. 2(d), we show
the local density of states associated with the (almost) zero
[O(10−6)] quasienergy Floquet states, which depicts a strong
corner localization. Therefore, by means of a periodic kick, a

FIG. 4. Dynamics of the survival probability (Ps), see Eq. (11),
of a zero energy corner mode with time (t) after a sudden quench
at t = 0, when the C4 and T symmetry breaking perturbation is
completely switched off, see Fig. 1(b) and Eq. (10). Here, L is the
linear dimension of the system along both x and y directions. Large
(intermediate) peaks correspond to complete (partial) revival, while
the (almost) flat regions refer to no revival. For numerical simulation
we set t0 = t1 = m = 1 and � = 0.3. The spectral density of the
corresponding time evolved wavefunction is shown in Fig. 5.

Floquet HOTI can be generated from a first-order topological
insulator (QSHI in this case), when the driving perturbation
breaks the desired symmetries (C4 and T here) and satisfies a
specific algebraic relation ({HSHI, �4} = 0 in this case).

The topological robustness of the corner modes can be
tested by computing the associated topological charge

Q = 1

4

∑
p,q∈{μ0}

〈φp|A|φq〉, (7)

measuring the overlap of a zero quasienergy state (eigenstate
of A with eigenvalue +1 or −1) with the states within the
subspace of four zero quasienergy modes {μ0}, after acted by
A from left. In the HOTI phase Q = 1 by construction, since
the spectral symmetry of HFlq generated by the antiunitary
operator A, leaves {μ0} invariant and A|φn〉 is characterized
by quasienergy −μn. We indeed find Q = 1 (within numerical
accuracy), confirming that the zero quasienergy corner modes
are stable, eigenstates of A, separated from bulk states with
|μn| > 0, and they are topologically protected.

Floquet quadrupolar moment (QFlq
xy ). A static two-

dimensional HOTI possesses a quantized quadrupolar mo-
ment Qxy = 1/2 in both crystalline [12,54,55] and amorphous
[31] systems. We now compute the quadrupolar moment for
Floquet HOTI in the following way. Notice that the Floquet
modes reside within a quasienergy window (−ω/2, ω/2),
where ω = 2π/T is the kick frequency. We work in the
high frequency regime such that ω � t0,1, and compute the
following quantity:

nFlq = Re

[
− i

2π
Tr

(
ln

[
U † exp

[
i2π

∑
r

q̂xy(r)

]
U

])]
,

(8)
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FIG. 5. Spectral density of the time evolved state |�(t )〉 = exp(−iHFint )|� initial
corner〉 at time t = 0 and various instances after a sudden quench

at t = 0 [see Fig. 1(b)] in a system with linear dimension L = 16 in both directions. Here, |� initial
corner〉 represents a corner mode of the initial

Hamiltonian HIni = HSHI + �4V12. Since, the final Hamiltonain HFin = HSHI accommodates one-dimensional chiral edge modes, propagation
of the corner state at time t > 0 predominantly takes place through the boundaries of the system, leading to the observed dynamics of the
survival probability, see Fig. 4.

where q̂xy(r) = xy
L2 n̂(r) and n̂(r) is the number operator at r =

(x, y). The matrix U is constructed by columnwise arranging
the eigenvectors |φn〉 with quasienergy μn [see Eq. (6)],
such that −ω

2 < μn < 0. The Floquet quadrupolar moment
(modulo 1) is then defined as

QFlq
xy = nFlq − nal

Flq, (9)

where nal
Flq = 1

2L2

∑
r(xy) is the value of nFlq in the atomic

limit. Inside the Floquet HOTI phase (when |m| < 2) we find
QFlq

xy = 0.5, whereas QFlq
xy = 0 for a trivial insulator (when

|m| > 2), see Fig. 3(a). These features are insensitive of the
system size, see Fig. 3(b). A slight origin dependence of
QFlq

xy inside the Floquet HOTI [see Fig. 3(c)] disappears as
the system approaches the thermodynamic limit L → ∞, see
Fig. 3(d). Moreover, for trivial insulator, QFlq

xy always stays at
0, irrespective of the choice of origin. Therefore, quantized
Floquet quadrupolar moment serves as the indicator for a
two-dimensional Floquet HOTI [56].

Quench dynamics. Upon Floquet engineering a HOTI, we
now investigate the survival probability of a corner mode
at time t > 0, after suddenly switching off the C4 and T
symmetry breaking perturbation at t = 0 [see Fig. 1(b)]. This
process is parametrized by

V (t ) = V12 �4 [1 − �(t )], (10)

where � is the heaviside step function of its argument. The
survival probability at time t is defined as [43,47–49]

Ps(t ) =
∣∣∣∣∣∣

4L2∑
n=1

∣∣〈� initial
corner

∣∣
final
n

〉∣∣2
e−iEnt

∣∣∣∣∣∣
2

, (11)

where |� initial
corner〉 is one of the zero-energy corner modes of the

initial Hamiltonian HIni = HSHI + �4V12 for t < 0, |
final
n 〉 is

a wave function of the final Hamiltonian (after the sudden
quench at t = 0) HFin = HSHI with energy En, and L2 is the
total number of lattice sites in the real space. The complete,
partial and no revival respectively correspond to the situations
when the survival probability acquires maximum (close to
unity), intermediate (but finite) and very small (close to zero)
values, see Fig. 4.

The dynamics of the survival probability can be under-
stood from the density profile of the time evolved state
|�(t )〉 = exp(−iHFint )|� initial

corner〉 at various instances after the
quench, see Fig. 5. For concreteness, we select one of the
four near (due to finite system size) zero-energy modes,

dominantly localized near the corner at (L, L) [identified as
|� initial

corner〉 in Eq. (11)], see Fig. 5(a). As the final Hamiltonian
(HSHI) accommodates gapless one-dimensional edge modes
[see Fig. 2(b)], the initial corner state predominantly diffuses
along the edges of the system at t > 0. Since the C4 symmetry
is restored for t > 0, vx = vy ≡ v, where vi = ∂|E (k)|/∂ki is
the group velocity in the i-direction, with i = x, y and ±E (k)
are the eigenenergies of HSHI. The maximal value of the group

velocity is vmax = (1 + m)t2
0 /

√
t2
1 + t2

0 (1 + m)2 ≈ 1 for t1 =
t0 = m = 1, which sets the velocity of the corner mode fol-
lowing the sudden quench [57]. After a time t = L/vmax ≈ L,
the most dominant peak of the initial corner mode reaches
(1, L), see Fig. 5(b). The spectral density then exhibits a
weaker peak at (L, L). As a result, the survival probability
shows an intermediate revival when t ≈ L, see Fig. 4.

At time t ≈ 2L, the corner mode encounters a substantial
reduction of spectral weight at (L, L) and concomitantly Ps

shows (almost) no revival, see Fig. 4. Such behavior arises
from the fact that |�(t ≈ 2L)〉 is (almost) orthogonal to
|� initial

corner〉, compare Figs. 5(a) and 5(c). The next partial revival
occurs at t ≈ 3L, and a complete revival takes place at t ≈ 4L,
when the initial state (almost) returns to itself. These features
in the survival probability are impervious to the system size,
group velocity (vmax), obtained by tuning the hopping param-
eters (t1 and t0) [57]. At later times this pattern continues to
repeat itself. But, after each such cycle the amplitudes of the
revival become weaker. Therefore, even after a sudden quench
from a HOTI to a first-order topological insulator, the corner
mode leaves its fingerprint in the survival probability in future
time. By contrast when the system is quenched into a HOT
insulator from a QSHI, the survival probability of the edge
mode does not reveal any specific structure, possibly due to
the absence of any extended gapless mode for t > 0 [57].

Discussion. To summarize, we demonstrate a possible re-
alization of a two-dimensional Floquet HOTI, supporting an-
itiunitary symmetry protected zero quasienergy corner modes
[see Fig. 2(d)], by periodically kicking a QSHI (first-order
topological insulator) with a discrete symmetry breaking mass
perturbation. This mechanism can be generalized to three-
dimensional topological insulators and semimetals [23]. Our
proposed protocol for generating dynamic HOT phases can in
principle be realized in cold atomic systems, in the presence
of dynamic strain that can be generated by gluing the sample
with a piezoelectric material, vibrating at high frequency [58],
and in acoustic [35,59] and photonic [60] systems.

032045-4



OUT OF EQUILIBRIUM HIGHER-ORDER TOPOLOGICAL … PHYSICAL REVIEW RESEARCH 1, 032045(R) (2019)

Finally, we show that the signature of the corner modes
can persist for a long time after a sudden quench into a QSHI,
which manifests through periodic appearances of partial and
complete revival in the dynamics of the survival probabil-
ity [see Figs. 4 and 5]. The predicted quench dynamics
can possibly be observed in cold atomic systems [61], and
generalizations of this scenario to higher-dimensional HOT

phases are left for a future investigation. We hope that present
discussion will motivate future theoretical and experimental
works exploring the dynamical properties of HOT phases.
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