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The recent discovery of a nonmagnetic nematic quantum critical point (QCP) in the iron chalcogenide family
FeSe1-xSx has raised the prospect of investigating, in isolation, the role of nematicity on the electronic properties
of correlated metals. Here we report a detailed study of the normal state transverse magnetoresistance (MR) in
FeSe1-xSx for a series of S concentrations spanning the nematic QCP. For all temperatures and x values studied,
the MR can be decomposed into two distinct components: one that varies quadratically in magnetic field strength
μ0H and one that follows precisely the quadrature scaling form recently reported in metals at or close to a QCP
and characterized by a H-linear MR over an extended field range. The two components evolve systematically
with both temperature and S substitution in a manner that is determined by their proximity to the nematic QCP.
This study thus reveals the coexistence of two independent charge sectors in a quantum critical system. Moreover,
the quantum critical component of the MR is found to be less sensitive to disorder than the quadratic (orbital)
MR, suggesting that detection of the latter in previous MR studies of metals near a QCP may have been obscured.
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I. INTRODUCTION

Many strongly interacting electron systems lie in close
proximity to a quantum critical point (QCP), realized by sup-
pressing a finite temperature ordering transition to zero tem-
perature via some nonthermal tuning parameter [1]. Metallic
quantum critical systems exhibit anomalous transport and
thermodynamic properties, including (but not restricted to) a
T-linear resistivity at low temperatures [2–4] and a logarith-
mic divergence of the electronic specific heat [5]. Recently,
a new feature of metallic quantum criticality was discovered
in the transverse magnetoresistance (whereby the magnetic
field is applied perpendicular to the current) in the iron
pnictide compound BaFe2(As1-xPx )2 (Ba122) near its anti-
ferromagnetic QCP [6]. In particular, the magnetoresistivity,
when expressed as �ρ/T (where �ρ = ρ[H, T ] − ρ[0, 0])
was found to exhibit an unusual quadrature scaling form√

1 + γ (μBμ0H/kBT )2 where 0.5 � γ � 1 is a dimensional
parameter, kB is Boltzmann’s constant, and μB is the Bohr
magneton [6,7]. Thus, in addition to a T-linear resistivity at
zero field, �ρ is found to vary linearly with magnetic field
strength over a wide field range. A similar scaling of the

*nigel.hussey@ru.nl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

transverse MR was also reported recently in the electron-
doped cuprate La2-xCexCuO4 (LCCO), again near its antifer-
romagnetic QCP [8].

In ordinary metals, the low-field orbital MR
δρ/ρ[0, T ] = (ρ[H, T ] − ρ[0, T ])/ρ[0, T ] ∝ (ωcτ )2 where
ωc = eμ0H/m∗ is the cyclotron frequency, m∗ is the effective
mass of the charge carriers, e is the electric charge, and
τ the scattering time [9]. In the limit where ωcτ < 1,
δρ/ρ[0, T ] thus varies quadratically with field and given that
ρ[0, T ] ∝ 1/τ , the transverse MR has a strong temperature
dependence that often obeys another form of scaling,
known as Kohler’s scaling, in which plots of δρ/ρ[0, T ]
versus (H/ρ[0, T ])2 at different temperatures collapse
onto a single curve [10]. In certain correlated metals, such
as the hole-doped cuprates [11] and the heavy fermion
CeCoIn5 [12], a modified Kohler’s scaling is observed,
whereby plots of δρ/ρ[0, T ] versus (H/ tan �H )2 collapse
onto a single curve, where tan �H is the tangent of the Hall
angle. By contrast, the MR curves in Ba122 and LCCO
display no intrinsic temperature dependence—they simply
present a set of parallel curves (at high field) offset by the
change in ρ[0, T ] [6–8,13].

At present, there is no consensus as to the origin of the
quadrature form for the transverse MR in quantum critical
(QC) metals nor for the violation of Kohler scaling in other
highly correlated metals. Moreover, it is not known how these
very distinct MR responses are related, if at all. In particular,
there is, as yet, no system in which signatures of the different
MR behavior have been shown to coexist, suggesting that they
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are forms associated with different limits (e.g., the low- and
high-field limits or the behavior of systems located near or far
from a QCP).

In this contribution, we report the observation of two
additive components in the transverse MR of a series of
FeSe1-xSx single crystals that collectively span a QCP—in this
case a nematic QCP. One component has a quadratic-in-field
MR response up to the highest fields studied (in all S-doped
samples), suggesting that this H2 MR is not the limiting low-
field form of the quadrature component, but something dis-
tinct, presumably reflecting the (near-)perfect compensation
of the electron and hole carriers in this family of semimetals.
The second component, obtained by subtracting the H2 term,
exhibits the quadrature scaling form to a very high degree
of precision, unambiguously demonstrating its coexistence
with the conventional, orbital contribution. By studying the
evolution of the MR over such a wide range of dopings and
temperatures, we are able to rule out the second component
originating from Dirac cone states, as reported, for example,
in the iron pnictides [14–16]. Rather, the two components are
found to evolve systematically with both temperature and S
substitution in a manner that is determined by the proximity to
the QCP. This study thus reveals the coexistence of two charge
sectors in a quantum critical system. Finally, comparison of
the MR response of two samples with very different residual
resistivities reveals a marked difference in the sensitivity of
the two components to disorder.

II. NEMATIC QUANTUM CRITICALITY IN THE
IRON CHALCOGENIDES

The iron chalcogenide family FeSe1-xSx [crystal structure
displayed in Fig. 2(a)] represents a class of quantum critical
metals in which the QCP is due to electronic nematicity rather
than antiferromagnetism [17–20]. Recently, the evolution of
the (in-plane) resistivity across the nematic QCP was stud-
ied in high magnetic fields applied in the longitudinal field
configuration (H//I//ab) in order to suppress superconduc-
tivity while at the same time, minimizing the normal state
MR [21]. To orientate the subsequent analysis and discussion,
we reproduce in Fig. 1 a schematic of the low-temperature
phase diagram of FeSe1-xSx as deduced from the temperature-
dependent exponent α of the in-plane resistivity across the
doping series at temperatures below 30 K [21]. The top color
scale in Fig. 1 denotes the magnitude of α at different T and
x. At x = xc = 0.16, ρ[T ] is T linear down to 1.5 K while
on either side of the QCP, ρ[T ] is found to cross over to
a T 2 dependence characteristic of a correlated Fermi liquid.
A∗—the coefficient of the T 2 resistivity (once corrected for
the growth in total carrier density with S doping)—was found
to become strongly enhanced on approach to xc (from either
side), as indicated by the lower color scale. All these observa-
tions are consistent with those found in other quantum critical
metals and suggest a strong coupling of the charge carriers to
quantum fluctuations of the relevant order parameter.

It should be acknowledged here that there is currently no
recognized theory for a T -linear resistivity down to T = 0 at
a nematic QCP in a clean system [22]. While FeSe exhibits
only nematic order below Ts, a spin-density-wave (SDW)
state is found to be stabilized under applied pressure [23].

FIG. 1. Low-temperature phase diagram of FeSe1-xSx described
in terms of the exponent of the T -dependent resistivity that is itself
defined in the upper color scale. The size of dots inside the T 2

regime indicate the strength of A∗, the coefficient of the T 2 resistivity,
normalized to a fixed carrier density (and quantified in the lower
color scale in units of μ
 cm K−2) [21].

Moreover, enhanced spin fluctuations (at ambient pressure)
and critical behavior have been reported below Ts [24,25],
in the same range over which ρab[T ] is quasi-T -linear, sug-
gesting a possible link between the T -linear resistivity and
antiferromagnetic, rather than nematic fluctuations. With in-
creasing S substitution, however, the nematic and SDW states
become decoupled [26], and as the pressure range of nematic
order shrinks, eventually vanishing at xc, the dome of SDW
order shifts to progressively higher pressures. Thus, at x = xc,
the SDW phase is located far from the ambient pressure axis
at which our experiments are performed. At the same time,
NMR experiments have shown that spin fluctuations, although
present in FeSe1-xSx at low x values, are strongly suppressed
with S substitution [27]. These combined results suggest that
the critical behavior at x = xc is not associated with proximity
to a magnetic phase.

III. METHODS

The single crystals of FeSe1-xSx used in this study were
grown at two different locations. The bulk of the samples
were grown in Kyoto by the chemical vapor transport tech-
nique [17]. The actual sulfur composition x was determined by
energy dispersive x-ray (EDX) spectroscopy, and was found
to be around 80% of the nominal S content. The Berkeley
sample discussed exclusively in Sec. V was grown using the
KCl flux technique [28] with a nominal concentration of 18%
selenium replaced by sulfur, whose composition was also
confirmed by EDX. To be consistent with the data presented in
Ref. [21] (carried out on the same Kyoto crystals), all x values
quoted here are the nominal values. The crystals were cut into
regularly shaped platelets and electrical contacts applied to
each sample in a Hall bar geometry. The magnetotransport
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FIG. 2. (a) Crystal structure of FeSe. The brown (green) circles represent the iron (selenium) atoms. (b) Set of transverse MR curves for
FeSe0.84S0.16 (i.e., at x = xc) up to 38 T for 1.35K � T � 50 K (individual T labels are given in the panels). Note the numerous crossing
points—behavior distinct from that found recently in other QC systems [6–8]. (c) Test for QC scaling in FeSe0.84S0.16. Plot of �ρ/T versus
μ0H/T over the same temperature range, where �ρ/T = ρ[H, T ] − ρ[0, 0]. (d) Test for Kohler’s scaling in FeSe0.84S0.16. Plot of δρ/ρ[0]
versus (μ0H/ρ[0])2 where δρ = ρ[H, T ] − ρ[0] and ρ[0] = ρ[0, T ]. Inset: schematic showing the configuration of current and magnetic field
used in this study.

measurements were carried out at the High Field Magnet
Laboratory (HFML) in Nijmegen in a resistive Bitter magnet
with a maximum field of 38 T using a combination of He-4
and He-3 cryostats and at the National High Magnetic Field
Laboratory (NHMFL) in Los Alamos in a pulsed magnet
with a field strength of 60 T. For the HFML experiments, the
orientation of the samples with respect to the applied magnetic
field was determined first using a Hall probe to orient the
rotating platform, then the MR of the sample itself in order
to locate the transverse field orientation more precisely.

IV. RESULTS AND ANALYSIS

A. Transverse magnetoresistance

Figure 2(b) shows a series of transverse MR (H//c) curves
between 1.35 and 50 K for a FeSe1-xSx single crystal with
x = xc = 0.16 whose in-plane resistivity was found to be T
linear down to the lowest temperatures studied. In contrast
to other quantum critical systems (i.e., Ba122 and LCCO),
where the MR curves taken at different temperatures are
found to be simply shifted vertically with respect to one
another, δρ[μ0H] in FeSe0.84S0.16 is found to show a strong
T dependence with multiple crossings. Consequently, when
plotted as �ρ/T versus μ0H/T [Fig. 2(c)] the MR sweeps do
not fall onto a single curve, except in a narrow temperature
range 4.2 K � T � 20 K. Even in this intermediate range,
however, the form of the MR does not follow the quadrature
scaling ansatz. Moreover, as shown in Fig. 2(d), Kohler’s
scaling is not observed either. The same is true for the entire
series of Kyoto samples that have been investigated.

The reason for this lack of scaling in either δρ/ρ[0, T ]
or �ρ/T becomes apparent when one inspects the derivative
dρ/d (μ0H) of the individual MR curves. Panels (a) and
(c) in Fig. 3 show dρ/d (μ0H) curves for x = 0.10, 0.16,
and 0.25, respectively, obtained at T = 15 K, i.e., at a tem-
perature where superconducting fluctuations are effectively
suppressed. While the specific form of the derivative is most
evident in the x = 0.10 sample [Fig. 3(a)], qualitatively simi-
lar behavior is found for all the other samples.

At the lowest fields, dρ/d (μ0H) is linear in the field with
a zero intercept, implying that the low-field MR is strictly
quadratic. The slope of the derivative is labeled 2β0μ0H and
is indicated in each case by a green dotted line. For 2T <

μ0H < 7 T, the slope of dρ/d (μ0H) gradually decreases until
above 7 T, it becomes linear once more, albeit with a finite
intercept. The presence of this finite intercept implies that
for μ0H > 7 T, the MR has two components, one linear in
field, the other quadratic. A similar field-dependent MR was
reported by Sun et al. for x = 0 and x = 0.14 albeit over a
more limited field and temperature range [29]. In our study,
both components are found to persist up to the highest field
measured (35 T). Note that such a field dependence cannot be
captured by a simple two-carrier model involving electrons
and holes [30]. A three-carrier model [31] can produce an
MR with a field dependence that resembles those displayed
in Fig. 3, but only over a narrow range of field values and
parameters. We will return to this point in the following
section.

The slope of dρ/d (μ0H) at high field is defined here as
2βFL where βFL is the magnitude of the H2 term that we
argue below arises from orbital (i.e., cyclotron) effects. Upon
subtracting this term from the total MR, the form of the
second component in δρ[μ0H] is revealed. As indicated by
the dotted black lines in panels (d) and (f), the remaining
contribution to the MR is found to follow the same quadra-
ture form, i.e., ρ[μ0H] − βFL(μ0H )2 = a

√
1 + b(μ0H )2 that

was first reported in BaFe2(As1-xPx )2 [6] (here a and b are
fitting parameters). The quality of the fit, over the entire field
range studied, appears to confirm that the transverse MR of
FeSe0.9S0.1 comprises two distinct terms: one that is quadratic
at all fields, and one that possesses the quadrature form (note
that β0 is a compound term, comprising both βFL and the
low-field quadratic part of the quadrature MR).

Further derivatives and residual MR curves for different
samples recorded at different temperatures are presented in
Fig. S1 of the Supplemental Material [32]. Significantly,
the same features are observed for all x and T , albeit with
different relative weightings, implying that these two distinct
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FIG. 3. dρ/d (μ0H ) versus μ0H at T = 15 K for (a) x = 0.10, (b) xc = 0.16, and (c) x = 0.25. The dotted lines indicate the low-field H2

dependence while the dashed lines highlight the high-field H + H2 dependence. The magnitude of each component is labeled β0, βQC, and βFL

as defined in the text. Upon subtraction of the high-field H2 component, one obtains the corresponding “residual” MR terms shown in panels
(d)–(f) for x = 0.10, 0.16, and 0.25, respectively. The dotted lines are fits to the quadrature form a

√
1 + b(μ0H )2.

MR contributions persist over the entire range of temperatures
and S concentrations studied. Only in stoichiometric FeSe,
where the orbital MR is extremely large, is this term found
to deviate from H2 at high fields and low T , though even
here, the form of the MR (having subtracted off the quadrature
component) is found to be consistent with the usual Drude ex-
pression for two-carrier (i.e., electron and hole) magnetotrans-
port (see Fig. S2 in the Supplemental Material [32] for more
details).

B. Two-component magnetoresistance

The data presented in Fig. 3 thus reveal the presence of
two contributions to the MR response of FeSe1-xSx which
individually extend over a wide field, temperature, and doping
range. A similar form of the MR has also been observed
in the iron pnictide family Ba(Fe1-xTx )2As2 (T = Co, Ni,
and Cu) [14–16]. There, as in FeSe1-xSx [29], the H-linear
component was attributed [14,15] to the MR response of
Dirac-like states beyond the quantum limit [33]. A few reports
have claimed evidence for the presence of Dirac cones inside
the nematic phase of FeSe1-xSx [29,34,35]. The fact that
the H-linear MR component in FeSe1-xSx persists beyond
the nematic phase, however, suggests that it is unlikely that
such Dirac-like states are responsible for the anomalous MR
component found in FeSe1-xSx. There is also no reason a
priori why the MR response of Dirac states should exhibit
both the quadrature form and H/T scaling found in FeSe1-xSx

across the entire phase diagram (discussed in more detail in
the following section).

The H + H2 form of the MR in BaFe2As2 has also been
modeled using a three-carrier Drude model [16]. While the
three-carrier model is able to generate a MR curve that ap-
proximates a H + H2 form (over a limited field range at least),
it can only do so for a limited range of parameters. More-
over, for the same set of parameters, the corresponding Hall
response is found to be highly nonlinear, whereas for x � xc,
the Hall resistivity of our crystals is found to be either linear
or show only small deviations from linearity [36]. Finally, it is
not possible to simulate the very different ratios of the H and
H2 terms observed in FeSe1-xSx and over such a wide field
range. Therefore, we do not believe it is appropriate to model
the MR response in FeSe1-xSx using the three-carrier model,
at least one in which the carrier densities and mobilities are
assumed to be independent of field strength. Of course, one
could always add further complexity in the model (e.g., by
allowing parameters to vary with field strength or introduce k
dependence in a Boltzmann-type analysis), but in our opinion,
this would not constitute a robust analysis.

The remarkable agreement between the “residual” MR
(upon subtraction of the H2 component) and the quadrature
form of the MR, including the H/T scaling, leads us to
conclude that the charge dynamics of FeSe1-xSx must con-
tain two distinct sectors: one that generates a conventional
orbital MR, presumably involving quasiparticle transport, and
one akin to the quantum critical sector found in Ba122 and
LCCO (that exhibits scale invariance). In such a scenario, the
total (zero-field) conductivity σtot should be expressed as a
sum of the individual contributions, i.e., σtot[T ] = σQC[T ] +
σFL[T ], where the subscripts refer to the quantum critical and
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quasiparticle (Fermi-liquid) sectors, respectively. The trans-
verse magnetoconductance is then given by a weighted
sum [37]:

�σtot

σtot
= σQC

σtot

�σQC

σQC
+ σFL

σtot

�σFL

σFL
. (1)

In reality, of course, it is the magnetoresistance, rather than
the magnetoconductance that is measured, the former being
related to the latter via inversion of the (in-plane) conductivity
tensor.

δρ

ρ[0, T ]
= −�σtot

σtot
−

(
σxy

σtot

)2

(2)

where ρ[0, T ] = 1/σtot is the zero-field resistivity at the tem-
perature at which an individual field sweep is taken, σxy is
the Hall conductivity, and σxy/σtot the corresponding Hall
angle. In order to proceed, it is necessary to estimate first the
magnitude of the Hall angle (σxy/σtot) relative to δρ/ρ[0, T ]
(as measured). In the temperature range 20K < T < 50 K
over which we currently have data overlap, the square of the
Hall angle (for x = 0.16) varies between 5% and 20% of the
as-measured MR [36]. Thus, we can conclude that the MR
is dominated by the magnetoconductance term and rewrite
Eq. (1) as

δρ

ρ[0, T ]
= σQC

σtot

δρQC

ρQC[0, T ]
+ σFL

σtot

δρFL

ρFL[0, T ]
. (3)

Hence,

δρ[H] =
(

σQC

σtot

)2

δρQC[H] +
(

σFL

σtot

)2

δρFL[H] (4)

which at high fields can be expressed as

δρ[H] = βQCμ0H + βFL(μ0H )2. (5)

Here βQC and βFL are, respectively, the (as-measured) mag-
nitudes of the H-linear and H2 MR terms, which according to
Eqs. (4) and (5) represent the quantum critical δρQC[H] and
quasiparticle δρFL[H] contributions to the total MR, weighted
by the square of the contribution of the two sectors to the total
(zero-field) conductivity.

C. Evolution across the phase diagram

The ratio βQC/βFL for all samples, determined at a temper-
ature (15 K) at which there are no discernible superconducting
fluctuation conductivities, is plotted in Fig. 4 (as open red
circles). The ratio is found to peak around xc = 0.16, in
a manner that is strikingly similar to the enhancement of
the quasiparticle effective mass as expressed through A∗, the
renormalized coefficient of the T 2 resistivity (and plotted as
empty black squares in Fig. 4) [21]. It is important to realize
that these two quantities are determined in very different
ways yet together, they appear to reveal a consistent picture
in which the (magneto)transport properties of FeSe1-xSx are
heavily influenced by the presence of quantum critical fluctu-
ations.

As described above, plots of �ρ/T versus H/T in P-
doped Ba122 at the critical doping collapse onto a single
curve of the quadrature form [6]. Such scaling can only be
realized if the high-field (H-linear) slopes of the individual
MR curves are the same, i.e., �ρQC = X1μ0H independent

FIG. 4. Open circles: Variation of βQC/βFL, the ratio of the H -
linear transverse MR to the (high-field) H2 component as a function
of x. All βQC/βQC values were obtained at T = 15 K. Open squares:
Corresponding values of A∗, the coefficient of the T 2 resistivity,
normalized to a fixed carrier density [21].

of temperature. Since there are two contributions to the MR
in FeSe1-xSx, whose relative strengths are weighted by their
respective contributions to the total conductivity, the same
�ρ/T scaling cannot be gleaned directly from our data by
simply subtracting off the orbital MR term. Nevertheless,
further analysis outlined below and presented in Secs. III
and IV of the Supplemental Material [32] provides strong
evidence that H/T scaling is also realized in FeSe1-xSx.

Firstly, according to the scaling ansatz of Hayes et al. [6],
the residual MR (obtained by subtracting the H2 term from the
total MR) should have the same dependence with field for all
samples when measured at the same temperature, irrespective
of its absolute magnitude. As shown in Fig. S3 of the Supple-
mental Material [32], the (normalized) residual MR at T =
15 K is indeed found to follow the same form right across the
phase diagram. Secondly, when the residual MR for one sam-
ple is plotted versus H/T for a range of temperatures inside
the QC fan (see Fig. S4 of the Supplemental Material [32]),
the data are found to collapse onto a single curve. Finally, as
described in the Discussion section, a second sample with a
doping close to xc but with a larger residual resistivity (that ef-
fectively quenches the orbital component to the MR), is found
to exhibit precisely the same MR scaling as seen in Ba122
and LCCO. Thus, we can conclude that the QC component to
the MR in FeSe1-xSx follows the exact same scaling relation,
and since d[�ρQC]/dH = d[δρQC]/dH (only the intercepts
differ), we obtain from Eqs. (4) and (5) the following relation
between βQC and X1:

βQC =
(

σQC

σtot

)2

X1. (6)

Thus, under the inference that the QC component to the
MR in FeSe1-xSx exhibits scale invariance, βQC provides a
direct measure of the contribution of σQC, the QC component,
to the total conductivity. This quantity is plotted in Fig. 5 for

023011-5



S. LICCIARDELLO et al. PHYSICAL REVIEW RESEARCH 1, 023011 (2019)

FIG. 5. Temperature and x dependence of βQC, the strength of the H -linear transverse magnetoresistance in FeSe1-xSx for all the Kyoto
samples.

all the S concentrations studied (bar x = 0.00 for which βQC

is hard to extract due to its exceptional high-field behavior).
What is most striking here is the evolution in the behavior
of βQC[T ] across the phase diagram. For samples with x < xc,
βQC[T ] follows the same T dependence, reaching a maximum
at or around the temperature below which ρ(T ) is no longer T
linear, i.e., below the QC fan, implying that the QC component
is reduced as one approaches the FL (ρ ∼ T 2) regime (see
Fig. 1) and may even vanish in the zero-temperature limit.

By contrast, for xc = 0.16, βQC increases monotonically
with decreasing temperature, consistent with the observation
that the T -linear resistivity extends down to the lowest T
accessed to date and indicating that as the temperature is
lowered, the QC component emerges as the dominant con-
tribution. This nonmonotonic behavior of the H-linear com-
ponent for x < xc and its correlation with the evolution of the
zero-field resistivity is further evidence that it is not related
to a contribution from Dirac-like states for which one would
expect a monotonic increase in its magnitude as T decreases.
Finally, beyond xc, the magnitude of βQC gradually softens
with further S doping, though crucially, even for x = 0.25,
βQC remains finite.

Although βQC is claimed to be proportional to (σQC/σtot )2,
we cannot determine σQC/σtot directly as we have no way
of obtaining X1 independently. However, one can gain an
estimate for σQC/σtot by simulating the zero-field ρ(T ) as-
suming parallel conduction, a point we shall return to later.
Nevertheless, Fig. 5 reveals a very systematic evolution in the
fraction of the total conductivity that can be attributed to the
QC component.

For completeness, we now turn to consider the second
component δρFL = βFL(μ0H )2. The large field range over
which this MR component remains perfectly quadratic sug-
gests that the electron and hole pockets in our FeSe1-xSx

crystals are close to being fully compensated. Moreover, as
shown in Fig. 6(b) for the x = 0.25 sample, the T dependence
of δρFL/ρFL[0] (where ρFL[0] = ρFL[0, T ] is estimated from
the zero-field resistivity shown in Fig. 7 and discussed below)
is found to have a Fermi-liquid (FL) form; δρFL/ρFL[0] =
(ωcτ )2 = 1/(A + BT 2)2 between 1 and 30 K (since for a FL,
1/τ ∝ T 2). At the QCP, the T dependence of δρFL/ρFL[0]
cannot be captured by the same expression [Fig. 6(a)].

Nevertheless, the very strong T dependence observed in both
cases supports the notion that this contribution is controlled
by orbital effects (i.e., by ωcτ ).

D. Two-component conductivity

The presence of two distinct components in the transverse
MR of FeSe1-xSx implies that there must also be two contri-
butions to the zero-field conductivity, i.e., σtot = σFL + σQC;
the first term giving rise to the conventional, orbital MR
and the second to the QC quadrature term. While the QC
component σQC is linked directly to βQC through Eqs. (4)
and (5), it cannot be determined uniquely since X1 itself is not
known. We can, however, allow the magnitude of X1 to vary
(recall that X1 will have a unique value for each sample but
its magnitude is independent of T ) and inspect the resultant
T dependence of ρQC = 1/σQC and ρFL = 1/σFL = 1/(σtot −
σQC) where σtot = 1/ρ[0, T ], in order to see whether or not
a self-consistent picture for both the zero-field resistivity and
the transverse MR emerges from the data.

Examples of this procedure are shown in Figs. 7(a) and 7(b)
for the xc = 0.16 and x = 0.25 samples with X1 = 2.5 and
1.7, respectively. Here, we have ensured that the two compo-
nents add in parallel to give the total, as-measured resistivity.
ρQC(T ) is found to be T linear in both cases, at least up to
25 K. For x = 0.25, ρFL(T ) retains its T 2 character up to
30 K, even though the raw resistivity curve is quadratic only
up to 12 K. For xc = 0.16, ρFL(T ) shows an approximately
quadratic (FL-like) T dependence (indicated by a dotted line)
only below 15 K. Above 15 K, the form of ρFL(T ) deviates
from its low-T form and tends towards a constant value. The
presence of the quasiparticle component in both the zero-field
resistivity and the transverse MR may indicate that this sample
is located close to, though not necessarily at the QCP. Further
measurements down to lower temperatures (in higher fields)
would be helpful in confirming the form of βQC/βFL at x = xc

below 1.5 K.

V. DISCUSSION

The observation of two distinct components in the trans-
verse MR of FeSe1-xSx raises the question why previous
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FIG. 6. T dependence of δρFL/ρFL[0] (at μ0H = 1 T) for
(a) xc = 0.16 and (b) x = 0.25. The dotted line in panel (a) is a guide
to the eye. The dashed line in panel (b) denotes a fit to the data to the
expression δρFL/ρFL[0] = 1/(A + BT 2)2 up to 30 K, as expected in
a correlated Fermi liquid.

studies of correlated metals (both in the vicinity of or far
from a QCP) found only an orbital MR response (that may or
may not have violated Kohler’s rule) or the quadrature scaling
form, but never the combination [11,12]. A comparative study
of two crystals with different levels of disorder, presented
below, provides one possible explanation for these distinct
behaviors.

Figure 8(a) shows the low-T resistivity of the two crystals
in question (both with nominal composition x = 0.18). The
crystal with the lower residual resistivity (S018a) was synthe-
sized in Kyoto using identical starting constituents and growth
conditions as the other crystals described in the preceding
section. As with the other crystals from this source, it exhibits
both components in the transverse MR that evolve with tem-
perature as summarized in Figs. 4 and 5. The second crystal
(S018b) was prepared in Berkeley using a different technique
and found to have a residual resistivity that is approximately
five times higher. A series of MR curves obtained on this
crystal over a wide temperature range [1.5 K < T < 80 K)
is shown in Fig. 8(b)]. In contrast to the multiple crossing

FIG. 7. Decomposition of experimentally determined ρ(T )
(solid lines) for (a) FeSe0.84S0.16 and (b) FeSe0.75S0.25 into quantum
critical and quasiparticle channels obtained from the transverse MR
study. The blue and green dashed lines represent T -linear and T 2

dependencies, respectively. In both cases, 1/ρ = 1/ρFL + 1/ρQC.

points realized in the other crystals [an example of which is
shown in Fig. 2(b)], the MR curves for S018b (beyond the
field-induced superconductor-to-metal transition) are parallel
to one another and become H linear at high fields. Moreover,
when the MR curves are replotted as �ρ/T versus H/T ,
as shown in Fig. 8(c), they are found to collapse onto a
single curve that fits the same quadrature form �ρ/T =√

1 + γ (μBμ0H/kBT )2 (with γ ≈ 0.5) that was observed in
the cleaner crystal (though now unfettered by the presence of
the orbital MR term).

The observation of QC scaling in the MR response of the
second crystal reveals that while the orbital component is
effectively quenched with increasing impurity scattering (a
5-fold increase in the residual resistivity would correspond
to a 25-fold decrease in the orbital MR at low T ), the QC
component remarkably survives.
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FIG. 8. (a) Zero-field resistivity for two FeSe0.82S0.18 crystals grown via different techniques (see text for details). (b) Set of transverse
MR curves for S018b up to 60 T obtained at temperatures as labeled. (c) Scaling plot of �ρ/T vs μ0H/T for S018b. The dashed line is the
quadrature fit of the form

√
1 + γ (μBμ0H/kBT )2 (with γ ≈ 0.5).

It has been argued previously that the H-linear transverse
MR and H/T scaling found in pnictides [6] and cuprates [8]
may arise due to a variation in the carrier composition
within a given sample [38], as postulated previously for
two-dimensional electron gases [39] and even elemental met-
als [40]. The current study, however, suggests that this is not
necessarily the case in QC systems. As shown in Fig. 4, the
ratio of the H-linear (βQC) to H2 (βFL) components shows
a very systematic evolution with S substitution and peaks
strongly at the QCP, even though the residual resistivities are
comparable across the entire series of S-doped crystals [21].
Moreover, βQC/βFL in FeSe is the same as in FeSe0.75S0.25,
despite the fact that the former’s residual resistivity is one
order of magnitude smaller than the latter and clear quantum
oscillations are observed in the former. Finally, the sharpness
of the kinks in dρ/dT [21] at T = Ts (for x < xc) imply
homogeneous doping for all these samples. Thus it appears
unlikely that the H-linear component to the transverse MR
is due to an extrinsic longitudinal contribution arising from a
variation in carrier density along each crystal.

Recent models of strange metals, invoking either holo-
graphic methods [41] or based on the Sachdev-Ye-Kitaev
picture of itinerant, nonquasiparticle transport [42], have suc-
ceeded in obtaining certain aspects of the MR scaling, but as
of yet, not in tandem with a more conventional, orbital MR.
The key task now therefore is to understand how these two
components can coexist.

We consider here first the possibility that the two com-
ponents arise from excitations that occupy different regions
of the Brillouin zone. FeSe and its derivatives are known to
contain (equal) numbers of electron- and holelike carriers and
correlated metals often display an electron-hole dichotomy,
most evident in the respective phase diagrams of electron- and
hole-doped cuprates, for example [43]. In such a scenario, the
electron and hole pockets found in FeSe1-xSx would harbor
different types of excitations that contribute respectively to the
orbital and QC MR responses. Alternatively, the two excita-
tions may reside within both pockets, albeit at different points
on the Fermi surface; for example, the QC component may
arise from excitations near hot spots—strong scattering sinks
that destroy the quasiparticle character of excitations there—
leading to strong momentum-dependent scattering as realized,
for example, in the cuprates [44]. Indeed, the superconducting

gap in FeSe has been shown to be strongly anisotropic in
both the electron and hole pockets, indicating anisotropic (and
possibly orbitally selective) pairing interactions [45]. Both
scenarios, however, appear inconsistent with the observation
of quantum oscillations on both the electron and hole pockets
(at least for S concentrations located away from the QCP) that
indicate the presence of coherent quasiparticle states around
the Fermi surface of both pockets [46,47].

The lack of oscillations at x = xc itself, however, is consis-
tent with the notion that the quasiparticles are much heavier
close to the QCP where the QC component of the MR is
also dominant. The gradual crossover from quantum criti-
cal to quasiparticle contributions to the MR away from the
QCP suggests in fact that the low-lying excitations near the
Fermi level have dual character, i.e., the quasiparticle and
the quantum critical sectors are two “ flip sides” of the same
electronic states, whose weighting depends on their proximity
to the QCP. Whatever the origin, these findings clearly call
for further theoretical studies in order to understand the inter-
play of the two sectors across the phase diagram, and more
experimental studies to determine quantitatively the role of
disorder in the realization of the H/T scaling in the transverse
MR not only in more disordered FeSe1-xSx, but also in other
candidate QC systems. The latter comparison is important
to establish whether it is merely a question of disorder or
length scales (e.g., between electron-electron collisions and
electron-impurity collisions), or whether it is the nematic
character of the quantum fluctuations in FeSe1-xSx that allows
both the quantum critical and quasiparticle sectors to reveal
themselves, even at the QCP itself.

VI. CONCLUSIONS

In summary, we have carried out a systematic study of
the transverse MR in a series of FeSe1-xSx single crystals
in high magnetic fields up to 38 T for S concentrations that
span the nematic QCP. The field derivatives of the MR curves
reveal the ubiquitous presence of two distinct (and additive)
components to the MR in FeSe1-xSx: the normal orbital H2

MR and an anomalous component that follows precisely the
quadrature scaling first observed in the iron pnictide P-doped
BaFe2As2 near the spin-density-wave QCP.
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The ratio of the two MR components follows a very similar
evolution with doping as the (renormalized) A coefficient of
the T 2 resistivity, suggesting that the component with the
quadrature form is associated with scale-invariant quantum
critical fluctuations that are also responsible for the quasi-
particle mass enhancement on approaching the QCP. The
quantum critical contribution is found to become enhanced
with decreasing T at the QCP, but is suppressed inside the FL
regime away from the QCP. With increased disorder content,
the orbital MR is quenched, leading to the appearance of strict
quantum critical scaling at or near the QCP.

These collective findings provide evidence for the coexis-
tence of two charge sectors in a quantum critical system whose
relative weighting evolves systematically with proximity to
the QCP. The task now is to identify how these two sectors
coexist and to establish whether this is a universal behavior
in quantum critical systems that, until now, may have been
obscured by the presence of disorder.
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