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Non-Hermitian Weyl physics in topological insulator ferromagnet junctions
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We introduce and investigate material junctions as a generic and tunable electronic platform for the realization
of exotic non-Hermitian (NH) topological states of matter, where the NH character is induced by the surface
self-energy of a thermal reservoir. As a conceptually rich and immediately experimentally realizable example,
we consider a three-dimensional topological insulator (TI) coupled to a ferromagnetic lead. Remarkably, the
symmetry-protected TI is promoted in a dissipative fashion to a non-symmetry-protected NH Weyl phase with
no direct Hermitian counterpart and which exhibits robustness against any perturbation. The transition between
a gapped phase and the NH Weyl phase may be readily tuned experimentally with the magnetization direction
of the ferromagnetic lead. Given the robustness of this exotic nodal phase, our general analysis also applies to,
e.g., a two-dimensional electron gas close to criticality in proximity to a ferromagnetic lead. There, the predicted
bulk Fermi arcs are directly amenable to surface spectroscopy methods such as angle-resolved photoemission
spectroscopy.
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Introduction. While Hermiticity is a basic requirement
on the Hamiltonian governing the dynamics of an isolated
quantum system, non-Hermitian (NH) effective Hamiltonians
have become a ubiquitous tool with applications ranging
from dissipative classical optical and mechanical systems to
various open quantum systems [1–6]. Recently, the interest
in NH Hamiltonians has been further fueled by conceptual
insights relating to exceptional degeneracies that lead to novel
(topological) phases of matter with no direct counterpart in the
conventional Hermitian realm [7–13]. In particular, a new sys-
tem of symmetry-protected NH topological phases extending
the celebrated periodic table of topological insulators known
from the Hermitian realm has been identified [14–24], and
fundamental amendments to the occurrence of topologically
protected surface states have been reported [25–31]. So far,
the main platforms for the observation of these intriguing
phenomena have been photonic systems subject to gain and
loss [32–37], even though NH self-energies in electronic
systems are in principle known to be capable of inducing
genuinely NH phenomena as well [9,38–48].

In this Rapid Communication, we propose and study ma-
terial junctions as a simple and generic electronic setting
for realizing NH topological phases. There, one side of the
junction is considered to be a thermal reservoir (lead) which
induces a self-energy on the surface of the system, thus
leading to the effective NH system Hamiltonian

HNH = H + �r
L(ω = 0), (1)
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where H is the Hermitian Hamiltonian of the isolated system
and �r

L(ω = 0) denotes the retarded self-energy at the chem-
ical potential, reflecting the coupling to the lead. While the
self-energy in general is frequency dependent, approximating
it with its value right at the Fermi energy is justified for
our present analysis of nodal points [49]. As a concrete
immediately experimentally feasible setup, we focus first on
a three-dimensional (3D) topological insulator (TI) [50,51]
coupled to a metallic ferromagnetic (FM) lead (see Fig. 1
for an illustration) [44]. We show that this system exhibits
a topological phase transition that is naturally controlled by
the magnetization direction m of the FM lead. In particular,
at a critical polar angle φc of m, a NH Weyl phase occurs,
featuring two separated exceptional points that are connected
by a Fermi arc resulting in an emergent double Riemann sheet
topology.

Quite remarkably, in the proposed setup, the dissipative
perturbation represented by the surface self-energy promotes
the time-reversal-symmetry- (TRS-) protected semimetallic
surface Dirac cone of the 3D TI to a non-symmetry-protected
metallic NH topological phase that is stable to any pertur-
bation. To illustrate this behavior, we show that even if the
Hermitian surface Dirac cone of the 3D TI is gapped out by
symmetry-breaking terms, the coupling to the ferromagnetic
lead overcomes these imperfections, pushing the system into
the extended NH topological Weyl phase in a dissipative
fashion. Since this stable phase does not require fine tuning,
it can be realized even in simpler systems, where the role
of the 3D TI is played by a near-critical 2D electron gas
(2DEG) [see Fig. 4(b)], thus alleviating the requirement of a
symmetry-protected nodal point in the unperturbed Hermitian
spectrum, and making the NH Weyl phase directly amenable
to surface spectroscopy.

Microscopic model. We study a 3D TI cubic lattice
model coupled to a ferromagnetic lead. The 3D TI may in
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FIG. 1. Top: Schematic of a 3D topological insulator (TI) cou-
pled to a ferromagnetic metallic lead (FM) with magnetization m,
and in equilibrium at chemical potential μL . The polar angle of
the magnetization direction is denoted by φ, and the red frame
marks the interface (material junction). Bottom: Illustration of the
interface between the two materials. Upon tuning φ, in the NH
effective Hamiltonian HNH [see Eq. (1)] describing the junction, a
pair of exceptional points with a characteristic square-root dispersion
appear, that are connected by an open Fermi surface.

reciprocal space be described by the four-band Bloch Hamil-
tonian [51,52]

HTI(k) = [M − cos(kx ) − cos(ky) − cos(kz )]τxσ0

+ λ(sin(ky)τzσx − sin(kx )τzσy + sin(kz )τyσ0),
(2)

where σ (τ ) denote the standard Pauli matrices in spin (or-
bital) space, λ is a spin-orbit coupling strength, M is the Dirac
mass parameter, the length is measured in units of the lattice
constant, and energy in units of the hopping strength. The FM
lead is in reciprocal space described by the Bloch Hamiltonian

HL(k) = − 2t (cos(kx) + cos(ky))σ0 − 2tz cos(kz )σ0

− μLσ0 + m · σ, (3)

where t is the hopping strength in the xy plane, tz denotes the
hopping strength in the z direction, the chemical potential is
represented by μL, and m is the magnetization. We find that an
anisotropic band mass in the lead (tz �= t) may quantitatively
support the NH Weyl phase, but our main qualitative results
remain unchanged in the simplest case t = tz. To model the
coupling between the system and the lead, we consider a
half-space geometry in the z direction, where z > 0 is the
realm of the 3D TI, while the semi-infinite lead resides in
the z � 0 half space. Accounting for this half-space geometry,
we switch to a real-space tight-binding description in the
z direction and interface the system with the lead by the
spin-independent hopping strength VSL between the last site
of the lead (z = 0) and the first site of the 3D TI in z = 1.
The spin-dependent self-energy �r

L(0) = VSLGr
L(0)V †

SL with
the retarded lead Green’s function Gr

L is then readily expressed
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FIG. 2. (a)–(d) Spectra of the effective two-band model (5).
(e), (f) Quantitative comparison with the full microscopic model
[see Eqs. (1)–(4)]. The spectrum in (a) and (b) corresponds to the
case without magnetization, i.e., |m| = 0, leading to a conventional
Dirac dispersion. In (c)–(f) there is a finite magnetization |m| = 0.5
making an angle φ = π/2 relative to the z axis (m ∼ êx), which leads
to a NH Weyl phase with exceptional points with a characteristic
square-root dispersion in the absolute value of the gap [(c) and (e)]
which are joined by a Fermi arc node in the real part of the spectrum
[see (d) and (f)]. In (e) and (f) the black dashed (solid orange)
lines indicate the effective (full microscopic) model, respectively.
For these examples we have used t = 1, tz = 1.3, μL = 2, and VSL =
tz/

√
3. In (e) and (f), the value of ky = −0.083 is fixed so as to obtain

a 1D cut through in the BZ that contains the exceptional points and
the characteristic Fermi arc.

analytically as [53]

�r
L,σ (0) = |VSL|2

tz

(
κσ −

√
κ2

σ − 1[sgn(κσ )θ (|κσ | − 1)]
)

− i
|VSL|2

tz

√
1 − κ2

σ θ (1 − |κσ |), σ = ±, (4)

where κσ=± = [μL − 2t (cos(kx ) + cos(ky)) ± |m|]/(2tz ), and
σ = ± labels the spin eigenstates along the quantization axis
m/|m| of the FM lead.

Effective model. While we carefully verify our predictions
by a comparison to the full lattice model [see Eqs. (1)–(4)
and Figs. 2(e) and 2(f)], we find that all qualitative physical
properties of the TI-FM interface can be understood from the
effective model Hamiltonian

H̃ = λ(kyσx − kxσy) + �r
L(0) − Bσz ≡ ε0 + d · σ, (5)
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where ε0 ∈ C and d = dR + idI with dR, dI ∈ R3. Equa-
tion (5) may either describe the chiral surface Dirac cone
of the 3D TI with a TRS-breaking Hermitian term B, or
alternatively the low-energy theory of a near-critical 2DEG
with a residual mass term B, on which we elaborate further
below. In both scenarios, �r

L(0) represents the full self-energy
induced by the lead [see Eq. (4)].

The effective model (5) has complex energy eigenvalues
E± = ε0 ±

√
d2

R − d2
I + 2idR · dI and exhibits exceptional

degeneracies at E = ε0 when

d2
R = d2

I and dR · dI = 0 (6)

are simultaneously satisfied. Since dR and dI are functions of
two continuous variables, kx and ky, the solutions to Eq. (6)
are generic, pointlike, appear in pairs, and are stable, much
as Hermitian Weyl points are stable in three dimensions. At
the exceptional points, however, not only the eigenvalues but
also the eigenvectors coalesce and the complex dispersion has
a characteristic square-root dispersion as depicted in Fig. 1.
Moreover, on the closed curve of solutions to dR · dI = 0
in reciprocal space the energy is purely real or imaginary
depending on the sign of d2

R − d2
I leading to a Re[E ] = 0

Fermi arc connecting the exceptional points.
We start with the unperturbed case of B = 0, where

we have dR = λ(ky,−kx, 0) + αm, dI = βm, with α = Re
[�r

L,+(0) − �r
L,−(0)]/2 and β = Im[�r

L,+(0) − �r
L,−(0)]/2

[cf. Eq. (4)]. Physically, a finite α may be understood as a
Hermitian TRS-breaking perturbation induced by the FM
lead, whereas β is the strength of the spin-dependent NH per-
turbation that leads to the intriguing NH phenomena reported
in this work. An intuitive picture is that the magnetic character
of the lead does not just entail a simple level broadening but
rather a spin-dependent matrix structure in the anti-Hermitian
part of the self-energy. This leads to a sufficiently generic
non-Hermitian effective Hamiltonian to create a pair of
exceptional points. The first condition in Eq. (6) does indeed
have generic solutions when α2 cos2(φ) < β2, with cos2(φ) =
m2

z /|m|2, which defines the regime of physical interest where
the NH perturbation due to the lead dominates the Hermitian
one. Furthermore, the second condition in Eq. (6) implies that
the angle φ has to be finite, i.e., exceptional points require
that the magnetization is not perpendicular to the interface.
Since kx, ky are bounded in the microscopic lattice model, for
a given parameter set we find that there is a critical angle φc

that marks the onset of the non-Hermitian Weyl physics [see
Fig. 3(a)], where the Dirac cone at |m| = 0 is extended to a
finite gapless (white) region corresponding to the NH Weyl
phase.

Now allowing for finite B in Eq. (5), we demonstrate how
the symmetry-protected surface Dirac cone of the TI is pro-
moted to the generically stable NH Weyl phase [see Fig. 3(b)].
Since this nodal phase persists even in the presence of the
explicitly TRS-breaking perturbation B that would gap out the
Dirac surface theory of the Hermitian TI, a near-critical 2D
Dirac system is found to be sufficient as a starting point for
realizing NH Weyl physics. This suggests the aforementioned
alternative interpretation of Eq. (5), namely, as a 2DEG close
to a transition between a 2D TI (Chern insulator) and a trivial
insulator. In both cases, varying the magnetization vector m in
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FIG. 3. Phase diagram of the effective model (5), defined via
the minimum absolute value of the gap extracted in the physically
relevant region |kx|, |ky| � 0.7 [see Figs. 2(e) and 2(f)]. The white
zero gap region characterizes the (NH) Weyl phase, which for finite
|m| emerges when the tilting angle φ of the lead magnetization
exceeds a critical value φc as shown in (a) for B = 0. In (b), we
consider the effect of finite B at fixed |m| = 0.5. At φ �= 0, π , a
non-symmetry-protected NH Weyl phase stable to any perturbation
manifests through the extended white region. In both plots the model
parameters are t = 1, tz = 1.3, μL = 2, and VSL = tz/

√
3.

the lead, the non-Hermitian terms can overcome a small gap,
thus driving the system into the topologically stable NH Weyl
phase in a large region of the phase diagram.

Experimental signatures. The salient property of the NH
Weyl phase discussed in this work is its metallic character
which is remarkable in two regards. First, it occurs in a
symmetry-breaking environment where one would intuitively
expect the TI surface to become insulating. Second, the NH
Weyl phase exhibits extensive surface conductance due to the
finite length of the Fermi arc in reciprocal space (see Fig. 2),
whereas a Hermitian Dirac cone represents an isolated point
degeneracy and thus is semimetallic. A possible geometry
for probing the surface conductance of the NH Weyl phase
is shown in Fig. 4(a): A 3D TI surface underneath a FM
lead representing the NH Weyl region is interfaced with an
uncovered 3D TI surface that is connected to a normal lead
(NL). Since the FM lead generically entails a finite energy
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FIG. 4. Schematic illustrations of experimental setups in which
the NH Weyl phase [see Eq. (5) and Fig. 3] can be probed. (a) 3D
TI in proximity to a ferromagnetic lead in which surface transport
remains metallic in the NH Weyl regime. (b) Alternative setup with
a near-critical two-dimensional electron gas (2DEG), where the NH
Weyl phase can be identified by surface spectroscopy measurements
such as ARPES.
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shift (see Fig. 2), tuning the chemical potential of the TI to
the NH Fermi arcs automatically moves the Fermi energy
of the free TI surface states away from the Dirac point,
thus making them metallic as well. While this setting thus
in principle allows for measuring a metallic conductance of
the TI surface despite the TRS-breaking FM lead, it is fair
to say that in practice separating bulk from surface transport
properties in 3D TI materials remains challenging. Hence, the
most established experimental signatures of 3D TIs so far have
been spectroscopic properties as observed in angle-resolved
photoemission spectroscopy (ARPES) experiments. However,
in the proposed 3D TI-FM interface the NH Weyl phase is
covered by the bulk TI from one side and the bulk FM lead
from the other side [see Fig. 4(a)].

To overcome this issue and make NH Weyl physics dis-
cussed here amenable to surface spectroscopy, the stability
of the NH Weyl phase against general perturbations comes
to the rescue in the sense that there is no need to start from a
precisely gapless Dirac cone as a Hermitian part of the Hamil-
tonian. Thus, the 3D TI with its symmetry-protected gapless
surface state may simply be replaced by a 2DEG tuned fairly
close (but not necessarily exactly) to a critical point in the
form of a bulk 2D Dirac cone, as realized, e.g., at the transition
between a Chern insulator and a trivial phase. By putting this
near-critical 2DEG on top of a FM lead, quite generically a
2D NH Weyl phase that can be experimentally analyzed by
surface spectroscopy methods [see Fig. 4(b)] will be stabilized
in a finite parameter range [see Eq. (5) and Fig. 3(b)].

Discussion. In this Rapid Communication, we have put
forward material junctions as a generic and tunable platform
for realizing intriguing non-Hermitian phases of matter. In
particular, our explicit example of a three-dimensional topo-
logical insulators coupled to a ferromagnetic lead shows how
opening the system to a thermal reservoir can promote a
symmetry-protected Hermitian topological phase into a more
robust NH state of matter that does not rely on any symmetry,
and which also does not have a direct analog in the Hermitian
realm.

In this context, we would like to contrast the NH Weyl
phase realized in our proposed setup with conventional Her-
mitian Weyl semimetals. While the Hermitian Weyl systems
feature discrete band touching points, the dispersion is always
analytic and the Hamiltonian stays diagonalizable at the de-
generate points. In contrast, the NH dispersion is nonanalytic
and at the exceptional points two eigenvectors coalesce, thus
rendering the Hamiltonian nondiagonalizable. Moreover, the
corresponding NH Fermi arcs are different from the surface
Fermi arcs of Weyl semimetals in that they constitute open
bulk Fermi surfaces that are only augmented to closed curves
by a complementary Im[E ] = 0 arc.

In photonic systems, parity-time (PT ) symmetry, which is
realized by a balancing gain and loss in a classical optical
setup, plays an important role. This is because PT symmetry
leads to an extended regime of real energy eigenvalues, known
as the PT -unbroken phase. In our present electronic context,

causality of the system-lead interaction restricts the NH terms
in the effective Hamiltonian of the system to be losslike,
so as to induce nonpositive imaginary parts in the effective
complex energy eigenvalues. This is easy to see as the poles
of the retarded lead Green’s function entering Eq. (1) are
constrained to lie in the lower complex half plane. However,
we note that practical experiments on photonic waveguides
also work with passive systems only exhibiting loss, which
amounts to a constant shift of a PT -symmetric spectrum along
the imaginary axis [32].

Exceptional points accompanied by arc-shaped degenera-
cies have recently been observed in impressive light scattering
experiments with photonic crystals in a classical regime [7].
Our present work proposes an experimentally feasible plat-
form that paves the way towards exploring the counterpart
of such genuinely NH phenomena in quantum transport and
spectroscopy experiments on electronic quantum many-body
systems. Quite remarkably, while the arc structures observed
in photonic crystals are minuscule as compared to the Bril-
louin zone of the crystalline structure, here we find a quite
sizable splitting of the exceptional degeneracies in reciprocal
space, which speaks for the quantitatively robust nature of the
predicted phenomena.

Complementary to our present approach, intriguing pro-
posals for NH topological phases in quantum condensed mat-
ter systems stemming from strong interactions and disorder
have been put forward [9,38–43]. However, it is fair to say
that the quantitative relevance of those NH effects in real
material systems remains to be demonstrated. In contrast,
the material junctions studied in our present work provide a
well controlled and experimentally tunable platform for the
realization of NH topological phases. We note that interesting
NH physics induced by a lead self-energy has been reported
in 1D (proximity-induced) superconductor metal junctions
in Refs. [45–47], where the occurrence of surface states
reminiscent of Majorana bound states has been explained in
terms of an exceptional point transition that occurs as a func-
tion of external parameters characterizing the 0D junction.
Moreover, Ref. [44] considered a setup similar to ours but
focused instead on the gapped anomalous Hall region and
found that non-Hermitian effects destroy the quantization of
the Hall conductance. Here, by contrast, we are concerned
with metallic 2D surfaces effectively described by NH models
that in a whole parameter range contain exceptional points and
Fermi arcs connecting them as a function of the conserved
momenta parallel to the junction interface, thus defining stable
NH topological phases.
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