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Quantum entanglement between two magnon modes via Kerr nonlinearity
driven far from equilibrium
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We propose a scheme to entangle two magnon modes via the Kerr nonlinear effect when driving the systems far
from equilibrium. We consider two macroscopic yttrium iron garnets interacting with a single-mode microcavity
through the magnetic dipole coupling. The Kittel mode describing the collective excitations of a large number of
spins is excited through the driving cavity with a strong microwave field. We demonstrate how Kerr nonlinearity
creates the entangled quantum states between the two macroscopic ferromagnetic samples, when the microcavity
is strongly driven by a blue-detuned microwave field. Such quantum entanglement survives at the steady
state. Our work offers insights and guidance in designing experiments for observing entanglement in massive
ferromagnetic materials. It can also find broad applications in macroscopic quantum effects and magnetic
spintronics.
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I. INTRODUCTION

Recent advances in ferromagnetic materials have drawn
considerable attention in studies of quantum nature in mag-
netic systems, as the limitations of electrical circuitry are
reached. Thanks to the low loss of the collective excitations of
spins known as magnons in magnetic samples, the magnons
offer a new paradigm for developing future generations of
spintronic devices and quantum engineering [1–6]. Yttrium
iron garnet (YIG) with a size of ∼100 μm as fabricated in
recent experiments provides new insights for studying macro-
scopic quantum effects, such as entanglement and squeezing,
that have raised widespread interest in different branches
of physics during the last decade [7–12]. Quantum entan-
glement between massive mirror and optical cavity photons
has been explored, in both theoretical and experimental as-
pects [13–18]. Several following ideas have suggested the
extension of such an entangled quantum state to magnons
in the microwave regime, due to their great potential for
macroscopic spintronic devices. Many experimental efforts
have been devoted to the quantum nature of magnon states,
through hybridizing the spin waves with other degrees of
freedom, e.g., superconducting qubits and phonon modes
[19–22]. Compared to atoms and photonics, magnonics
holds the potential for implementing quantum states in more
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massive objects. This can be seen from the 320-μm-diameter
YIG spheres implemented in recent experiments [23].

Ferromagnetic materials provide a promising platform for
studying the hybrid quantum systems in diversity, due to the
rich interactions including magnetic dipole, magneto-optical,
and magnetostrictive couplings that allow one to implement
the interactions between drastically different physical systems
[24]. Of particular interest are magnon polaritons, where
strong and even ultrastrong light-matter couplings can be
achieved, along with the fact of their high spin density and
low dissipation rate [25–31]. This may serve as a potential
candidate for implementing quantum information transduc-
ers and memories [31,32]. For the architecture of quantum
magnonics, the macroscopic quantum effects are essentially
worthy of being explored. The most recent work using driven-
dissipation theory suggests magnon-photon-phonon entangle-
ment and also the squeezing of magnon modes in which
both the entanglement and squeezing are essentially trans-
ferred into the mechanical mode [33–35]. From a theoretical
point of view, this macroscopic quantum nature of magnon
modes stems from the nonlinearity that can be enhanced by
driving the systems far from equilibrium. Two prominent
schemes are responsible for introducing such nonlinearity: the
magnetostrictive interaction and the Kerr effect, where the
latter results from the magnetocrystalline anisotropy. Apart
from the magnon-phonon interaction, Kerr nonlinearity plays
a significant role in magnon spintronics [5]. Recent exper-
iments in YIG spheres demonstrated the multistability and
photon-mediated control of spin current, due to the Kerr
effect [36–38]. These studies are essentially semiclassical. In
contrast, the current article is to show how Kerr nonlinearity
can be used to produce remarkable quantum features of YIG
bulks.

In this article, we propose a scheme of entangling magnon
modes in two massive YIG spheres via Kerr nonlinearity.
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The two magnon modes interact with a microcavity through
the beam-splitter-like coupling, which cannot produce any
entanglement. Nevertheless, activating Kerr nonlinearity via
strong driving results in squeezing-like coupling which may
let the magnon become entangled with cavity photons. The
subsequent entanglement transfer between photons and the
other magnon mode will lead to the entanglement between
magnon modes. The condition for optimizing the magnon-
magnon entanglement is found and is confirmed by our
numerical calculations. By taking into account the experimen-
tally feasible parameters, we show that considerable magnon-
magnon entanglement can be created. Such entanglement is
also shown to be robust against cavity leakage. Our work
offers insights and perspectives for studying the quantum
effects in complex molecules. These have been manifested by
the excited-state dynamics in dye molecules and even bacteria,
implying the entangled quantum states when interacting with
microcavities [39–43].

II. MODEL AND EQUATION OF MOTION

We consider a hybrid magnon-cavity system consisting of
two bulk ferromagnetic materials and one microwave cav-
ity mode (see Fig. 1). The ferromagnetic sample contains
dispersive spin waves, in which only the spatially uniform
mode (Kittel mode [44]) is assumed to strongly interact
with cavity photons. This is reasonable as the magnetostatic
mode (MS) with finite wave number has a distinct frequency
from the Kittel mode so that the selective excitation may be
implemented through the driving field wavelength and cavity
mode selection [45]. Hence the full Hamiltonian of this cavity
magnonics system reads

H = −
∫

MzB0dr − μ0

2

∫
MzHandr

+ 1

2

∫ (
ε0E2 + B2

μ0

)
dr −

∫
M · Bdr, (1)

where B0 = B0ez is the applied static magnetic field and
M = γ h̄S/Vm with γ = e/me denoting the gyromagnetic ra-
tio. S stands for the collective spin operator, spanning the

FIG. 1. Schematic of cavity magnons. Two YIG spheres are
interacting with the basic mode of the microcavity in which the right
mirror is made of high-reflection material so that photons leak from
the left side. The static magnetic field for producing the Kittel mode
is along the z axis whereas the microwave driving and magnetic field
inside the cavity are along the x axis.

su(2) Lie algebra [Sα, Sβ ] = iεαβγ Sγ . Vm is the volume of
ferromagnetic material. B represents the magnetic field inside
the cavity. Han is the anisotropic field due to the magne-
tocrystalline anisotropy and has a z component only owing
to the crystallographic axis being aligned along the applied
static magnetic field. Thereby the anisotropic field is given by
Han = −2KanMz/M2, where Kan and M denote the dominant
first anisotropy constant and the saturation magnetization,
respectively. One can recast the Hamiltonian in Eq. (1) into

H = −γ h̄
2∑

j=1

Bj,0S j,z + γ 2h̄2
2∑

j=1

μ0K ( j)
an

M2
j Vj,m

S2
j,z

+ h̄ωca†a − γ h̄
2∑

j=1

S j,xB j,x (2)

by assuming that the magnetic field inside the cavity
is along the x axis. The Holstein-Primakoff transform
yields Si,z = Si − m†

i mi, Si,+ = (2Si − m†
i mi )1/2mi, Si,− =

m†
i (2Si − m†

i mi )1/2, where Si,± ≡ Si,x ± iSi,y and mi repre-
sents the bosonic annihilation operator [46]. For the yttrium
iron garnets (YIGs) with diameter d = 40 μm, the density of
the ferric ion Fe3+ is ρ = 4.22 × 1027 m−3, which leads to the
total spin S = 5

2ρVm = 7.07 × 1014. This is often much larger
than the number of magnons, so that we can safely approxi-
mate S j,+ � √

2S jmj, S j,− � √
2S jm

†
j . In the presence of the

external microwave driving field, the effective Hamiltonian of
the hybrid magnon-cavity system is of the form [47]

Heff = h̄ωca†a + h̄
2∑

j=1

[ω jm
†
j m j + g j (m

†
j a + mja

†)

+� jm
†
j m jm

†
j m j] + ih̄	(a†e−iωd t − aeiωd t ), (3)

where δs = ωs − ωd , δc = ωc − ωd , and the cavity fre-
quency is denoted by ωc. The frequency of the Kittel
mode is ωs = γ Bs,0 − 2h̄μ0K (s)

an γ 2Ss/M2
s Vs,m with γ /2π =

28 GHz/T. gs gives the magnon-cavity coupling and �s =
μ0K (s)

an γ 2/M2
s Vs,m gives the Kerr nonlinearity. The Rabi fre-

quency 	 = √
2Pdγc/h̄ωd in the last term quantifies the

strength of the field inside microcavity driven by the mi-
crowave magnetic field, where Pd and ωd represent the power
and frequency of the microwave field, respectively. The quan-
tum Langevin equations (QLEs) for the hybrid cavity-magnon
system are given by

ṁs = −(iδs + γs)ms − 2i�sm
†
s msms − igsa +

√
2γsm

in
s (t ),

ȧ = −(iδc + γc)a − i
2∑

j=1

g jmj + 	 +
√

2γcain(t ), (4)

where γc and γs represent the rates of cavity leakage and
magnon dissipation, respectively. min

s (t ) and ain(t ) are the
input noise operators having zero mean and white noise:
〈min,†

s (t )min
s (t ′)〉 = n̄sδ(t − t ′), 〈min

s (t )min,†
s (t ′)〉 = (n̄s +

1)δ(t − t ′); 〈ain,†(t )ain(t ′)〉 = 0, 〈ain(t )ain,†(t ′)〉 = δ(t − t ′),
where n̄s = [exp(h̄ωs/kBT ) − 1]−1 denotes the Planck factor
of the sth magnon mode.

Since the microcavity is under strong driving by the
microwave field, the beam-splitter-like coupling between
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magnons and cavity leads to the large amplitudes of both
magnon and cavity modes, namely, |〈ms〉|, |〈a〉| 	 1. In this
case, one can safely introduce the expansion ms = 〈ms〉 +
δms, a = 〈a〉 + δa in the vicinity of the steady state, by
neglecting the higher-order fluctuations of the operators.
We thereby obtain the linearized QLEs for the quadratures
δXs, δYs, δX, δY defined as δX1 = (δm1 + δm†

1 )/
√

2, δY1 =
(δm1 − δm†

1 )/i
√

2, δX2 = (δm2 + δm†
2)/

√
2, δY2 = (δm2 −

δm†
2 )/i

√
2, δX = (δa + δa†)/

√
2, δY = (δa − δa†)/i

√
2:

σ̇ (t ) = Aσ (t ) + f (t ), (5)

where σ (t ) = [δX1(t ), δY1(t ), δX2(t ), δY2(t ), δX (t ), δY (t )]T

and f (t ) = [
√

2γ1X in
1 (t ),

√
2γ1Y in

1 (t ),
√

2γ2X in
2 (t ),

√
2γ2Y in

2 (t ),√
2γcX in (t ),

√
2γ1Y in(t )]T are the vectors for quantum

fluctuations and noise, respectively. The drift matrix
reads

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1 − γ1 δ̃1 − G1 0 0 0 g1

−δ̃1 − G1 −F1 − γ1 0 0 −g1 0

0 0 F2 − γ2 δ̃2 − G2 0 g2

0 0 −δ̃2 − G2 −F2 − γ2 −g2 0

0 g1 0 g2 −γc δc

−g1 0 −g2 0 −δc −γc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

with the magnetocrystalline anisotropy quantified by Gs =
2�sRe〈ms〉2, Fs = 2�sIm〈ms〉2, and the effective detuning
of magnons δ̃s = δs + 2

√
G2

s + F 2
s = δs + 4�s|〈ms〉|2, which

includes the frequency shift caused by Kerr nonlinearity. The
means 〈m1,2〉 are given by

〈m1〉 = ig1	

(δ̃1 − iγ1)(δc − iγc) − g2
1 − g2

2(δ̃1−iγ1 )
δ̃2−iγ2

,

and (1 ↔ 2).

(7)

Before studying entanglement, it is essential to elucidate the
mechanism for optimizing the entanglement via Kerr nonlin-
earity. To this end, we proceed via the effective Hamiltonian
for quantum fluctuations

Hqf = h̄
2∑

s=1

[δ̃sδm†
s δms + �̃sδm†

s δm†
s + �̃∗

s δmsδms

+ gs(δm†
s δa + δmsδa†)] + h̄δcδa†δa, (8)

where �̃s = (Gs + iFs)/2. The quadratic terms
δm†

s δm†
s , δmsδms imply the effective magnon-magnon

interaction induced by the magnetocrystalline anisotropy,
which may be significantly enhanced by strong driving.
This, in fact, is responsible for the entanglement. To make
it elaborate, let us introduce the Bogoliubov transformation
[48,49] δβs = usδms − v∗

s δm†
s , δβ†

s = −vsδms + u∗
s δm†

s ,

where us =
√

1
2 ( δ̃s

εs
+ 1), vseiα = −

√
1
2 ( δ̃s

εs
− 1), α =

arctan(Fs/Gs), and εs = (δ̃2
s − 4|�̃s|2)

1/2
. Inserting these

into Eq. (8) we find

Hqf = h̄
2∑

s=1

[εsδβ
†
s δβs + gs((vsδβs + usδβ

†
s )δa

+ (u∗
s δβs + v∗

s δβ
†
s )δa†)] + h̄δcδa†δa, (9)

which shows that εs � −δc is optimal for the entanglement,
due to the magnon-photon squeezing term gs(vsδβsδa +
v∗

s δβ
†
s δa†). This will be confirmed by the later numerical

results when taking into account experimental parameters.

III. ENTANGLEMENT BETWEEN MAGNON MODES

Since we are using the linearized quantum Langevin equa-
tions, the Gaussian nature of the input states will be preserved
during the time evolution of systems. The quantum fluctu-
ations are thus the continuous three-mode Gaussian state,
which is completely characterized by a 6 × 6 covariance ma-
trix (CM) defined as Ci j (t, t ′) = 1

2 〈σi(t )σ j (t ′) + σ j (t ′)σi(t )〉,
(i, j = 1, 2, . . . , 6), where the average is taken over the sys-
tem and bath degrees of freedoms. Suppose the drift matrix
A is negatively defined; the solution to Eq. (5) is σ (t ) =
M(t )σ (0) + ∫ t

0 M(s) f (t − s)ds, where M(t ) = exp(At ). This
enables us to find the equation which the CM obeys,

Ċ(t + τ, t ) = AC(t + τ, t ) + C(t + τ, t )AT + eAτ D, (10)

for τ � 0. Thus the stationary CM can be straightforwardly
obtained by letting τ = 0, t → ∞ in Eq. (10) that yields the
Lyapunov equation

AC∞ + C∞AT = −D, (11)

where the diffusion matrix is D = diag[γ1(2n̄1 + 1), γ1(2n̄1 +
1), γ2(2n̄2 + 1), γ2(2n̄2 + 1), γc, γc] defined through
〈 fi(t ) f j (t ′) + f j (t ′) fi(t )〉 = 2Di jδ(t − t ′).

A. Magnon-magnon and magnon-photon entanglements

To study the bipartite magnon-magnon and magnon-
photon entanglements, we adopt the logarithmic negativity EN

by computing the 4 × 4 CM related to the two modes of inter-
est. This can be achieved by defining EN = max[0,−ln2v−],
where v− = min|eig ⊕2

j=1 (−σy)P12C4P12| and σy is the Pauli
matrix [50,51]. C4 is the CM of two subsystems, obtained
through removing in C∞ solved from Eq. (11) the rows and
columns of the uninteresting modes. The matrix P12 = σz ⊕ 1
realizes the partial transposition at the level of the CM. In
what follows, we will work in the monostable scheme of
magnons. Furthermore, we will focus on the case of two iden-
tical magnons having G1,2 = G, F1,2 = F, δ̃1,2 = δ̃, �1,2 =
�, g1,2 = g.
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FIG. 2. Two-dimensional plots for (top) magnon-magnon entanglement Em1m2 and (bottom) magnon-cavity entanglement Em1a when
turning off the coupling between the cavity and the second sphere (g2 = 0). (a) g1,2/2π = 41 MHz, δc/2π = −0.03 GHz; (b) g1/2π =
41 MHz, g2 = 0, δc/2π = −0.03 GHz; (c) F1,2 = −0.048 GHz, g1,2/2π = 41 MHz; (d) F1,2 = −0.048 GHz, g1/2π = 41 MHz, g2 = 0;
and (e), (f) F1,2 = −0.048 GHz, δc/2π = −0.03 GHz. Other parameters are ω1,2/2π = 10 GHz, δ1,2/2π = −1 MHz, γ1,2/2π = 8.8 MHz,
γc/2π = 1.9 MHz, and T = 10 mK.

Figure 2 shows the magnon-magnon entanglement ver-
sus some key parameters of the system. Here we have
taken into account the experimentally feasible parameters
[36] ω1,2/2π = 10 GHz, δ1,2/2π = −1 MHz, γ1,2/2π =
8.8 MHz, and γc/2π = 1.9 MHz for the YIG bulk at low tem-
perature T = 10 mK. First of all we observe from Figs. 2(a)
and 2(b) that Kerr nonlinearity is responsible for creating
the steady-state entanglement between two magnon modes,
evident from the fact that the entanglement dies out when G =
F = 0. This results from the dominated beam-splitter inter-
action between magnon mode and cavity photons, once G =
F = 0. Thereby no magnon-cavity entanglement can be cre-
ated, as seen in Fig. 2(b). We take the condition εs � −δc for
optimizing the magnon-photon entanglement, as illustrated in
Fig. 2(d), where εs � √

3(G2
s + F 2

s ). The two-mode squeezing
term gs(vsδβsδa + v∗

s δβ
†
s δa†) squeezes the joint state between

one magnon mode and cavity photons, which results in the
partial entanglement in between. Because the same type of
interaction occurs when coupling the other magnon mode with
the cavity, the two distanced magnon modes are expected
to be entangled. This is confirmed in Fig. 2(c), manifesting
the optimal magnon-magnon entanglement in the vicinity of
εs � −δc. The elaborate transfer from magnon-photon en-
tanglement to magnon-magnon entanglement is subsequently
evident as the coupling of the cavity to another sphere is
turned on. Since the biparticle entanglement originates from
the Kerr nonlinearity quantified by G1,2 and F1,2, there must
be an interplay between the couplings Gs, Fs, and gs, which
is depicted in Figs. 2(e) and 2(f). In Fig. 2(c) we take

g1,2/2π = 41 MHz and this implies δc/2π � −0.03 GHz for
the optimal entanglement Em1m2 . We then adopt the magnitude
of δc for plotting Figs. 2(a) and 2(b). Using

√
G2 + F 2 =

2�|〈m〉|2 and Eq. (7) for the 40-μm-diameter YIG spheres,
the optimal entanglement with |G| = 0.038 GHz, |F | =
0.028 GHz [see Fig. 2(a)] yields the Rabi frequency 	 =
1.06 × 1015 Hz, corresponding to the drive power Pd = 314
mW. Indeed, the stronger nonlinearity will create more en-
tanglement between the magnon modes. But we have to
ensure the negatively defined matrix A given in Eq. (6), and
the condition 〈m†

j m j〉 � 2Njs = 5ρ jVj,m. It is easy to show
how our procedure is valid under the parameter regimes we
considered. Also, the experimental feasibility of an ultrastrong
drive using microwave field needs consideration.

Figures 3(a) and 3(b) illustrate the entanglement be-
tween two magnon modes versus some controllable param-
eters by considering the 40-μm-diameter YIG sphere ex-
periment, where ω1,2/2π = 10 GHz, δ1,2/2π = −1 MHz,
�1,2/2π = 1 μHz, g1,2/2π = 41 MHz, γ1,2/2π = 8.8 MHz,
and γc/2π = 1.9 MHz have been taken according to Ref. [36].
We observe in Fig. 3(a) that for fixed driving power, the
magnon-magnon entanglement is quite sensitive to cavity
detuning δc ≡ ωc − ωd , reaching its maximum at δc/2π �
−0.03 GHz. This is consistent with the condition ε j � −δc

as clarified for optimizing the entanglement. Figure 3(b)
shows considerable entanglement when the system is driven
far from equilibrium. This is reasonable because the strong
external driving significantly enhances the Kerr nonlinearity
that is responsible for both magnon-cavity squeezing and
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FIG. 3. Magnon-magnon and magnon-magnon-photon entangle-
ments vary with (a), (c) cavity detuning and (b), (d) driving power.
(a)–(d) Solid blue, dot-dashed black, and dashed red lines are for
the cavity leakage γc/2π = 1.9 MHz, 20 MHz, and 70 MHz, respec-
tively; g1,2/2π = 41 MHz. (a), (c) Solid blue, dot-dashed black, and
dashed red lines also correspond to driving power Pd = 393 mW,
38 mW, and 11 mW, respectively; (b), (d) δc/2π = −30 MHz. Other
parameters are the same as Fig. 2.

entanglement, as elucidated in Eqs. (7) and (8). Notice the cut-
off in both Figs. 3(b) and 3(d). This results from the require-
ment 〈m†

j m j〉 � 2Njs = 5ρ jVj,m that ensures the validity of
the magnon description for magnetic materials. Furthermore,
Figs. 3(a) and 3(b) show that the weaker magnon-magnon
entanglement is observed when increasing the cavity leakage.
By noting the magnitude, we can still obtain some entangle-
ment, even with a low-quality cavity showing weak magnon-
cavity coupling where γc = 8γ1,2 > g1,2 is denoted by red
dashed lines. This regime is crucial for detecting the entan-
glement used in Refs. [17,18], in which an additional cavity
has a beam-splitter-like interaction with the magnon mode
for reading out the magnon states associated with the CM.
The transferred entanglement can then be measured through
the homodyne detection by sending a weak microwave probe.
This approach requires much larger cavity leakage than the
magnon dissipation, namely, γc 	 γ1,2, so that the magnon
states can remain almost unchanged when switching off the
laser driving.

B. Magnon-magnon-photon entanglement

We further study the tripartite magnon-magnon-photon en-
tanglement quantified by minimal residual contangle defined
as [52,53]

Ri| jk = Ci| jk − Ci| j − Ci|k, (12)

where Cu|v is the cotangle of subsystems u and v (v may
involve one or two modes). This is a proper entangle-
ment monotone defined as the squared logarithmic nega-
tivity, namely, Cu|v = E2

u|v . The one-mode-versus-two-modes

logarithmic negativity Ei| jk is defined as

Ei| jk = max[0,−ln2vi| jk] (13)

along the line with the logarithmic negativity for bipartite en-
tanglement. vi| jk = min|eigi	3C̃| is the minimum symplectic
eigenvalue of the 6 × 6 CM C̃ = Pi| jkCPi| jk with the symplec-
tic matrix 	3 = ⊕3

j=1iσy. C is the 6 × 6 CM of the full system.
P1|23 = σz ⊕ 1 ⊕ 1, P2|13 = 1 ⊕ σz ⊕ 1, and P3|12 = 1 ⊕ 1 ⊕
σz are the matrices for partial transposition at the level of
6 × 6 CM. The residue contangle satisfies the monogamy of
quantum entanglement, that is, Ri| jk � 0 and Ci| jk � Ci| j +
Ci|k , which is reminiscent of the Coffman-Kundu-Wootters
monogamy inequality that holds for a system consisting of
three qubits. A bona fide quantification of tripartite entangle-
ment for Gaussian states is given by the minimum residual
cotangle

Rmin = min
[
Rm1|m2a,Rm2|m1a,Ra|m1m2

]
, (14)

which guarantees the invariance of tripartite entanglement
under all permutations of the modes.

In Figs. 3(c) and 3(d), one can observe the important role
that Kerr nonlinearity plays in tripartite entanglement, besides
the bipartite entanglement discussed above. Figure 3(c) shows
that the tripartite entanglement is quite sensitive to cavity
detuning δc = ωc − ωd , reaching its maximum in the vicinity
of δc/2π � −0.03 GHz. This is consistent with the condition
ε j � −δc as clarified for optimizing the entanglement in
Eq. (9). Figure 3(d) shows the considerable tripartite entangle-
ment when the system is driven far from equilibrium. This is
attributed to the significant enhancement of Kerr nonlinearity
by strong driving that is responsible for the magnon-cavity
squeezing and entanglement. Furthermore, under the same
parameter regime as in magnon-magnon entanglement, the
magnon-magnon-photon entanglement is also quite robust
against the cavity leakage.

The time-resolved detection of the photons emitting off the
cavity axis may offer an alternative scheme for entanglement
measurement. This leakage to the side is denoted by the blue
wavy lines in Fig. 1. These photons arise from the decay of
YIG’s excitations quantified by γs, s = 1, 2, in Eq. (4). The
quadrature information of magnon modes can be transferred
to the time-gated emitted photons, which can be homodynely
detected by interfering with an extra microwave field. This
quantum-light-probe scheme may take advantage of being a
noninvasive detection for entanglement measurement.

IV. CONCLUSION AND REMARKS

In conclusion, we have proposed a protocol for entangling
the magnon modes in two massive YIG spheres, through
the Kerr nonlinearity that originates from the magnetocrys-
talline anisotropy. We show that such nonlinearity has to
be essentially included to produce the entanglement. Our
work demonstrates the stationary entanglement between two
macroscopic YIG spheres driven far from equilibrium, within
the experimentally feasible parameter regime. The amount
of entanglement is quantified by the logarithmic negativity
and is surprisingly robust against the cavity leakage: the
entangled quantum state may persist with a low-quality cavity

023021-5



ZHANG, SCULLY, AND AGARWAL PHYSICAL REVIEW RESEARCH 1, 023021 (2019)

giving weak magnon-cavity coupling. This may be helpful to
experimental design for entanglement measurement.

We should note that our idea for entangling magnon modes
may be potentially extended to other complex systems, such
as molecular aggregates and clusters, along with the fact
of similar forms of nonlinear couplings b†bq and �b†bb†b.
With the scaled-up parameters, the long-range entanglement
in molecular aggregates would be anticipated, in that the
exciton-exciton interaction is several orders of magnitude
higher than the Kerr nonlinearity resulting from the magne-
tocrystalline anisotropy. For instance, the two-exciton cou-
pling in J-aggregates and light-harvesting antennas takes the
value of ∼50 cm−1, which is ∼0.3% of the exciton fre-
quency. This is a much stronger nonlinearity than that in
YIGs with Kerr coefficient K ∼ 0.1 nHz, that is, ∼10−11 of

its Kittel frequency. Recent developments in both ultrafast
spectroscopy and synthesis have revealed the important role
of quantum coherence which may significantly modify the
functions of complex molecules and may help the design of
polaritonic molecular devices as well as polariton chemistry.
Hence entangling the molecular aggregates may help studies
of quantum phenomena in complex molecules.
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