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The spatial localization of quantum states plays a central role in condensed-matter phenomena, ranging from
many-body localization to topological matter. Building on the dissipation-fluctuation theorem, we propose that
the localization properties of a quantum-engineered system can be probed by spectroscopy, namely, by measuring
its excitation rate upon a periodic drive. We apply this method to various examples that are of direct experimental
relevance in ultracold atomic gases, including Anderson localization, topological edge modes, and interacting
particles in a harmonic trap. Moreover, inspired by a relation between quantum fluctuations and the quantum
metric, we describe how our scheme can be generalized in view of extracting the full quantum-geometric tensor
of many-body systems. Our approach opens an avenue for probing localization, as well as quantum fluctuations,
geometry and entanglement, in synthetic quantum matter.
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Introduction. Localization plays a central role in various
branches of quantum physics. In the context of the solid
state, the localization properties of electronic wave functions
reflect the conductivity of materials and signal the existence
of insulating regimes [1–6]. This important relation between
transport and the spatial localization of quantum states was
already emphasized in the seminal work by Anderson on
disordered lattice systems [1]. More recently, the discovery
of topological states of matter revealed an interesting inter-
play between topology and localization: The bulk-boundary
correspondence guarantees the existence of robust boundary
modes, which are localized at the edge of the material [7,8].
Another important development concerns the phenomenon of
many-body localization (MBL), which is characterized by the
absence of thermalization in many-body systems featuring
disorder and interparticle interactions [9–11].

Quantum engineered systems, such as ultracold atomic
gases or trapped ions, have recently emerged as novel plat-
forms by which localization can be finely studied in a highly
controlled environment. Anderson localization was observed
in Bose-Einstein condensates, in various spatial dimensions,
through the design of disordered potentials for neutral atoms
[12–14]. Besides the control over the disorder strength, these
quantum-engineered systems also allow for the possibility
of tuning the interparticle interactions. Combining these two
appealing features led to the first experimental observations
of MBL in ultracold atomic gases [15,16], which were soon
followed by realizations in trapped ions [17] and in photonics
[18]. While the localization length was directly measured
in the context of Anderson localization [12,14], by imaging
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the spatial profile of the atomic cloud in situ, such direct
signatures of localization remain challenging in the MBL
regime (see Ref. [19] for correlation-length measurements in
the MBL phase based on single-site resolution imaging).

In this Rapid Communication we introduce a method by
which localization can be quantitatively studied in quantum-
engineered systems, without relying on any in situ imaging.
Our approach builds on a universal relation between the
localization of a quantum state and its spectroscopic response
to an external periodic drive and therefore can be applied
to many-body (interacting) systems. In fact, this relation
between localization properties and dissipative responses can
be traced back to the fluctuation-dissipation theorem [20–22],
as was previously noticed in the solid state [5,23]. In this
Rapid Communication we propose that measuring the exci-
tation rate of a quantum-engineered system upon a periodic
drive offers a practical scheme by which its localization prop-
erties can be precisely evaluated. In particular, this method
can be readily applied to general many-body systems, in
the presence of interactions and/or disorder, as we illustrate
below through relevant examples. Our proposal builds on the
general observation that excitation-rate measurements can be
used to extract useful information on the underlying quantum
states, as was recently illustrated in the context of topological
Bloch bands [24–27].

Beyond the localization of particles in extended lattice
geometries, our method can also be applied to study local-
ization in confined systems. This asset is relevant to ultracold
atomic gases in optical lattices, where the spread of the two-
body wave function within each lattice site affects the effec-
tive interaction energy [28–31]. While detecting localization
within a single site of an optical lattice requires sophisticated
nanoscale microscopy [32,33], this property could be equally
studied using the more practical spectroscopic probe intro-
duced in this work.

Dissipation and fluctuations are united through the
imaginary part of the generalized susceptibility [20–22].
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Interestingly, it was noted that this response function is also
deeply related to the geometry of quantum states, through
the notion of the quantum (Fubini-Study) metric [23,34,35]
(see Ref. [36] for a similar observation involving the quantum
Fisher information, which captures the entanglement proper-
ties of many-body quantum states). In many-body systems, the
quantum metric is defined over the parameter space spanned
by twist angles associated with boundary conditions [23].
As a by-product of our proposal, we establish a protocol by
which the full quantum geometry of many-body quantum
systems (including the quantum metric and the many-body
Berry curvature [37–39]) can be extracted from spectroscopic
responses.

Excitation rates and localization. We first discuss how the
excitation rate of a quantum system upon a periodic drive
relates to the variance of the position operator. Let us assume
that the system is initially in an eigenstate |α〉 of a many-body
Hamiltonian Ĥ , which we consider to be nondegenerate and
well separated from all other states in energy.1 We then act on
the system with a time-periodic perturbation aligned along the
x direction so that the total Hamiltonian reads

Ĥ (t ) = Ĥ + 2Ex̂ cos(ωt ), (1)

where x̂ ≡ ∑
a x̂a is the many-body position operator along

the x direction and x̂a is the position operator for the ath parti-
cle. At the lowest order in time-dependent perturbation theory,
the excitation fraction is given by Fermi’s golden rule [40]

nex
x̂ (ω, t ) = 2πE2

h̄
t
∑
β �=α

|〈β|x̂|α〉|2δ(t )(εβ − εα − h̄ω),

where δ(t )(ε) ≡ (2h̄/πt ) sin2(εt/2h̄)/ε2 can be approximated
by a Dirac distribution for sufficiently large t . It is convenient
to introduce the excitation rate �x̂(ω) ≡ nex

x̂ (ω, t )/t , which
is the rate at which the system excites to other states β �= α.
Inspired by Refs. [25–27], we consider performing a set of
experiments for various values of the shaking frequency ω,
and integrating the resulting rates over ω,

�int
x̂ ≡

∫ ∞

0
�x̂(ω)dω = 2πE2

h̄2

∑
β �=α

|〈β|x̂|α〉|2. (2)

Using the completeness relation
∑

β |β〉〈β| = 1, we rewrite
the sum above as∑

β �=α

|〈β|x̂|α〉|2 =
∑
β �=α

〈α|x̂|β〉〈β|x̂|α〉

= (〈α|x̂2|α〉 − 〈α|x̂|α〉2) ≡ Var(x̂), (3)

which is nothing but the variance Var(x̂) of the operator x̂.
When combined with Eq. (2), this yields a relation between
the integrated rate and the spatial variance

�int
x̂ = 2πE2

h̄2 Var(x̂). (4)

1The results presented in this work are still valid for degenerate
states, as long as the position operator does not couple different states
within the degenerate manifold.

This relation establishes a protocol by which the variance
of the position operator can be measured in experiments,
without detecting the position of the particles.

In fact, the relation between the integrated rate and the
variance of an operator can be made more general. For
any operator Â, the excitation rate upon the drive V̂ (t ) =
2EÂ cos(ωt ) is related to the variance of this operator through
�int

Â
= 2πE2

h̄2 Var(Â). Hence, time modulation can be used as a
universal probe for the variance of any operator. Moreover,
noting that the variance of an operator is directly related to
a quantum Fisher information [36], we point out that this
probe also captures the multipartite entanglement properties
of many-body quantum states.

Excitation rates can be measured in various ways in
quantum-engineered systems (see Refs. [24,41–44] for dis-
tinct experimental methods applied to periodically driven
atomic gases). In optical lattices, heating rates can be finely
measured by monitoring the dynamical repopulation of Bloch
bands through band mapping [24,41]. In cases where intra-
band transitions are relevant and difficult to resolve [45], one
can optimize such measurements by applying a drive that
simultaneously changes the internal state of the atoms [46];
the excited fraction can then be determined by counting the
number of atoms in different internal states.

We point out that the result in Eq. (4) derives from the
fluctuation-dissipation theorem. To see this, recall that
the fluctuation associated with an operator Â, in a given state
|α〉, is related to the generalized susceptibility χÂÂ(ω) via the
fluctuation-dissipation theorem [22]

〈α|Â2|α〉 = h̄

π

∫ ∞

0
dω Im[χÂÂ(ω)], (5)

where we assumed 〈α|Â|α〉 = 0. In addition, the power ab-
sorbed P (ω) upon a periodic drive 2EÂ cos(ωt ) is related
to the imaginary part of the generalized susceptibility [22]:
P (ω) = 2ωE2Im[χÂÂ(ω)]. Noting that the excitation rate is
defined as �(ω) = P (ω)/h̄ω, we recover the relation �int

Â
=

2πE2

h̄2 Var(Â).
Anderson model. We first apply our method to the An-

derson model [2,3], which describes a quantum particle
moving in a one-dimensional disordered lattice; the hopping
matrix element is denoted J and the random (disordered)
potential has values uniformly distributed within the interval
[−W/2,W/2]J . The presence of disorder generates localized
eigenstates: The envelope of the wave functions takes the
form ∼e−|x|/ξ around their average position, where ξ is the
localization length. The spatial variance calculated from this
naive exponentially decaying wave function reads Var(x̂) =
ξ 2/2, which indeed provides a qualitatively accurate esti-
mate (deviations due to finer structures in the wave func-
tions are illustrated below). According to the scaling theory
of the Anderson model [3], the localization length at zero
energy scales as ξ ≈ 96J2/W 2, in units of the lattice spac-
ing; the corresponding variance reads Var(x̂) ≈ 4608J4/W 4

(see Fig. 1).
We now show that these localization properties can be

detected through excitation-rate measurements [Eq. (4)]. For
a given disorder realization, we start from an eigenstate of the
model whose energy is close to zero and then numerically
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FIG. 1. Spatial variance Var(x̂) of zero-energy eigenstates as a
function of the disorder strength W , as extracted from excitation-rate
measurements [Eq. (4)]. Blue dots are numerical results obtained
from 300 sites and an averaging over 20 disorder realizations (for
each W ). We used a modulation strength E = 0.001J and an observa-
tion time of t = 5h̄/J; the excitation rates were integrated over ω up
to the value 5J/h̄, using discrete steps of 0.01J/h̄. The scaling-theory
prediction Var(x̂) ≈ 4608J4/W 4 is also displayed (green curve).

calculate the integrated excitation rate upon applying a pe-
riodic modulation [Eq. (1)]. The results are shown in Fig. 1,
for various values of the disorder strength W , together with
the scaling-theory prediction. Fitting the estimated variance
with a power law, we obtain Var(x̂) ≈ 4700/W 3.4, which
is indeed very close to the prediction ∼1/W 4; the main
discrepancy is attributed to the finer structure of the wave
function inside the envelop function e−|x|/ξ . We note that the
eigenstate considered in these calculations is not isolated in
energy (there is no spectral gap in the thermodynamic limit);
however, states with similar energies are well separated spa-
tially, and hence they do not contribute to the excitation rate
(see footnote 1).

Topological edges modes. As a second example, we con-
sider the celebrated Su-Schrieffer-Heeger (SSH) model, a
model exhibiting symmetry-protected topological edge modes
[47,48]. This is a one-dimensional tight-binding model with
alternating hopping strengths tweak and tstrong; here we assume
tweak < tstrong. Depending on the termination of the chain,
the boundaries can host localized (zero-energy) edge modes;
these edge states are protected by topology, due to the chiral
symmetry of the model [49]. Importantly, topological modes
can also appear in the bulk of the chain [50] whenever the
latter presents a defect (e.g., if the strengths of the hopping
amplitudes tweak and tstrong are locally interchanged); such a
defect constitutes an interface between two regions associ-
ated with different topological invariants (winding numbers),
which explains the presence of a zero-energy mode that is
exactly localized at the interface [see a sketch of the setting
and the corresponding localized wave function depicted in
Figs. 2(a) and 2(b)]. We note that this wave function only takes
nonzero values on every other site. Analytically, the overall
decay of the wave function obeys |ψ (x)| = (tweak/tstrong)x/2a,
where x is the distance from the interface and a is the lattice
spacing. The spatial variance calculated from this analytical

(a)

(b) (c)

interface

FIG. 2. (a) Schematics of the Su-Schrieffer-Heeger model, a one-
dimensional chain with alternating hopping strengths. We consider a
situation where a topological interface is created in the middle of
the chain, by introducing a defect (where hoppings are weak tweak on
either side of a site). In this way, we obtain a zero-energy state that
is localized at the interface. (b) Typical zero-energy mode localized
at the interface. We used tstrong/tweak = 2. The interface is located at
site 21, where the wave function is maximal. (c) Variance Var(x̂)
estimated from excitation-rate measurements upon linear driving,
and the analytical value (6) as a function of tstrong/tweak. We used
E = 0.01tweak/a and an observation time t = 5h̄/tweak; the excitation
rates were integrated over ω up to the value 5tweak/h̄, using discrete
steps of 0.05tweak/h̄.

wave function reads

Var(x̂) = 8(tweak/tstrong)2/[1 − (tweak/tstrong)2]2. (6)

We also assume that both ends of the chain are terminated
with a strong link (tstrong), so there is no additional edge state
at the boundaries of the chain; in this setting, we have a single
zero-energy mode, which is localized at the interface. We
performed simulations of the driven SSH model, in view of
numerically estimating Var(x̂) from the integrated excitation
rates. The results are plotted in Fig. 2(c), where excellent
agreement is shown between the excitation-rate measurement
(dots) and the analytical result (solid line).

Interacting particles in a harmonic trap. We now consider
a system of two particles of mass m, moving in a one-
dimensional harmonic trap of frequency � (see Ref. [51] for
the single-particle case). We assume that the two particles are
distinguishable2 and that they interact via a repulsive contact
interaction Uδ(x̂1 − x̂2), with U > 0. The interaction spreads
out the ground-state wave function, as can be seen in the
density distributions n(x) depicted in Fig. 3(a) (see Ref. [52]
for exact solutions). This spreading is experimentally rele-
vant in ultracold-atom experiments realizing bosonic Mott
insulators, where it was shown to affect the effective on-site
interaction [28–31]. We now describe how this delocalization
through interactions could be finely resolved using excitation-
rate measurements.

First, we note that the two-body Schrödinger equation can
be decomposed in terms of the center of mass and relative

2In the case of indistinguishable particles, the protocol would give
access to Var(x̂) through �int

x̂1+x̂2
.
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(a) (b)

FIG. 3. Two interacting particles in a harmonic trap. (a) Density
distribution n(x) in the ground state, for increasing values of the
interaction strength U (in units of h̄�

√
h̄/m�); the position x is

expressed in units of
√

h̄/m�. (b) Spatial variances as extracted from
integrated excitation rates (dots) and compared to their exact values
(solid lines). The center-of-mass variance Var(x̂) is independent of
the interaction strength U (horizontal line). In contrast, the quantity
Var(x̂1) + Var(x̂2) captures well the spreading of the wave function
upon increasing the repulsive interaction U (tilted line). Simulations
were performed with a modulation strength E = 0.01

√
mh̄�3 and an

observation time t = 5/�; the excitation rates were integrated over
ω up to the value 10�, using discrete steps of 0.05�.

motions. The center of mass is known to be independent of the
interparticle interactions [52], and hence the related variance
Var(x̂) = Var(x̂1 + x̂2) does not depend on U . In contrast,
the density spread in Fig. 3(a) is accurately captured by the
relevant quantity Var(x̂1) + Var(x̂2) = (1/2)[Var(x̂1 − x̂2) +
Var(x̂)], which is associated with the relative motion and
depends on U . While Var(x̂) is directly accessible through the
driving protocol described above [Eqs. (1)–(4)], the detection
of Var(x̂1 − x̂2) requires a particle-dependent modulation of
the form V̂ (t ) = 2E (x̂1 − x̂2) cos(ωt ). Such a drive can be
realized by considering two atomic internal states with oppo-
site magnetic moments subjected to an oscillating magnetic
field [53,54]. We describe below how this modification of
the driving scheme allows for an accurate evaluation of the
two-particle wave-function spreading.

We have numerically calculated the integrated excitation
rates �int

x̂1−x̂2
(�int

x̂1+x̂2
) upon subjecting the two-particle sys-

tem to the particle-dependent (independent) modulations.
From these excitation rates, we can estimate both Var(x̂)
and Var(x̂1) + Var(x̂2). The numerical results presented in
Fig. 3(b) show that the variance estimated from excitation-
rate measurements (dots) perfectly reproduces the exact result
(solid line). These simulations confirm that the delocalization-
by-interaction effect can be quantitatively measured in ultra-
cold atoms through spectroscopic responses.

Localized spin excitations. The localization of spin excita-
tions, in (disordered) Heisenberg spin chains [55–57], can be
detected using this same spectroscopic approach. The mod-
ulation V̂ (t ) = 2E cos(ωt )

∑
j jŜ+

j Ŝ−
j should be proportional

to the center of mass of the magnonic excitation [58], where
Ŝ±

j are spin operators on site j.
Many-body quantum geometric tensor. Dissipative re-

sponses are closely related to the concept of quantum ge-
ometry [23–27,35]. At a fundamental level, the geometry of
a quantum state |ψ (θ)〉, which depends on a set of parame-
ters θ = (θ1, θ2, . . .), is described by the quantum geometric

tensor [35]

χi j (θ) ≡ 〈∂θiψ |∂θ j ψ〉 − 〈∂θiψ |ψ〉〈ψ |∂θ j ψ〉. (7)

Its imaginary part is related to the Berry curvature, Imχi j =
�i j/2, which is associated with the physics of the geomet-
ric (Berry) phase and topological matter [7,8,47,48,59,60],
whereas its real part is known as the quantum metric
(or Fubini-Study metric) tensor [34,35,61], Reχi j = gi j .
The full quantum geometric tensor was recently extracted
from Rabi-oscillation measurements in diamond nitrogen-
vacancy centers [62], from polarization tomography in po-
laritons [63], and through similar methods in superconducting
qubits [64].

The ground state of a many-body Hamiltonian can exhibit
nontrivial geometric and topological properties. This can be
revealed by introducing twisted boundary conditions [23,37–
39] and by calculating the quantum geometric tensor (7)
in the parameter space spanned by the corresponding twist
angles θ = (θx, θy, . . . ). As shown in Ref. [23], the real part
of the so-defined quantum geometric tensor, i.e., the many-
body quantum metric, describes the variance of the position
operator [51]

gMB
xx = Var(x̂)/L2

x , (8)

where Lx denotes the system’s length along x.
Combining Eq. (8) with Eq. (4) indicates that the many-

body quantum metric gMB
xx is directly accessible through

excitation-rate measurements (�int
x̂ ). Similarly, the integrated

rate �int
ŷ upon linear shaking along the y direction is propor-

tional to gMB
yy ; if the modulation is aligned along the diagonal

x + y direction, the resulting integrated rate is proportional
to L2

x gMB
xx + 2LxLygMB

xy + L2
y gMB

yy . Hence, all the components
of the many-body quantum metric can be extracted from
excitation-rate measurements upon linear shaking.

On the other hand, the many-body Berry curvature is re-
lated to the integrated rate upon circular shaking [45]. Indeed,
considering the periodic modulation V̂±(t ) = 2E [x̂ cos(ωt ) ±
ŷ sin(ωt )], the integrated rates read

�int
± = 2πE2

h̄2

∑
β �=α

|〈β|x̂ ∓ iŷ|α〉|2

= 2πE2

h̄2

(
L2

x gMB
xx + L2

y gMB
yy ± LxLy�

MB
xy

)
. (9)

Therefore, the many-body Berry curvature is given by the
differential integrated rate per unit area

(�int
+ − �int

− )/2LxLy = 2πE2

h̄2 �MB
xy . (10)

This relation between circular dichroism and the many-body
Berry curvature (or nonintegrated Chern number [39]) can
also be derived from Kramers-Kronig relations [45].

Summarizing, all the components of the many-body quan-
tum geometric tensor are related to an observable response of
the system upon linear or circular shaking. This result gener-
alizes previous connections between the quantum geometry of
single-particle states and spectroscopic responses [24–27] to a
many-body framework. In the special case of a band insulator,
the many-body quantum metric is proportional to the average
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of the single-particle quantum metric over the entire Brillouin
zone [51].

Conclusion. This work proposed spectroscopic responses
as a method to study localization in quantum many-body
systems, offering a practical alternative to in situ imaging. It is
intriguing to observe that such excitation-rate measurements
can extract information on both geometry and localization,
two important concepts in condensed matter, through the
extraction of the many-body quantum geometric tensor. An
exciting perspective concerns the application of the present
approach to explore the localization properties of many-body

quantum states of interest, such as excitations of fractional
quantum Hall liquids [65,66], many-body localized systems
[10,11], and fractons [67].
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