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Multilayered dipolar particles in an external magnetic field
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The effect of an external perpendicular magnetic field on the magnetization and crystallization of magnetic
particles trapped in multilayered arrays is investigated theoretically. General ground-state symmetry consid-
erations corroborated by numerical results allow us to develop an exact analytical theory. When dealing
with monolayers, the continuous degeneracy of the in-plane dipole orientation is broken and accompanied
by a rhombic crystal structure at finite applied magnetic field. On the other hand, bilayer systems are more
robust against applied magnetic fields and preserve the in-plane hexagonal lattice symmetry. The onset of
disaggregation is predicted as well in both scenarios. Our findings can be experimentally verified in colloidal
suspensions (typically ferrofluids or magnetorheological fluids) and provide enlightening hints to further
understanding the phase behavior of magnetic multilayers in more conventional molecular and atomic materials
such as thin metal films obtained by epitaxy in the presence of an external magnetic field.
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I. INTRODUCTION

Two-dimensional dipolar systems (monolayers or few-
layer systems) are a fertile area of research [1–3]. Some exper-
imental examples are (thin) magnetic films [1,4,5], magnetic
bubbles in garnet films [6,7], and magnetic particles on a
substrate [8–12] or floating on the surface or the meniscus
of a liquid [13–15]. Such systems can benefit the design of
novel materials (e.g. photonic band-gap [16] and data storage
devices [17]) and can also act as models to better understand
certain biological mechanisms and processes (e.g., micro-
tubule [18] and lipid layer formations [19]). Dipolar mono-
layers are known to exhibit a rich and intricate phase behavior
around the chaining regime at finite temperature as observed
in computer simulations [2,20–24] and in experiments on fer-
rofluids [25,26]. Formation of multilayers in ferrofluids with
smectic-like ordering was also reported experimentally [27]
and by computer simulations [28]. In a pioneering theoretical
work, the ground state of a planar rhombic lattice with an
arbitrary rhombicity angle has been addressed [29,30]. In
particular, the influence of an (imposed) lattice symmetry on
the resulting dipole moment distribution (in the ground state)
was advocated. A related recent study involving an interaction
cutoff confirmed the latter findings [31]. Conversely, under a
tilting magnetic field, many structural transitions are induced
in a two-dimensional superparamagnetic suspension depend-
ing on the field strength, the tilt angle, and the density [32].
In our study where we have to deal with permanent dipole
moments (i.e., ferromagnetic particles), their strength remains
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unchanged under an applied magnetic field. Moreover, in
the absence of an external magnetic field, the ground state
of a monolayer is the hexagonal lattice with a continuous
degeneracy of the orientation of the (purely) in-plane dipole
moment [30,33]. We offer a transparent rederivation of this
intriguing result; see Appendix A.

In this paper, we address the effect of an external perpen-
dicular magnetic field on the magnetization and crystallization
of attractive magnetic particles trapped in multilayered arrays.
It is worthwhile recalling that a tangential magnetic field has
no incidence on the hexagonal ground-state layered lattices
[34]. In the scope of this article and for the sake of clarity,
we shall only focus on the relevant perpendicular magnetic
field situation. We argue that dipolar hard sphere systems (i)
provide unbiased insight into the intricate interplay between
steric effects and long-range anisotropic dipolar interactions
and (ii) are also of interest in their own right. Preliminary
general symmetry considerations corroborated by numerical
optimization will allow us to build a robust exact analytical
approach whose details are provided in the Appendix. In
this paper, we present a theoretical approach treating mul-
tilayered dipolar hard spheres in an external magnetic field
[35].

The article is organized as follows. Section II is devoted to
the description of the model. Results for the monolayer case
are presented in Sec. III. Results for bilayers and implications
for multilayers are discussed in Sec. IV. Concluding remarks
including a discussion about experiments are provided in
Sec. V.

II. MODEL

Crystal layered structures made up of dipolar particles are
illustrated in Fig. 1. The constitutive dipolar particles are hard
spheres of diameter d that sets the unit of length. They each
possess a dipole moment of identical magnitude ‖ �m‖ = m
set to unity. The presence of the external normal magnetic
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FIG. 1. (a) Sketch of the geometric setup for an infinite mono-
layer in an external magnetic field. A monoatomic unit cell (light
spheres) with its replica (dark spheres) are shown. To better illustrate
the dipole orientation angles (θ, φ), one dipole moment �m was
magnified. A top view of the unit cell is provided as an inset. For
the sake of clarity, we have not shown the more generic diatomic
monolayer. (b) Sketch of the geometric setup for an infinite bilayer
in an external magnetic field. A diatomic unit cell (light spheres) with
its replica (dark spheres) are shown. Layers 1 and 2 are characterized
by the atomic dipole moments �m1 and �m2, respectively. For the sake
of clarity, only the orientation angles (θ2, φ2) of �m2 are shown.

field, �B = B�ez (with �ez standing for the unit vector along the
z axis), involves the Zeeman term − �m · �B (= −mzB). Hence,
in general, for a prism unit cell containing N dipolar particles
located at �r1, . . . , �rN , the dipolar energy per unit cell, Ucell,
follows

Ucell = 1

2

N∑
i, j

∑
�n

′ C

|�ri j + ↔
t · �n|3

[
�mi · �mj

− 3
�mi · (�ri j + ↔

t · �n) �mj · (�ri j + ↔
t · �n)

|�ri j + ↔
t · �n|2

]
−

N∑
i=1

mi,zB,

(1)

where
↔
t is a 2 × 2 matrix whose two columns are given by

the spanning vectors �a = (a, 0) and �b = (bx, by) in the (x, y)
plane. �n in Eq. (1) designates a vector with integer components
(nx, ny), each ranging from −∞ to +∞. The prime in Eq. (1)
indicates that when �n = 0, i must be different from j. The
energy scale is set by U↑↑ ≡ Cm2/d3 with C = μ0

4π
. Thereby,

the reduced dipolar energy per particle, u, is merely given by
u = 1

N
Ucell
U↑↑

. In what follows, the magnetic field B will always
be in units of U↑↑/m.

On the numerical computational side, in order to overcome
the slow (conditional) convergence [36] in Eq. (1), an efficient
Ewald sum technique adapted to the parallelogram base with
periodicity in two directions was used [37]. Ground states are
obtained by minimization procedures starting with a generic
parallelogram cell made up of two particles. Thus, for the one-
layer case, the minimization of u at a prescribed magnetic field
involves nine parameters corresponding to the two modules

of spanning vectors a and b, the angle γ = ̂(�a, �b), the two
Cartesian coordinates of the second constitutive particle, and
the four related dipole orientation angles, see also Fig. 1(a). In
the two-layer situation, an additional variable sets in which is
the transverse shift between the two layers, see also Fig. 1(b).
The efficient SLSQP (sequential least square programming)
method is employed, which natively takes constraints into
account and requires derivatives of the objective function [38].
Typically 2 × 103 starting random configurations were needed
to reach the global minimum.

III. MONOLAYER IN A NORMAL MAGNETIC FIELD

A. Numerical results

Results about the monolayer are now presented. The nu-
merical calculations unambiguously indicate that the unit cell
of the crystal ground state is always rhombic (a = b = 1) and
monoatomic (N = 1). Thereby, the angle γ will be referred
to as the rhombicity angle. A major finding is the slight but
relevant symmetry breaking of the hexagonal lattice upon
applying an external magnetic field, i.e., γ > 60◦ when B >

0. This intriguing result can be inspected in Fig. 2(a), where
γ (B) is plotted. Clearly, the deviation from the hexagonal
lattice increases monotonically with the magnetic field B,
see Fig. 2(a). An important physical consequence is that the
continuous degeneracy of the in-plane dipole �mρ = �m − mz�ez,
existing in a perfect hexagonal lattice (γ = 60◦) [30], is now
suppressed in the presence of an external magnetic field that
induces rhombicity (γ > 60◦). Concomitantly, the azimuthal
angle φ of the dipole corresponds to γ /2 in agreement with
past studies without an external magnetic field [30,31]. The
related profile of the induced magnetization mz(B) (which
also corresponds to cos θ ) is displayed in Fig. 2(b). It exhibits
a quasilinear law and reaches a value of the order of 20%
around the onset of disaggregation (here at B = Btr = 3.04),
see Fig. 2(b). The latter merely sets in when the decohesion
energy overcomes the Zeeman term, see also Eq. (2), which
is discussed in the next paragraph. The related profile of the
ground-state energy as a function of the applied magnetic field
B, u(B), can be found in Fig. 2(c). As expected, the cohesive
energy, ucoh = u + mzB, increases with B (i.e., getting less
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FIG. 2. (a) Rhombicity angle γ , (b) z component of the dipole
moment mz, and (c) total and cohesive energy profiles as a function
of the external magnetic field intensity B for the monolayer case. Top
and side views of the rhombic unit cell are displayed as insets. The
solid lines in (a)–(c) correspond to the exact theory in quantitative
agreement with the numerical data. The dashed lines in (b) and
(c) correspond to the HLA model, see Eq. (5) and text around
it. The vertical dashed line in (a)–(c) indicates the disaggregation
onset occurring at B = Btr = 3.04. For B > Btr , results for a solitary
magnet are shown for reference.

favorable) whereas the total energy u decreases. In the dis-
aggregation regime B > Btr , results for infinite dilution (i.e.,
solitary magnet) are shown for reference with ucoh = 0 and
u = −B, see Fig. 2(c).

B. Analytical approach

1. Exact theory

Deeper understanding can be gained by solving exactly and
analytically the depicted problem of magnetic layers exposed
to a magnetic field. It turns out that this formidable challenge
is feasible noticing the still strong symmetry of the problem
and upon dexterously rewriting the Hamiltonian given by
Eq. (1) in a tractable way. In a general fashion, it is insightful
to write the dipolar energy u for a (monolayer) rhombic lattice
in the following (exact) form:

u = E0(γ ) + E1mz + E2(γ )m2
z , (2)

with E0(γ ) representing the cohesive energy of the (mag-
netically isolated) rhombic lattice with mz = 0, E1 = −B
stemming from the Zeeman term, and E2(γ ) > 0 causing the
dipolar decohesion. In Appendix A, we provide the full exact
analytical and tractable expression of u(mz, γ ; B) obtained at
the prescribed magnetic field B, see Eqs. (A1)–(A3). Having
this at hand, one can extract the magnetization in the ground
state stemming from the condition ∂u

∂mz
|
B

= 0 that trivially
yields

mz = B

2E2(γ )
, (3)

with γ = γ (B) in Eq. (3). Hence, the susceptibility χ of the
system is merely identical to (2E2)−1. Similarly, the mini-
mum energy condition requires also simultaneously ∂u

∂γ
|
B

= 0,
leading to a highly intricate dependence of γ with B, see
Appendix A for calculation details. The ground state profile
of γ (B) can be visually inspected in Fig. 2(a). Consequently,
the ground state energy of the rhombic phase reads

u(B) = E0(B) − χ (B)

2
B2, (4)

whose profile is displayed in Fig. 2(c).

2. Hexagonal lattice approximation

Another analytical route which is much more simple,
but not exact, is to neglect the rhombicity angle variation,
i.e., always assume a hexagonal lattice [γ (B) = 60◦], see
Appendix A 2 for details. The latter approach will be referred
to as the hexagonal lattice approximation (HLA). In this
scenario, the ground-state energy reads

uHLA = −2.759 − 3.021 × 10−2B2, (5)

where E0 = −2.759 corresponds to the well-known cohesive
energy of a hexagonal lattice [31,39], see also Eq. (B13),
and χ = 6.042 × 10−2 is the related susceptibility, see
Appendix A for the full derivation. The profile of uHLA(B)
specified by Eq. (5) is displayed in Fig. 2(c), too, rationalizing
also the (quasi) linear behavior found in mz(B), see Fig. 2(b).
The various values of χ and Btr are gathered in Table I.

IV. BILAYER IN A NORMAL MAGNETIC FIELD

A. Numerical results

We now address the bilayer system whose setup is sketched
in Fig. 1(b). Interestingly, our numerical optimization predicts
that the two layers adopt a hexagonal lattice with identical
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TABLE I. Numerical values of χ, Btr and E0 in different scenarios.

Monolayer Bilayer

Exact theory HLA model Exact theory

χ B dependent 6.042 × 10−2 5.868 × 10−2

Btr 3.0391 3.0372 3.2062
E0 B dependent −2.759 −2.905

moments ( �m1 = �m2 = �m) in the ground state at finite applied
external magnetic field. That is to say that the two-layer lattice
is invariant upon exerting a magnetic field and coincides with
the body-centered tetragonal lattice. The latter lattice structure
constitutes a signature of dipolar systems and does not emerge
in double-layered charged particles [40,41]. The azimuthal
angle φ of the dipole corresponds now to γ (i.e., φ = γ ),
see also inset of Fig. 3(a). Thereby the bilayer magnetization
matches that of the body-centered tetragonal ground state. In
contrast with the monolayer case, here there is no longer a
continuous degeneracy of the dipole moment orientation.

FIG. 3. (a) Total and cohesive energy profiles, see related Eq. (6),
and (b) z component of the dipole moment mz as a function of the
external magnetic field intensity B for the bilayer, see Eq. (7). The
magnetization mz(B) for the monolayer is shown as a dashed line for
comparison. Top and side views of the two-layer lattice are displayed
as insets in (a) and (b), respectively. For B > Btr , results for a solitary
magnet are shown for reference.

B. Exact analytical results

This strong symmetry preservation allows an exact ana-
lytical description too, which is detailed in Appendix B. As
a matter of fact, relation (2) gets simplified where the γ

dependence vanishes. It can be shown, see also Appendix B,
that the (exact) dipolar energy u in the ground state verifies

ubi = −2.905 − 2.934 × 10−2B2, (6)

whose profile can be found in Fig. 3(a). Notice the high
resemblance with the (approximate) monolayer energy uHLA,
see Eq. (5). The enhanced cohesion upon stacking (here E0 =
−2.905 to be compared with E0 = −2.759 for a monolayer in
the absence of an applied magnetic field) leads to two notable
features:

(i) A lower susceptibility emerges, see Appendix B for
derivation, where

mbi
z = 5.868 × 10−2B, (7)

whose profile appears in Fig. 3(b); see also Table I.
(ii) The disaggregation onset is shifted to a higher magnetic

field, see Fig. 3(a) and also Table I.
It is insightful to recall that in the bulk limit the cohesion

energy is E0 = −3.05 [42,43], which is already close to that
of the bilayer E0 = −2.905 (i.e., about 5%).

V. CONCLUDING REMARKS

In summary, we have investigated theoretically the ground
state of magnetic particles trapped in multilayered arrays
exposed to a perpendicular external magnetic field. The mono-
layer ground state is found to be always rhombic. Without an
external magnetic field, the well-known hexagonal lattice with
a continuously degenerate ferromagnetic state is recovered as
the ground state [30]. At a finite external field, the hexagonal
lattice symmetry and the related continuous degeneracy are
broken. In strong contrast and interestingly, the ground-state
structure of the bilayer system is invariant under an applied
perpendicular magnetic field. At finite external magnetic field,
the lattice of each layer is hexagonal and the composite
superlattice of the bilayer coincides with the body-centered
tetragonal lattice [42–45]. Concomitantly, the magnetic sus-
ceptibility is reduced due to the enhanced cohesion upon
stacking a second layer.

It is therefore expected that multilayers (beyond bilayers)
consist of stacked hexagonal layers coinciding with the body-
centered tetragonal structure. Addressing more quantitatively
(true) multilayers is possible, albeit very cumbersome analyti-
cally, and is planned in a future study. An interesting question
would be to estimate how fast the induced magnetization
saturates towards the bulk value.

On the experimental side, our findings are relevant too and
can be verified in various settings. For instance, the so-called
magnetic click colloidal self-assembly [46] can be further
explored (in the dense layer regime) by applying an exter-
nal perpendicular magnetic field and examining the induced
disaggregation. As far as magnetic multilayers are concerned,
our findings can be verified and exploited in multilayered
photonic crystals made up of centimetric permanent magnets
floating at the air-liquid interface [47,48]. At the mesoscopic
scale, magnetic colloidal multilayers should be in principle
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FIG. 4. Sketch of the geometric setup for an infinite monolayer in

a perpendicular magnetic field where the bisector of ̂(�a, �b) coincides
with the y axis.

achievable at air-water [49] or solid-water [50] interfaces. As
a matter of fact, strong smectic-like ordering has been ex-
perimentally observed in ferrofluids at silica interfaces when
exposed to a normal magnetic field [27]. In this respect,
our study sheds light on the lateral ordering and resulting
magnetization in such systems. On a final note, we would like
to mention the striking analogy between the magnetic field
induced rhombicity and subsequent disaggregation reported
in our work and the so-called Rosensweig instability [51]. In
this magnetohydrodynamic instability occurring at a ferrofluid
interface exposed to a critical normal magnetic field, there
is a transition from a flat interface to stationary waves with
hexagonal patterns [51] and then square patterns [52] upon
increasing the magnetic field.

APPENDIX A: MONOLAYER CASE

When we have considered the case of a monolayer in an
external perpendicular magnetic field, preliminary numerical
minimization has revealed two major symmetries: (i) The
monolayer’s lattice is always rhombic (i.e., ‖�a‖ = ‖�b‖) and
(ii) the phase is ferromagnetic. To obtain an analytical de-
scription of the problem, it is useful to choose the y axis
(or equivalently the x axis) to coincide with the bisector of
̂(�a, �b), see Fig. 4. Thereby, the dipole moment �m forms an
angle α with the y axis, so that �m = (mρ sin α, mρ cos α, mz )
with m2 = m2

ρ + m2
z = 1, see Fig. 4. Within this framework

and after some lengthy algebra, one arrives at the following
exact expression for the energy per particle at prescribed
rhombicity γ :

u(mz, γ , α; B) = S1(γ ) + cos(2α)S2(γ )
(
1 − m2

z

)
− 3S1(γ )m2

z − Bmz, (A1)

with

S1(γ ) = − 1

16 cos3(γ /2)

{
ζ (3) + 4π2

3[tan(γ /2)]2

+ 8π

tan(γ /2)

∞∑
n=1

∞∑
k=1

[
n

k
K1(2π tan(γ /2)nk)

+ n cos(nπ )

k − 1/2
K1(2π tan(γ /2)n(k − 1/2))

]}
,

(A2)

and

S2(γ ) = − 1

16 cos3(γ /2)

{
3ζ (3) − 4π2

3[tan(γ /2)]2
− 8π2

∞∑
n=1

∞∑
k=1

× (n2[K2(2π tan(γ /2)nk) + 3K0(2π tan(γ /2)nk)]

+ n2 cos(nπ )[K2(2π tan(γ /2)n(k − 1/2))

+ 3K0(2π tan(γ /2)n(k − 1/2))])
}
, (A3)

where ζ (3) is a zeta function, and K0(r), K1(r), and K2(r)
are modified Bessel functions of the second kind. Notice that
formula in Eqs. (A2) and (A3) are reminiscent of Lekner-type
sums [53,54]. However, our lattice sum corresponds to a new
suitable formulation adapted to a rhombic lattice.

1. General expressions for the ground state

One can show that S2 < 0 with 60◦ < γ < 120◦. Hence,
α = 0◦ in Eq. (A1) in the ground state. For the hexagonal
case with γ = 60◦ (or equivalently 120◦), we have S2 = 0
so that α can assume any arbitrary value in the ground state.
This provides a more transparent and appealing demonstra-
tion (compare with Ref. [30]) of the continuous degeneracy
of the orientation of the dipole moment in the hexagonal
ground state. In general for the rhombic structure, the total
energy per particle of the monolayer, umono, can be cast into
the form

umono(mz, γ ; B) = Emono
0 (γ ) + Emono

1 mz + Emono
2 (γ )m2

z ,

(A4)

with

Emono
0 (γ ) = S1 + S2

= − 1

4 cos3(γ /2)

{
ζ (3) − 8π2

∞∑
n=1

∞∑
k=1

× [n2K0(2π tan(γ /2)nk)

+ n2 cos(nπ )K0(2π tan(γ /2)n(k − 1/2))]

}
,

(A5)

Emono
1 = −B, (A6)
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Emono
2 (γ ) = −3S1 − S2 (A7)

= 1

8 cos3(γ /2)

{
3ζ (3) + 4π2

3(tan(γ /2))2

+ 8π2
∞∑

n=1

∞∑
k=1

(n2[K2(2π tan(γ /2)nk)

− 3K0(2π tan(γ /2)nk)]

+ n2 cos(nπ )[K2(2π tan(γ /2)n(k − 1/2))

− 3K0(2π tan(γ /2)n(k − 1/2))])}. (A8)

By minimizing the energy given by Eq. (A4) with respect to
mz, i.e., ∂u

∂mz
|
B

= 0, we obtain the magnetization that reads

mz(γ ; B) = B

2Emono
2 (γ )

(A9)

and consequently the total energy given by Eq. (A4) becomes

umono(γ ; B) = Emono
0 (γ ) − B2

4Emono
2 (γ )

. (A10)

At prescribed magnetic field B, further minimization of
Eq. (A10) with respect to γ , i.e., ∂u

∂γ
|
B

= 0, provides a value
γ = γ ∗ [55], leading to the final ground-state energy

umin
mono(B) = Emono

0 (γ ∗(B)) − B2

4Emono
2 (γ ∗(B))

(A11)

and magnetization

mz(B) = B

2Emono
2 (γ ∗(B))

. (A12)

2. Hexagonal lattice approximation (HLA)

If we neglect the rhombicity and always assume a perfect
hexagonal lattice for the ground state, Eq. (A4) becomes

umono(mz; B) = Emono
0 (60◦) + Emono

1 mz + Emono
2 (60◦)m2

z .

(A13)

With this approximation the corresponding minimal energy
reads

uHLA
mono(B) = Emono

0 (60◦) − B2

4Emono
2 (60◦)

, (A14)

and the related magnetization is

mz(B) = B

2Emono
2 (60◦)

= χB, (A15)

with χ = 1

2Emono
2 (60◦)

= 0.06042.

3. Disaggregation onset

The critical value of the magnetic field Btr at which the
(dense) crystal layer is energetically beaten by an infinitely
dilute gas (or equivalently a crystal layer with diverging lattice
constants a, b → ∞) is given by the condition

umin
mono(Btr ) = ugas := −Btr. (A16)

FIG. 5. Sketch of the geometric setup for an infinite bilayer in

a perpendicular magnetic field where the bisector of ̂(�a, �b) parallel
to the y-axis. The underlying body-centered tetragonal structure is
characterized by two staggered hexagonal lattices with a shift of 1/2
in the chaining direction (−30◦ with the y − axis coinciding here
with �b). Note that in this illustration the dipole moments are not
relaxed.

By solving Eq. (A16), we find

Btr = −umin
mono(γ ∗

tr , Btr ) = 3.039, (A17)

γ ∗
tr ≈ 61.12. (A18)

Notice that the energy difference between the deformed lattice
and the ideal one is small but not negligible. For instance

umin
mono(Btr ) = −3.0391, (A19)

uHLA
mono(Btr ) = −3.0376. (A20)

APPENDIX B: BILAYER CASE

In the case of a bilayer in a external perpendicular magnetic
field, preliminary numerical minimization has shown that the
lattice of each of both constitutive layers is hexagonal (i.e.,
γ = 60◦) in the ground state, see also Fig. 5. In addition,
the bilayer’s superlattice coincides with the body-centered
tetragonal lattice and the phase is ferromagnetic, see also
Fig. 5. Similarly to the monolayer case, we choose the y axis

(or equivalently x axis) parallel to the bisector of ̂(�a, �b), see
Fig. 5. Within this framework, the energy per particle, ubi,
reads

ubi(mz, α; B) = umono(mz; B) + uinter (mz, α; B), (B1)
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where umono(mz; B) is given by Eq. (A13) and the energy
between the two interacting layers, uinter, is

uinter (mz; B) = − 1
2 [I1 + I2(α)], (B2)

with

I1 = 32π

3
√

3

∞∑
k=−∞

∞∑
n=1

n cos
(

3nπ
2

)
√

1 + 1
3

(
2k − 3

2

)2

× K1

⎛
⎝nπ

√
1 + 1

3

(
2k − 3

2

)2
⎞
⎠ + 8

3
π tanh(

√
3π ),

(B3)

and

I2(α) = −3

[
3
(
1 − m2

z

)
cos2(α)D1 +

(
1 − m2

z

)
sin2(α)

4
D2

+ 3m2
z

4
D3 −

√
3
(
1 − m2

z

)
2

sin(2α)D4

]
, (B4)

where

D1 = 32π

27
√

3

∞∑
k=−∞

∞∑
n=1

× cos
(nπ

2

)⎡
⎣−n2πK0

⎛
⎝nπ

√
1 + 1

3

(
2k − 1

2

)2
⎞
⎠

+
nK1

(
nπ

√
1 + 1

3

(
2k − 1
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(
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⎤
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27
tanh(
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(B5)

D2 = 128π2

27
√

3

∞∑
k=−∞

(
2k − 1

2

)2

1 + 1
3

(
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2
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×
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n2 cos
(nπ

2

)
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⎛
⎝nπ

√
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(
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⎞
⎠

+ 16π

9
√

3
[6π +

√
3 sinh(2

√
3π )]sech2(

√
3π ),

(B6)

D3 = 128π2

27
√

3

∞∑
k=−∞

1

1 + 1
3

(
2k − 1

2

)2

×
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n2 cos
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K2

⎛
⎝nπ
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(
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2

)2
⎞
⎠

+ 32π

27
√

3
[−3πsech2(

√
3π ) +

√
3 tanh(

√
3π )],

(B7)

TABLE II. Numerical values of some constants appearing in
Appendix B.

I1 D1 D2 D3 D4 A

8.346 0.9491 11.131 3.621 6.439 × 10−2 8.276

D4 = − 64π2

27
√

3

∞∑
k=−∞

(
2k − 1

2

)
√

1 + 1
3

(
2k − 1

2

)2

×
∞∑

n=1

n2 sin
(nπ

2

)
K1

⎛
⎝nπ

√
1 + 1

3

(
2k − 1

2

)2
⎞
⎠.

(B8)

The numerical values of I1, D1, D2, D3, D4 defined through
Eqs. (B3)–(B8) are gathered in Table II.

1. General expressions for the ground state

The minimization of the energy given by Eq. (B1) with
respect to the angle α, i.e., ∂ubi

∂α
|
B

= 0, leads to the value α =
−30◦ and consequently the total energy becomes

ubi(mz; B) = Ebi
0 + Ebi

1 mz + Ebi
2 m2

z , (B9)

where

Ebi
0 = Emono

0 (60◦) + 1
2 I1 − 3

4 (D4 + 6D1), (B10)

Ebi
1 = −B, (B11)

Ebi
2 = 3

8

(
9D1 + 1

4 D2 − 3D3 + 3D4
) + A. (B12)

The term Emono
0 (60◦) in Eq. (B10), see also Eq. (A5), reads

Emono
0 (60◦) = − 1

3
√

3

{
2ζ (3) − 16π2

∞∑
n=1

∞∑
k=1

n2

[
K0

(
2π√

3
nk

)

+ cos(nπ )K0

(
2π√

3
n(k − 1/2)

)]}
, (B13)

and the term A in Eq. (B12) is

A = 1

3
√

3

{
3ζ (3) + 4π2 + 8π2

∞∑
n=1

∞∑
k=1

n2

[
K2

(
2π√

3
nk

)

+ cos(nπ )K2

(
2π√

3
n(k − 1/2)

)
− 3K0

(
2π√

3
nk

)

− 3 cos(nπ )K0

(
2π√

3
n(k − 1/2)

)]}
. (B14)

Then, by minimizing the energy established in Eq. (B9)
with respect to mz, i.e., ∂ubi

∂mz
|
B

= 0, we obtain the following
magnetization:

mz(B) = B

2Ebi
2

= χB, (B15)

with χ = 1
2Ebi

2
= 0.05868 and the corresponding minimal en-

ergy

umin
bi (B) = Ebi

0 − B2

4Ebi
2

. (B16)
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2. Disaggregation onset

The criterion for disaggregation onset in bilayers reads

umin
bi (Btr ) = ugas = −Btr. (B17)

By solving Eq. (B17), we find

Btr = −umin
bi (Btr ) = 3.206. (B18)
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