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In recent years, there has been an increased interest in conceptual blending in physics and mathematics
education research as a theoretical framework to study student reasoning. In this paper, we adapt the
conceptual blending framework to construct a blending diagram that not only captures the product but also
the process of student reasoning when they interpret a mathematical description of a physical system. We
describe how to construct a dynamic blending diagram (DBD) and illustrate this using two cases from
an interview study. In the interview, we asked pairs of undergraduate physics and mathematics students
about the physical meaning of boundary conditions for the heat equation. The selected examples show
different aspects of the DBD as an analysis method. We show that by using a DBD, we can judge the degree
to which students integrate their understandings of mathematics and physics. The DBD also enables the
reader to follow the line of reasoning of the students. Moreover, a DBD can be used to diagnose difficulties
in student reasoning.
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I. INTRODUCTION

Interpreting the way students use and understand the
mathematics used in physics is an important and central
research theme in physics education research (PER) (e.g.,
Refs. [1–9]). Proficiency in mathematics is required to
describe and understand physical phenomena, and being
able to combine the different fields is a prerequisite to
become more proficient in physics. Understanding an
equation in physics goes beyond connecting the symbols
to physical quantities and being able to perform calcula-
tions and operations with that equation. It also involves
being able to connect mathematical knowledge and repre-
sentations to physical meaning and integrating an equation
with its implications in the physical world [10]. Parsing
students’ mathematical and physical understanding has
proven challenging as the use of mathematics in physics

is more than just the sum of both parts. Different authors
have adopted the conceptual blending perspective [11]
to describe student understanding at the mathematics and
physics interface [4,12,13]. Huynh and Sayre [14] state that
“the effective use of mathematics in making sense of the
physical world involves blending reciprocally between
mathematics and physics contexts rather than just applying
mathematics to physics.”
In this study, we focus on student reasoning about

boundary conditions for a partial differential equation,
more specifically the heat equation. In a physical system,
the boundary conditions define the conditions physical
quantities must satisfy at the boundary of the system.
Boundary conditions are particularly critical because they
are necessary to reduce general and abstract mathematical
expressions to physically meaningful solutions that have
descriptive and predictive power within a particular physi-
cal system [15]. Therefore, this is a promising context to
investigate the role of mathematics and physics under-
standing in student reasoning.
In a previous study [16], we investigated student diffi-

culties with boundary conditions in the context of particle
diffusion, which is mathematically described in the same
way as heat flow. We identified difficulties related to
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mathematics, physics, and the connection between both.
This has been an important first step in investigating
student understanding of boundary conditions. However,
we need more information about the way our students
combine mathematics and physics while reasoning about
boundary conditions in order to develop effective teaching
and learning materials that scaffold meaningful blending. In
this study, we extend the focus on the reasoning process in
the conceptual blending model.
We start with a brief review of the physical context we

focus on in this study, one-dimensional systems in which
heat flow can be described by the heat equation. Then we
discuss the original conceptual blending framework in
Sec. I B. We highlight relevant adaptations of the frame-
work in physics (PER) and mathematics education research
(MER) (Sec. I C), which brings us to the specific aims
and research questions of this study (Sec. I D). In the
methodology section (Sec. II) we discuss the participants,
the interview content, and protocol. We give a detailed
description of the data analysis method in Sec. III. Using
two case studies, we illustrate the construction of dynamic
blending diagrams (Sec. IV). We end with a discussion
(Sec. V) containing limitations and suggestions for future
research.

A. Heat flow in one-dimensional systems

In this study, we confronted students with physical
situations that can be described by the one-dimensional
heat equation. We briefly review this partial differential
equation and how it describes heat transfer in a system.
If we consider a one-dimensional system of length L in

which the temperature at position x and time t is described
by uðx; tÞ, the evolution of the temperature in the system
can be modeled by the following partial differential
equation:

∂u
∂t ðx; tÞ ¼ α

∂2u
∂x2 ðx; tÞ;

for 0 < x < L and 0 < t < ∞. In this equation, α is the
thermal diffusivity, a measure of the rate at which heat can
spread in a specific medium.
The equation relates the quantities ∂u=∂tðx; tÞ, the

rate of change in temperature with respect to time, and
∂2u=∂x2ðx; tÞ, the concavity of the temperature distribution
uðx; tÞ, which essentially compares the temperature at one
point to the temperature at neighboring points [17].
To fully describe the system, the initial temperature

distribution uðx; t ¼ 0Þ and the conditions describing what
happens at the boundary of the system are also needed.
Boundary conditions refer to the conditions physical
quantities must satisfy at the boundary of the system at
all times. In the case studies selected here, we limit
ourselves to boundary conditions of the form uðx; tÞ ¼ c
at x ¼ 0 or x ¼ L with c being a constant. This type of

boundary condition specifies the value of the temperature at
the boundary.
In the case studies, a crucial element in the reasoning

of the students is the mathematical description of the
heat flow. This can be explained through the law of heat
conduction, also known as Fourier’s law, states that the rate
of heat transfer through a material is proportional to the
negative of the gradient in the temperature. In the one-
dimensional differential form, this can be written as

qðx0; t0Þ ¼ −kA
∂u
∂x ðx0; t0Þ;

where qðx; tÞ is the local heat flux density, which is the
amount of heat that flows through a unit area per unit time,
and k is the thermal conductivity, which is a measure of
how well the material conducts heat [17]. This shows that
the derivative of temperature with respect to position,
which expresses the local temperature difference, is a
measure for the heat transferred. Fourier’s law states that
if ∂u=∂xðx0; tÞ < 0, heat will flow from left to right; and if
∂u=∂xðx0; tÞ > 0, then the flow of heat through point x0
will be from right to left, because heat always flows from
high to low temperatures.

B. The conceptual blending framework

Conceptual blending, or sometimes called mental space
integration, was originally introduced by Fauconnier and
Turner [18] to model how people create new meaning in
linguistic contexts by selectively combining information
from previous experiences.
A general schematic representation of the conceptual

blending framework is shown in Fig. 1. In its basic form, a
conceptual blending network consists of four connected
mental spaces: two partially matched input spaces, a
generic space, and the blended space. Generally, a mental
space is comprised of conceptual packets or knowledge
elements that tend to be activated together, and has an

FIG. 1. Schematic representation of a blending diagram from
the original work of Fauconnier and Turner [11].
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organizing frame that specifies the relationships, or con-
nections among the elements [13]. Input spaces are small
self-contained regions of conceptual ideas. The generic
space provides the underlying structure to the input spaces,
identifying commonalities in content and structure [11].
Blended spaces are constructed through selective pro-

jection from the inputs. Fauconnier and Turner distinguish
three mechanisms to form a blend: composition (blending
can compose elements from the input spaces to provide
relations that do not exist in the separate input spaces),
completion (adding new elements based on background
models that are brought into the blend unconsciously), and
elaboration (treating the blend as a simulation and “run-
ning” it imaginatively, which creates new insights) [11].
The blend has emergent dynamics. It can be “run” while its
connections to the other spaces remain in place.

C. Conceptual blending to describe students’
use of mathematics in physics

Considering that mathematics serves as a way to carry and
relay information about physical contexts, the conceptual
blending framework provides a means to explore student
understanding as they connect mathematics and physics
concepts. In PER, the conceptual blending framework has
repeatedly been used to model the blending of physics
and mathematics. An important sign of physics students’
progress is combining the symbols and structures of math-
ematics with their physical knowledge and intuition, enhanc-
ing both. New ideas and inferences emerge after this
combination. The conceptual blending framework empha-
sizes both the newcombinations of elements and the different
ways that combination itself can be constructed [12].
Bing and Redish were the first to introduce the language

of conceptual blending as a way to analyze problem solving
in physics at the introductory level [12]. They identified
two input spaces, called “mathematical machinery” and
“physical world” (see Fig. 2). In their adaptation, the role of
mathematics was limited to its technical aspect. Hu and
Rebello, and Bollen and colleagues extended the adaptation
of the blending framework to also consider the conceptual
aspect of mathematics, looking at how students blended
concepts from electrodynamics with the mathematical
concepts of integration [4] and vector differential operators
[13]. They identified three input spaces: the symbolic space
(abstract mathematical symbols and notations), the math
notion space (knowledge about mathematical concepts and
notations), and the physics space (physical quantities
associated with the object) (see Fig. 3). The addition of
the math notion space accounts for the conceptual role of
mathematics. Apart from the technical role, where math-
ematics is seen as a tool to process physics, there is also the
structural role, where mathematics is significant to the
construction of the physical concept itself [19].
Schermerhorn and Thompson [20] incorporated the

symbolic forms framework [21] into the conceptual

blending framework to describe students’ construction of
differential length vectors and extend their model to
equation construction and interpretation generally. Their
model explicitly connects elements between input spaces,
highlighting the mechanism of blending in the construction
of equations. The authors incorporated the generic space as
an underlying mathematical justification to provide the
structure of the blending diagram for this model (Fig. 4). As
the mathematical structure (left input space) and contextual
information (right input space) are blended, the result is an
equation, a collection of symbols and ideas that can only be
understood in the light of both input spaces.
In MER, conceptual blending has been used to capture

the process of student reasoning. Gerson and Walter [22]
used conceptual blending to describe the emergence of
students’ understanding of calculus concepts during sus-
tained mathematical inquiry. Students visited and revisited

FIG. 2. Example of a blending diagram from the work of Bing
and Redish [12].

FIG. 3. Example of a blending diagram from the work of Hu
and Rebello [4].
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important calculus content during a teaching experiment,
but not necessarily along a path predetermined by the
instructors. Key episodes were coded for content and
connections, and analyzed by creating maps of conceptual
blends. An example of such a map, which is a representa-
tion of the students’ connected understandings, can be
found in Fig. 5. In this example, the students are answering
a question about the amount of water in a reservoir. The
researchers identified two input spaces: the ideas concern-
ing in flow and out flow, and one about the context of
water in a reservoir. These two input spaces are combined
into a blended space where the students discuss the
quantity of water in the reservoir. Two aspects of this work

are of particular interest to our own project. First, like
Schermerhorn and Thompson, these authors identified
individual connections between elements in the mental
spaces, instead of just connecting the entire spaces. They
state that analyzing both the content and the connections
students make among content, context and previous knowl-
edge, gives a richer picture of the emergent meaning students
are creating as they explore meaningful mathematics tasks.
Second, graphs received explicit attention in this work. The
abstract graph was placed in the abstract flow space, but once
this graph was used to explicitly discuss the water in the
reservoir, it became a blended element.
Zandieh, Roh, and Knapp [23] show in their work how

conceptual blending can be used as a methodological tool
for organizing the story line of the evolution of student
thinking. They investigated how small groups of students
work on a mathematical proof. They do not use one
blending diagram to represent the whole process, but divide
the reasoning process in different episodes. In each episode,
a primary blend is constructed by the group. However, they
also distinguish a secondary blend. This secondary blend
accounts for individual students’ contrasting ideas that
might alter the primary blend in the next episode.
In most of the PER work, the focus lies on the product of

the reasoning, and the blending model is used to describe
what elements from both disciplines are combined. The
process of students’ reasoning, however, is not captured. To
scaffold the learning of meaningful blending of mathemat-
ics and physics, insight into the process itself is needed. In
this paper we therefore propose an adaptation of the model
to analyze how students integrate the two disciplines in
their reasoning.

D. Research questions

The general aim of this study was to adapt the conceptual
blending framework as used in PER and MER to not
only capture the product but also the process of student
reasoning when combining physics and mathematics.
During data analysis, this aim resulted in the following
research questions:

1. How are the input and blended spaces defined in
the context of investigating the role of mathematics
and physics in student reasoning about boundary
conditions for the heat equation?

2. How can we visualize the students’ reasoning
process in a dynamic blending diagram?
(a) How can we visualize concepts and ideas that

students use while combining mathematics and
physics in the context of the heat equation?

(b) How can we visualize the order in which students
use and connect these concepts and ideas?

(c) How can we visualize the connections students
make?

3. What are the merits of a dynamic blending diagram
as an analysis method for student reasoning?

FIG. 4. Blending diagram from Schermerhorn and Thompson
[20]. In this example, students’ construction of a differential
length vector comes from attending to the magnitude and
direction of each component and to the sum of components
from three different directions. Combining their content knowl-
edge with the mathematical templates, the students write the final
expression. The determination of the terms in each magnitude
(not shown here) is also the result of blending different symbolic
forms with content knowledge.

FIG. 5. Blending diagram from the work of Gerson and
Walter [22].
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II. METHODS

To illustrate the development of a dynamic blending
diagram (DBD), we select two cases from an interview
study. In that study, we investigate student reasoning when
combining mathematics and physics in the context of the
heat equation. We will later use the analysis method
developed in this paper to analyze all the data from that
interview study.
In this section, we give an overview of the participants,

the context, the setup, and the content of the interviews.
Lastly, we explain how to construct a DBD starting from
data. In the next section, wewill illustrate this method using
data from the interview study.

A. Participants and context

The data presented in this paper are part of a study where
we conducted task-based, think-aloud interviews with pairs
of students to investigate their understanding of boundary
conditions in the context of the heat equation. The
participating students were second-year physics and math-
ematics undergraduate students studying at KU Leuven
(Belgium). Some weeks before the interview, they finished
a course on differential equations, taught in Dutch, which
entailed a chapter in which the heat equation was discussed
in depth, i.e., the derivation of the heat equation, boundary
conditions, physical systems described by this equation,
and the algorithmic technique of separation of variables to
solve the equation.
In our previous study [16], we observed that individual

students had many difficulties reasoning about boundary
conditions for the diffusion equation and were often not
able to answer the interview questions. This made it
difficult to investigate their reasoning. Therefore, by letting
students work in pairs, we hoped that they would be able to
help each other. A second advantage is that by letting
students work in pairs, they naturally question each other,

which forces students to be more explicit about their
reasoning process.

B. Interview content

We designed interview problems to elicit explicitly how
students blend mathematics and physics concepts while
answering the questions. The whole interview contained
five problems. However, in this paper we focus on student
answers to two of these tasks in order to explain the
construction of a DBD (see Figs. 6 and 7). In formulating
the interview tasks, we used the course notes and notations
therein as a guideline.
The students start from a mathematical description (con-

sisting of a partial differential equation, an initial condition,
and boundary conditions) and are asked to reason about the
physical meaning. Each task consists of three questions. In
the first question (I), we want the students to translate the
boundary conditions into physical conditions for the boun-
dary of the system. In this study, we focus on boundary
conditions of the form uðx; tÞ ¼ a with a being constant,
which specify the temperature at the boundary for all times.
In the second and third questions (II and III), we want the
students to reason about the evolution of the system in a
qualitative way, without calculating.

C. Interview protocol

Each interview lasted approximately one hour, during
which the participants were encouraged to explicitly dis-
cuss and think aloud as they worked through the tasks. The
interviewer was the first author of the paper, and was not
involved in the course on partial differential equations. The
interviews were conducted using a smart pen, which audio
recorded the conversations and kept track of the students’
notes, drawings, and calculations. The interviews were also
videotaped as a backup for the smart pen.

FIG. 6. Interview question: Task A.
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The interview questions were written in English but the
students could respond in Dutch. The English interview
questions were no problem for the students as they were
used to English textbooks and lectures. In case they did
not understand the question, the interviewer provided
clarity. Data were translated afterwards to English by the
interviewer.
At the start of the interview, the interviewer informed

the students about the subject and purpose of the study.
The interviewer also emphasized that she would not give
feedback about the correctness of responses during the
interview. After this introduction, the students signed an
informed consent form. Generally, the interviewer did not
interfere, except for prompts to think aloud and requests
for further explanation of what the students did and why.
After the interview, the students had the chance to discuss
their answers and the aim of the research project in an
informal way.

III. DATA ANALYSIS

A. Constructing a dynamic blending diagram

To describe the process of blending mathematics and
physics, we construct a dynamic blending diagram. In a
first step, the interviews were transcribed verbatim and
drawings, calculations, and notes from students were added
to the transcripts. The students’ names were replaced by
pseudonyms to guarantee anonymity.
Based on the transcripts, the DBD is constructed by

taking four steps. A schematic overview of these steps is
shown in Fig. 8.

1. Elements are identified from the transcript. An
element is defined as a new step, idea, concept, or
phrase in the reasoning. When a student exactly

repeats an idea that has been used before, it is not
identified as a new element. We copy the elements
from the transcript as literally as possible to min-
imize bias and interpretations. In order to give a
complete picture, all elements that are present in the
reasoning are included in the DBD. The elements
that are stated in the problem, in our case the partial
differential equation, initial condition, and boundary
conditions, can also be part of the DBD. It is
therefore important that the moments where the
students are referring to these elements are included
in the transcript. A color code distinguishes between
the different types of elements: incorrect elements
are represented in a black box with white letters,
elements that are given in the problem statement are
represented in a gray box, and all other elements are
represented in a white box in the DBD. This color
code enables the reader to distinguish between
elements that students created themselves (white)
and elements that were given, but actively used by
the students (gray). The black boxes indicate that
students are having difficulties.

2. To represent the order of the reasoning steps, the
elements are numbered in order of appearance in the
transcript.

3. Each element is assigned to a mental space. We
identify three spaces in our analysis: a physics
space, a mathematics space, and a blended space.
The characterization can be found in Table I. We
consider each mental space as a shared space for
both students. In their investigations of the cognitive
processes of small groups in a classroom setting,
Megowan and Zandieh [24] state that a group of
students is a legitimate unit of analysis when

FIG. 7. Interview question: Task B.

FIG. 8. Schematic overview of the necessary steps to construct a DBD.
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examining student reasoning. In such a setting,
content knowledge can be seen as an emergent
property of group interactions.

4. The numbered elements are connected in the DBD to
visualize the connections in the students’ reasoning.
We distinguish between explicit and implicit con-
nections. When students explicitly connect elements
in their reasoning, these elements are connected
with a solid line. Sometimes the connection is not
clear from the transcript alone, but from the course
of the interview, there are reasons to assume that
the elements are connected. In that case, they are
connected with a dotted line.

Using this representation, blending cannot be limited to
the blended space alone, but is also visible in the con-
nections between all spaces. The total of the elements in
the three mental spaces and the connections between the
elements gives an overview of the blending of mathematics
and physics.

B. Reliability

In developing and refining the method of constructing a
DBD, the first two authors coded student statements,
equations, and sketches as either mathematical, physical,
or blended elements. The DBDs were discussed among the
remaining authors and refined until agreement on place-
ment of elements and connections between elements. Once
the methodology was considered final, two authors inde-
pendently constructed a DBD starting from transcriptions
from three different, randomly selected, segments of the
interviews that were not analyzed before (we will refer
to them as R1, R2, and R3). We discuss the reliability on
four levels: the selection of elements, the categorization of
elements, the number of connections and the type of
connection. The percentages of agreement for every level
are shown in Table II.
As part of the first stage, selection of elements, we listed

the identified elements for both authors and checked for

agreement. We calculated a percentage of agreement by
dividing the number of agreeing elements by the total
number of elements identified. The total number of
identified elements is provided in Table II. For the second
stage, we checked the placement of each element in theM,
P, or blended space. Because the agreement in selection
was high, we limited our further analysis to the common
elements. We calculated a percentage of agreement by
dividing the number of agreeing categorizations by the
number of commonly identified elements. Third, we listed
all identified connections between the common elements
and checked for agreement. Lastly, the type of connection
was checked for agreement.
Overall, all percentages of agreement are high (>75%),

which indicates that two independent authors made very
similar dynamic blending diagrams from the same data
based on the methodology as it is described in this paper.

IV. CONSTRUCTING A DYNAMIC BLENDING
DIAGRAM IN PRACTICE: TWO CASE STUDIES

To demonstrate the construction of a DBD, two case
studies are presented that each highlight different aspects of
the DBD.

TABLE I. Definitions of the different mental spaces used in this study.

Space Definition

Mathematics
space

The mathematics space (M space) contains all elements related to mathematical knowledge, without any new physical
input (i.e., using only physical input that has already been mentioned before in the reasoning process). This broadly
entails mathematical concepts, functions, and operations such as derivatives. This also entails graphs and equations
when they are used in an abstract, mathematical way without referring explicitly to a particular physical situation.

Physics space The physics space (P space) contains all elements related to physics knowledge, without any new mathematical input.
There can be a variety of levels: using physics concepts; describing a physical system and process or relation in
words; using experimentally known facts or relations between physical quantities; statements about the nature or
state of the physical system.

Blended space The blended space (B space) contains elements that combine mathematics and physics ideas. Additionally, equations
and graphs are also categorized as part of the blended space when they connect physical and mathematical meaning.
This means that the boundary conditions given in the problem statement will be placed here if students give a
physical interpretation of these equations in their answer.

TABLE II. Percentages of agreement between two authors that
coded three pieces of data independently (R1, R2, and R3). For
each piece of data, we add the amount of identified elements
between brackets (# el.). Reliability is discussed on four levels:
the selection of elements, the categorization of elements, the
number of connections, and the type of connection.

Selection Categorization Connections Type

R1 (11 el.) 90.9 90 80 75
R2 (8 el.) 100 100 100 100
R3 (9 el.) 78 85.7 85.7 83
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A. Case 1

As a first example, we analyze the answer of two students,
David and Evan, to interview task B (see Fig. 7). We selected
this case because it shows some instances of blended
reasoning, where students combine all three spaces, but
also of one-sided reasoning, where students fail to make the
connection to the other input spaces.

1. Question I

The students start by answering question B-I. The
corresponding DBD 1 can be found in Fig. 9. In the
transcript, all elements, i.e., new steps, ideas, concepts, or
phrases in the reasoning, are marked in bold and they are
numbered chronologically. Information about what stu-
dents are drawing, writing, or pointing at is added between
brackets in the transcript.

[David draws a coordinate system for uðx; tÞ: origin
and three axes with labels, but without a graph (1).]
David 21:31 So, the difference in boundary conditions is
now that… [writes ‘B.C.: uð0; tÞ ¼ 0’ and ‘uð10; tÞ ¼
50’ (2)] Eh yeah, so the start, so the first boundary

condition is still the same, but the other one is now
something that is not equal to zero.. (3)
Evan 21:55 Yes.
David 21:57 And ehm.. And yeah if we are doing it
again with heat, so the beginning of the rod is kept at
zero and the end of the rod at 50. (4)
Evan 22:15 Yes.
David 22:17 And…
Evan 22:17 [referring to the initial condition (5)] In
the beginning it is kind of a weird distribution, possibly
a weird distribution (6), from zero to, ehm yeah, to, to, it
starts in zero and ends in 50 (7)…
[David draws a straight line at position 10 at u-value
50 and one at position 0 at u-value 0 for all times (8) in
the coordinate system.]

First, David sketches a 3D coordinate system without
doing anything with it. We label this as an element of the
blended space because later on David and Evan use the
coordinate system to represent the physical situation
graphically. Then, the students write down the equations
of the boundary conditions given in the problem statement
(2, gray box) and compare these equations with the ones

FIG. 9. DBD 1: David and Evan’s answer to question B-I. At this point in the transcript, the students only construct parts of the sketch.
Top sketch: the coordinate system and the two horizontal lines starting at (10, 50) and (0, 0). Bottom sketch: the two dots on the sides
(at 0 and 50).
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from task A (see Fig. 6). They establish that the first
boundary condition is equal to the one in task A, while the
right-hand side in the second one is now equal to 50
(so nonzero) (3). Element 2 is categorized as part of the
blended space because these are equations that are inter-
preted physically in this excerpt. We categorize element 3
in the mathematics space because at this point the students
are talking about the form of these equations in an abstract
way, without explicitly mentioning the physical meaning
of this equation. Elements 2 and 3 are connected through a
solid line because the two elements are connected by the
use of the word “so.” Thereafter, the students make the
connection to the physics context by referring to the context
of heat acknowledging the temperature of the rod being
constant at the ends (4) while still comparing with task A.
This element is also connected with a solid line to both
elements 2 and 3, because it refers to the physical
interpretation of the mathematical equations. This results
in the triangle 2–3–4, which shows the mathematical and
physical interpretation of the boundary conditions.
Evan interprets the initial condition from the problem

statement (5, gray box) and states that in the beginning it
is possibly “a weird distribution” (6). Both these elements
are categorized as part of the mathematics space because
element 5 is an equation without reference to the physical
situation it represents and element 6 abstractly describes
the shape of the function. Even though the student is
explicitly referring to a moment in time (beginning), this
is not enough to put this element in the physics space.
Time has been established as one of the variables earlier,
so this cannot be seen as new physical input in this
element. These two elements are connected with a dotted
line because the students do not explicitly mention
element 5 in words.
Evan then states that the initial function starts in zero and

ends in 50 (7). This is placed in the mathematics space
because it repeats the values of the boundary conditions at
the beginning and end positions without referring to the
physical context of temperature and heat. This is explicitly
connected to element 6 as this idea follows in the same
sentence. It is also implicitly connected to the equations the
student is referencing (element 2) and the physical idea of
constant temperature (element 4). Finally, David used the
abstracted mathematical values as locations on the graph
and drew horizontal lines on the set of axes to visualize the
fixed values at positions zero and ten; this is element 8 and
is categorized in the blended space because it graphically
represents the boundary conditions and their physical
meaning (element 4, implicit connection). Note that both
element 1 and 8 are parts of the graph construction process
and so both are placed in the blended space. Elements 7 and
8 are explicitly connected. In element 7, the “it” refers to
the initial distribution (so at t ¼ 0), whereas the lines in
element 8 deal with all values of t. Therefore, elements 2
and 8 are connected implicitly.

2. Question II

The students continue and start discussing the evolution
of the system over time. Figure 10 shows DBD 2 for the
following piece of transcript.

Evan 22:26 It (the graph) flattens out again, because
that, that is just what things do under influence of
the heat equation, (1) but how would it look like
at the end? Something like eh, straight line or so
maybe? (2) I don’t really know.
David 22:40 Hm…
Evan 22:40 What makes the most sense?
David 22:43 (referring to the boundary condition at
position 10 (3)) Wait, the end should be kept at 50 (4),
so there should be some kind of heat source. (5)
Evan 22:51 Yes.
David 22:52 Yes, and if there is a heat source, heat
is again flowing over there, to the beginning of the
rod (6).(referring to the boundary condition at position
0 (7)) But the beginning of the rod is so cold that it stays
zero (8) and so it cancels each other out a bit (9) and I
think you will just get a straight line (10).
Evan 23:13 Yes, I also have the feeling it will become a
straight line, because ehm, if it is not going to be a
straight line, what else…

In element 1, Evan states that because of the effect of the
heat equation, there is a tendency for the graph to “flatten
out.” They seem to combine aspects of mathematics and
physics in this element, so it is placed in the blended space.
He ends the sentence with the thought that the graph will
probably evolve to a straight line (2), which is placed in the
mathematics space because it refers to the features of the
graphical representation. Elements 1 and 2 are connected
explicitly.
Next, the students discuss the physical meaning of the

boundary conditions. The placement of element 4 could be
in the mathematics or the physics space. However, the
continuation of the sentence suggests that the students are
giving a physical interpretation here of the boundary
condition at position 10, hence the placement in the physics
space. Element 5 is then the physical tie to that; you have to
know that it requires heat flow to keep a constant temper-
ature. The boundary condition was given in the problem
statement (3, gray box). This boundary condition is placed
in the blended space because there is a physical interpre-
tation (elements 4 and 5) tied to this equation. The
connection between elements 3 and 4 is implicit because
the students do not mention the boundary condition
explicitly. However, this connection is important because
it indicates blending: the students made a physical inter-
pretation of a mathematical equation.
Based on this, the students start a line of reasoning

mainly in the physics space that is internally connected
with solid lines. They state that heat has to flow to the
beginning of the rod (6, physics space), where the
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temperature is fixed at zero degrees (7, gray box, and 8).
Similarly as in elements 3 and 4 in the previous paragraph,
element 7 here is placed in the blended space and implicitly
connected to its physical interpretation (8). The students
add in element 9 that “it cancels each other out a bit,”which
is also placed in the physics space as it is a continuation of
their physical line of reasoning. We conjecture that this can
be interpreted as follows: heat flowing in from one side
flows out from the other. However, we cannot be certain
that this interpretation is correct.
The students conclude this line of reasoning by repeating

the statement that the graph will evolve to a straight line
(10), which is placed in the mathematics space because it
discusses the shape of the graph in a mathematical way.
Element 10 is explicitly connected to element 9 as it
follows directly from their reasoning in the physics space,
and implicitly connected to element 2 because it confirms
what they were thinking before.
The students continue their discussion by repeating the

values of the function at the boundaries, which were
discussed already in DBD 1. Therefore, these are not
selected as new elements.

Evan 23:58 Yes, at x is ten it is held at 50, so that is this
high (puts a dot at these coordinates in the axes). Yeah
maybe that’s not really drawn well. But the thing is then,
in the beginning you have a weird distribution [sketches
fluctuating graph in coordinate system (11)], and at a
certain moment, it flattens out a bit [adds more graphs,
lowering in fluctuation and adds a line through the
peaks of the graphs (12)] until you almost get a perfectly
straight line (13).
David 24:33 Yes, yes
Evan 24:34 Cause, yeah, if it wouldn’t be a straight
line, then it should be something else and I cannot
imagine what it would, would be then. Because the rod
in its whole is heat conductive in the same way
everywhere (14). So, if this side is held perfectly at
zero and that side is perfectly held at 50 (adds “0” to the
starting point of the three graphs and “50” to the end
point of the three graphs) and everything in between is
heat conductive in the same way, it doesn’t seem to me
that it would be something else than a straight line…

In this excerpt, David uses a graph to explain his
thinking. He starts by sketching an initial graph (11) and
then adds graphs at later times with lower fluctuations (12).

FIG. 10. DBD 2: David and Evan’s answer to question B-II.
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He does this in a three-dimensional set of axis and also in
front view. He describes how this shape evolves towards a
straight line (13). This set of elements is explicitly con-
nected and all placed in the mathematics space as they are
referring to the graphical representation in a nonphysical
way. Element 13 is also connected to element 10 with a
dotted line because it builds on their earlier idea that the
shape will evolve to a straight line.
Then, Evan adds that the heat conductivity of the rod is

the same everywhere (14, physics space), which he con-
siders a reason for the graph to evolve towards a straight
line in the end. Therefore element 14 is connected to
element 12. Note that in the last sentence, the student
revisits the cycle of ideas 4–8–14–10, which are all in some
way connected in the diagram, as a way of concluding this
phase of reasoning.
The students reread interview question 2 and continue:

David 25:41 Well, I just think that the, the closer you are
to position zero, the ehm… Ah wait, no, wait… It can
vary, the temperature, but the closer it is going to get to
a value on the straight line…
Evan 26:00 Hmhm.

David 26:00 after some time. And that, yeah, that at,
wherever you are on the rod, that after some time, the
temperature of the rod gets closer and closer to the
straight line (15).
Evan 26:18 Yeah. Pointwise convergence (16).
David 26:19 Yes.

The students build on the mathematical idea of the
converging graph (13) and also explicitly refer to the
physical context in element 15, therefore it is placed in
the blended space. This is directly connected to the
mathematical concept of pointwise convergence (16).

3. Question III

At this point in the interview the students move on to
question III, where they start to think more deeply about the
meaning of heat flow, and in particular its mathematical
definition. The DBD for this part, DBD 3, can be found
in Fig. 11.

Evan 26:37 Evolution of the values of temperature. Yes
and, for the heat flow I don’t really have a clue Ehm… I
don’t even know the definition of heat flow.

FIG. 11. DBD 3: David and Evan’s answer to question B-III.
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Interviewer 26:45 Yes, so how does heat flow in the
system?
Evan 26:48 In the whole system? Or at the boundary
points?
Interviewer 26:50 The question is to discuss it at the
boundary points.
Evan 26:53 Okay. Ehm… and the heat flow, that is the
derivative to the space dimension? Of the heat? Or the
derivative to time?
David 27:05 Eh, wait… Entropy…
Interviewer 27:06 That’s a good question.
Evan 27:08 Thanks.
David 27:08 I think it is entropy (1), so derivative to
time (2) if I’m not mistaken…
Evan 27:18 Heat flow, yeah, I’ve never really under-
stood at the exam what he meant by heat flow. Like
yeah… The funny thing is that both options could be
defended in some way, right?
David 27:31 Yes. Ehm.
Evan 27:33 Yes if you, if we don’t have the definition, we
cannot answer the question, actually, right?
David 27:38 If I’m not mistaken, ehm, heat flow is
something like entropy (1).
Evan 27:45 I don’t have a clue what entropy is (laughs).
David 27:45 Yeah I don’t really know it myself but…
Interviewer 27:50 But try to use you, ehm, your intuition
and daily insight, to try to understand heat.
David 28:01 Something feels cold because you lose
heat (3). So I think that you go from a hot to a cold
point [Referring to the boundary conditions (4)],
and that means that the heat comes from position x
is 10 and that… And that all goes to the beginning of
the rod (5).

As the students start thinking about the meaning of heat
flow, they acknowledge that they do not know the defi-
nition of heat flow. David proposes that heat flow is
something like entropy (1, physics space), which makes
him think heat flow should be described by a derivative
with respect to time (2). This is placed in the blended space
because it ties a mathematical description to the physical
concept of heat flow. Again, the students have problems
understanding this because neither of them really knows
what entropy means. It is unclear how the students decide
from the concept of entropy that the description of heat
flow should be the derivative of temperature with respect
to time. Elements 1 and 2 are both colored black in the
diagram to highlight that these elements are incorrect. In
the end, and only after having been prompted by the
interviewer, David adds an interpretation of heat flow
coming from his daily-life experience (3, physics space)
and he adds what this implies for the system (5, physics
space) based on the boundary conditions from the problem
statement (4, blended space).
In what follows, the students consider two possible

mathematical definitions for heat flow. They start by

considering the derivative of temperature with respect to
position as the heat flow:

Evan 30:27 Okay. Hm. They could have defined heat
flow for me in the course.. Discuss what the boundary
conditions mean for the evolution of values of temper-
ature.. You know what? We just do it for both and then…
we still win time then.
David 30:47 Hmhm.
Evan 30:47 Let’s just for now just act like heat flow is
just the derivative to position of u (6).
David 30:56 Yes.
Evan 30:57 Okay, well, then we have to discuss that, will
be fine. Discuss what the boundary conditions mean for
the evolution of the values of temperature/concentration,
yes just temperature, and heat flow. Okay so the boundary
conditions are, that here it stays zero always and here 50.
David 31:14 Yes.
Evan 31:14 and what does that mean for the derivative
to x. Well, the derivative to x is just the slope of the
sketch (7).
David 31:22 Hmhm.
Evan 31:23 Ehm, That doesn’t mean a lot, that, at
least… Yes, Yes, it does mean something, that ehm, that
one starts at an arbitrary slope at the boundaries,
doesn’t matter what, because the beginning… a weird
initial distribution [double marks the first drawn graph
in previously sketched image (fourth graphs total)] and
that converges to… that 50, minus zero over 10 minus
zero, so yeah 5 (8), yes. Five.
David 31:43 Yes, five.
Evan 31:43 The sketch is not perfect, but that converges
to five, okay.

The students investigate the hypothesis that the derivative
of temperature with respect to position represents heat
flow (6). This is placed in the blended space because it
ties a mathematical description to the physical concept of
heat flow. Then they connect mathematical meaning to it
(7 and 8), based on the graphs from before and show good
mathematical insight: the slope with respect to x can initially
have any value, but will converge to 5. However, there are no
lines going to the physics space, indicating that the con-
nection to the physical meaning of heat flow is missing.
Secondly, the students consider the derivative of temper-

ature with respect to time to be the heat flow:

Evan 31:43 Well, great result. And now to time. Eh, how
should we look at this. Imagine that heat flow is the
derivative of u to time in a certain point at a certain
time (9)… Eh, that is a bit harder to imagine, right.
Ehm, derivative to time.
David 32:11 Ah yeah wait…
Evan 32:13 That means that it, ah yeah, yes, (referring
to the boundary conditions) that is just in, in,… in 10 it
is always 50 and in 0 it is always 0… (repetition of 4)
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David 32:19 Hmhm.
Evan 32:17 because there it is, so there it (the derivative
with respect to time) is constant according to the
problem (10).
David 32:20 Yes.
Evan 32:22 And at other positions that derivative also
converges to zero. Because at a certain moment, it
converges to a constant solution and there nothing
changes anymore (11), so…
David 32:30 Yes, it just, yes.
Evan 32:36 Yes, nothing changes anymore. That means
that the derivative to t… to time is zero (12).
David 32:40 Hmhm.
Evan 32:40 Yes, okay, we also have a nice resul… we
have a result. Okay, succeeded after all.

In this fragment, the students attempt to consider the
derivative of temperature with respect to time as represent-
ing heat flow (9, blended space). They use the information
from the boundary conditions in the problem statement
(4, gray box) to argue that the derivative with respect to
time should be zero at the boundaries (10). Next, they
extend their reasoning to the rest of the system (11) without
any clear argumentation and conclude that the derivative
with respect to time should converge to zero everywhere
(12). All of this reasoning is situated in the mathematics
space and explicitly connected. Again, the students never
refer to the physical process this represents.
The interviewer then attempts to make them choose:

Interviewer 32:43 And can you try to choose one of the
two now to be the heat flow?
Evan 32:48 Yes, intuitively I find this most sensible, that
(the derivative of u with respect to x) is the heat flow.
Interviewer 32:51 So the one to x?
Evan 32:54 It doesn’t really matter I think, what it,
which of the two it is, it is just a name…
Interviewer 32:58 Yes, but the question is ‘discuss heat
flow,’ so if you are going to say…
Evan 33:01 Yes, that is kind of true…

The students cannot decide between the two options, and
even suggest that it does not matter. Using the blending
diagram in Fig. 11 we can see that the problem here is the
lack of elements in the physics space and connections to the
physics space. They have some (limited) physical under-
standing of heat flow (element 3), but they fail to connect it
to their two mathematical options.

B. Case 2

As a second case, we discuss the answers of students
Fin and Glen to interview task A (see Fig. 6). This case
was selected because it shows how a DBD can help in
visualizing and interpreting the line of reasoning of the
students. We do not discuss their answer to task A-I

because the features of that DBD are very similar to the
earlier discussed DBD 1. Here, we discuss the answers to
A-II and III. Because the students answered these two
questions in an integrated way, this resulted in one DBD
instead of two. Figure 12 shows DBD 4.
The interviewer reads question II of interview task A

aloud and the students start their answer:

Fin 10:55 Yeah, [referring to the boundary conditions
(1)] the temperature on both sides stays constant so,
over time (2) and…
Glen 11:02 and the heat flow is just the derivative of
temperature to position (3).
Fin 11:07 Yes, and that means that eventually the whole
rod will just get a temperature of zero. After, yeah, not
a lot of time (4).
Glen 11:11 Okay yeah. It’s very badly isolated.
Fin 11:16 Yes, even not isolated. (5)

The students start by stating a physical interpretation of
what happens at the boundaries, which is probably based
on the equations of the boundary conditions (1, gray box,
and 2, which are implicitly connected). Thereafter, Glen
mentions an interesting element: “heat flow is just the
derivative to position,”which is placed in the blended space
(3). In this specific case, the numbering points out to a
reader that this element is mentioned in the very beginning
of their reasoning, without a lot of ideas building up to it.
Fin continues by mentioning that the whole rod will evolve
to a temperature of zero (4). Note that elements 2 and 4
actually follow each other in one sentence, while student
Glen interrupted with element 3. Therefore, we connect
elements 2 and 4 with a dotted line, as they are probably
part of one line of reasoning. Lastly, the students conclude
that the rod must be badly or even not isolated (5). It seems
that this statement is based on element 4. Therefore, we
connect elements 4 and 5 with a dotted line.
The interviewer summarizes the two questions to make

the students continue:

Interviewer 11:21 Yes, so, the second question is, during
the process and the third question is after a very long time,
so you can actually discuss those two at the same time.
Glen 11:26 Ah, okay.(talking at the same time)
Fin 11:28 Ah, yes, yes.
Glen 11:30 Imagine you have a sine wave (6) [this
refers to a possible initial condition (7)], then it will
also…
Fin 11:32 For example yeah…
Interviewer 11:35 You can sketch if you’d like.
Fin 11:36 Yes.
Glen 11:36 Ah, okay, ah yeah, okay. The difference with
the sine is just that instead of here (they refer to the
horizontal line at average height on the graph), you will
get a line here [adds a horizontal line at height zero on
the graph (8)]
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Fin 11:45 Yes, yes.
Glen 11:46 And so, but it will actually fade out in the
same way (9), like, cause it will start here doing just…
Like all those sine waves will, like… If it is a sine wave,
all the sine waves will decrease a bit, until you are at a
line here (at zero) (10). That is like…
Fin 11:58 So instead of the boundaries increasing, they
will just stay at zero (11). Yes, because they fade out.

Glen proposes to start from a sine-shaped function (6,
mathematics space). This probably refers to the shape of the
initial condition that they used in the previous problem,
which they also used in their answer to A-I. The students
actively compare this problem with the previous one, where
they were given an isolated system where the temperature
distribution was initially shaped like the graph in Fig. 13. In
that problem, the students concluded that the solution is a
straight line at the average height. Now, the students draw a
horizontal graph at height zero on that same set of axes (8).
This is placed in the blended space because it is a graphical
representation of what they stated earlier in element 4 from
the physics space. The students expand their comparison
with the previous problem and start a mathematical line
of reasoning. They mention that the graph will fade out
similarly (9, mathematics space), which is connected to the

graph they sketched in element 8. This builds on the
previously mentioned idea that the rod will evolve to a
uniform temperature of zero (implicit connection between
4 and 9). Element 9 is categorized as being mathematical
because it discusses the evolution of the graph without

FIG. 12. DBD 4: Fin and Glen’s answer to tasks A-II and III.

FIG. 13. IC given in the previous problem (which is not
discussed in this paper). It has the shape of a shifted sine curve.
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referring to the physical process. This line of reasoning
forms the triangle 4–8–9. Then Glen continues the com-
parison and states that If it is a sine wave, all the sine waves
will decrease a bit, until you are at a line here (10,
mathematics space). He seems to use the initial condition
from the previous problem and combines this with the
earlier mentioned idea of the decreasing graph converging
to zero. To continue, the students mention the graphical
representations of the boundary conditions (11, mathemat-
ics space), which is connected to previously mentioned
elements to form triangles 11–1–2 and 11–8–2.
The students continue by discussing a partial derivative

at the boundary.

Glen 12:05 Ah yeah, because the derivative doesn’t
necessarily have to be equal to zero (12).
Fin 12:09 Eh, Yes.
Glen 12:10 Ah yes, but it does if we have a sine wave by
coincidence.
Fin 12:14 Yes.
Interviewer 12:15 Wait, the derivative doesn’t have to
be equal to zero? What do you mean by that?
Glen 12:18 the derivative at the boundary.
Fin 12:21 And to time or position?
Glen 12:23 The?
Fin 12:23 Time or position?
Glen 12:24 Position, so like, you don’t necessarily need
to get this shape (13).
Fin 12:27 Ah yeah, true.
Glen 12:30 But it depends on the initial function
(continuation of 13).
Interviewer 12:32 Yes.
Fin 12:34 I think so?

Glen starts by adding that “the derivative does not have
to be zero” (12). We include a line to element 11 because
the student uses element 12 to justify element 11. The
interviewer asks the students to explain what they mean by
that, which causes Fin to ask “to time or to position?” We
know from previous work that students have difficulties
with different aspects of taking the derivative of a function
with two variables, so this is an important question (ref
study 1). In element 13, the student specifies that he means
the partial derivative with respect to position, but he adds
“you don’t necessarily need to get this shape, it depends on
the initial function.” It is not completely clear what the
student means by this, but a possible interpretation is that
he is referring to the slope at the boundaries and how the
initial function determines that. As the derivative with
respect to position does not have to be zero by default in
this case, this means that the slope should not necessarily be
zero and therefore, the tangent line should not necessarily
be horizontal. Even though the students reason about the
derivative with respect to position, we do not connect it
with element 3, because at no point in this reasoning they
refer to heat flow or any other physical meaning.

The interviewer finishes by asking them to repeat and
summarize their answer concerning heat flow at the
boundaries.

Interviewer 12:35 So can you specify again how the heat
fl… So you said it already for the temperature, but what
can you say about the heat flow at the boundaries?
Throughout the process?
Glen 12:44 It is flowing out, and I think slower and
slower.
Fin 12:49 Yeah, eh, yes.
Glen 12:52 Always less and less. Ah yes yes, less and
less heat (14), so less heat will flow out.

This results in the students adding some more physical
ideas (14). This element is not connected to anything in the
diagram because the students do not explicitly state the
reason for the heat flow being “slower and slower.”
In conclusion, at first sight these students seem to have a

good and well-connected understanding. They constantly
move between spaces and actively build on and connect the
different parts of their reasoning. However, after mapping
the transcript to a blending diagram, we see that the critical
element 3 heat flow is the derivative to position is not
explicitly connected to anything. This means that we
cannot be sure that the students have a complete under-
standing of all the elements they use and how they are
connected.

V. DISCUSSION

In this paper, we use the conceptual blending framework
as a lens to study student thinking while combining
mathematics and physics in the context of phenomena
described by the heat equation. We propose the dynamic
blending diagram as a way to analyze student reasoning.
The DBD differs from blending diagrams earlier presented
in PER by adding time stamps and implicit and explicit
connections at element level so as to capture the dynamics
of the reasoning. We used data from an interview study and
selected two cases to illustrate the construction of a DBD.
Because of our focus on the interplay of mathematics and

physics, we chose to define a mathematics and a physics
space as input spaces. We explicitly formulated a charac-
terization of these input spaces and the blended space, a
step that is not explicitly mentioned in the earlier work in
PER and MER discussed in Sec. I C. In particular, we
consider equations and graphs as blended elements, i.e., as
elements that combine mathematics and physics, when they
are used to carry the meaning of the physical concepts they
represent [20]. A similar perspective on the role of graphs is
seen in the work of Gerson and Walter [22]. In their work,
the abstract graphs are positioned in one of the input spaces,
i.e., the inflow and outflow space, but once this graph is
used to explicitly discuss the water in the reservoir, it
becomes a blended element.
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Using our definitions for the different spaces (Table I),
equations and graphs can typically be in two spaces:
mathematics or B. It is possible that students first use an
equation in a mathematical way (e.g., element 2 in DBD 1)
and then later on in their reasoning give a physical
interpretation to it (e.g., element 4 in DBD 1). From then
on, element 2 has become a blended element, because it is
an equation to which students attach physical meaning.
Therefore, in the final DBD, we place element 2 in the
blended space. The fact that the element moved is implic-
itly covered by the numbering. So when an equation has a
chronological number that comes before its physical
interpretation, it has moved throughout the process.
In our data, the boundary conditions are provided in the

task and the students are asked to give and explain their
physical interpretation. The blending would be of a differ-
ent nature if the students would have been asked to
construct these boundary conditions themselves based on
a description of a physical situation. However, the boun-
dary conditions would end up in the blended space in both
cases most of the time. The representation in the DBD
works for both types of data because of the color code and
the numbering. The color gray is used to mark elements that
were given in the problem statement. In our data, we see
that the boundary conditions are invoked early on in the
reasoning. In the case where students would have to
construct the boundary conditions themselves, we would
expect the boundary conditions almost always at the end,
chronologically.
The structure of our DBDs and the characterization of

the spaces result partly from an important choice in the
design of the diagrams: only elements that are explicitly
mentioned by the students are used in the DBD and copied
as literally as possible. This contrasts to other studies in
PER (i.e., Refs. [4,12,13,20]), where the input spaces
generally contained the concepts and ideas from the
different fields that were needed to formulate the student’s
explanation, even if the students did not necessarily
explicitly mention all of them. In these blending diagrams,
the authors’ interpretations of student’s explanations were
crucial to complete the input spaces. In our diagrams, the
role of the researchers’ interpretations is minimized as
much as possible. The authors do not add implicit elements
in the analysis. Moreover, by using dotted lines, we show
the reader that the connection is an interpretation.
As a consequence of this design choice, it is possible

to have disconnected elements in the blended space that
combine mathematics and physics ideas, but do not seem to
originate from elements in the input spaces. From the data
alone, there is no way of knowing if the students possessed
all the necessary elements in the inputs to come to this
blended insight. It is also possible to have a connection
between a blended element and a physics element without
having a link to the mathematics space. For instance,
when the students connect a physical interpretation to an

equation, this equation is placed in the blended space and
connected to the interpretation in the physics space.
Implicitly, the student probably used mathematical knowl-
edge to read the equation. In the work of Schermerhorn and
Thompson [20] this is where symbolic forms [21] are
invoked to show what implicit mathematical ideas are being
used to construct or interpret equations. In our work,
however, the blending does not acknowledge implicit ideas
and we do not add interpretations from the researcher’s
perspective, so this mathematical knowledge stays implicit.
Whereas in earlier work in PER the focus is on the

resulting blended space, we argue that in our visualization
in a DBD, the blended space does not give a full overview
of the product of the blending process. The blending has
to be interpreted in a broader way than just the elements in
the blended space. The blended space contains elements
that combine mathematics and physics ideas, and graphs
and equations that carry physical meaning. However,
these always have to be interpreted in combination with
the existing connections to the physics and mathematics
spaces.
The main aim of constructing DBDs is of course to use it

as a method to get more insight in student reasoning. The
introduction of individual connections at element level
enables us to judge the degree of integration in the blending
diagrams. By numbering the elements, the reader can
follow how the students move around between spaces
throughout their reasoning. The combination of the indi-
vidual connections and the numbering enables the reader to
follow the line of reasoning of the students in the DBD.
In the case studies discussed in this paper, we observe

some well-integrated networks in DBDs 1, 2, and 4. These
DBDs typically contain triangles that connect elements
in all three spaces. In DBDs 1 and 2 the students actively
move between all spaces. In DBD 4, a different type of
process is visible. The students initially show mostly
physical reasoning (1–5) before moving on to mostly
mathematical reasoning (7–12) and only in the end they
add another physics element which is not well connected to
the rest of the reasoning. These mathematical and physical
lines of reasoning are connected implicitly in several ways
in the diagram. However, we also observe a poorly
integrated network in DBD 3, with one-sided connections
between the mathematics and the blended space, leaving
the physics space somewhat isolated. In contrast to DBD 4,
where the physics space was well developed and implicitly
connected to the reasoning, the disconnection to the
physics space in DBD 3 causes difficulties.
In addition to describing the level of integration, the

DBD can also be used to diagnose and locate difficulties in
student reasoning. For example, in DBD 3, the absence
of connections between elements in the mathematics and
physics space prevents the students from finding the
relation between heat flow and its mathematical descrip-
tion. As a second example, in DBD 4, element 3, “heat flow
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is derivative to position,” is not connected to the rest of
the reasoning. The students make a statement about heat
flow (13) and about the derivative to position not having
to be equal to zero (11 and 12), but do not connect the
elements to the initial idea which indicates incomplete
understanding.
By using black colored boxes, we acknowledge that

students sometimes use incorrect elements in their reason-
ing. In DBD 3, for example, this representation immedi-
ately shows that there is a difficulty situated around
elements 1 and 2, where the students connect heat flow
to entropy and to a derivative with respect to time.
Conceptual blending has the potential to be a powerful

framework to investigate the combination of mathematics
and physics in student reasoning. We built on previous
adaptations of the original framework in PER and MER
and added several aspects that enable us to investigate the
process of reasoning. However, not all constructs from the
original work of Fauconnier and Turner have already been
translated to the PER context.
The attentive reader has noticed that the generic space

has no place in our DBDs. In our study we see the generic
space as providing structure from inferred reasoning that
depends on researcher interpretation. Since we limit our
analysis to explicit statements and reasoning, we also omit
a generic space in our blends. We do not distinguish
between the different mechanisms to generate new meaning
in the blended space (composition, completion, and elab-
oration). In the examples presented here, students combine
ideas and concepts from mathematics and physics, which
could be interpreted as composition. However, pinpointing
where composition turns into completion and even elab-
oration appears to be difficult. Studies from PER and MER
dealing with the interplay between mathematics and phys-
ics also do not mention the three distinct mechanisms.

VI. LIMITATIONS AND FUTURE RESEARCH

A dynamic blending diagram provides specific details
about students’ reasoning processes and how they connect
mathematics and physics ideas. This extensive analysis can
also provide insight in difficulties in student reasoning and
as such scaffold the design of effective teaching materials.

However, constructing a DBD is not obvious and is time
consuming. Therefore, it is not suitable for quick analysis
or directly as a teaching tool.
The structure of the DBD is closely related to the type of

questions in the interview and the nature of the data we are
using. The DBDs as defined and constructed in this paper
are suitable to investigate qualitative and conceptual
reasoning, but may be less suitable to visualize reasoning
with a prominent role for calculations. Like in most other
work in PER that studies the interplay between mathemat-
ics and physics through a conceptual blending lens, we
describe the mechanism of blending on a rather general
level: we do not distinguish between the three mechanisms
of blending as they are described in the original framework.
However, it is an interesting challenge to better understand
the differences between these mechanisms in the context of
mathematics and physics. Our case studies use the context
of the heat equation, but the analysis method is applicable
to other contexts in which students are expected to blend
mathematics and physics. By extension, it should also work
for topics in which any two subjects are combined, e.g.,
chemistry and biology or mathematics and economics.
However, describing other contexts requires again a careful
definition of the input spaces.
The aim of this paper is to propose the method of

constructing a dynamic blending diagram. Content-specific
analysis using DBDs will follow in a subsequent paper.
Combined with our earlier work on student difficulties with
boundary conditions, this will scaffold the development of
a teaching intervention in order to improve the learning
process of boundary conditions in the context of the heat
equation.

ACKNOWLEDGMENTS

We want to thank all participating students for their
voluntarily participation to our interviews. We also thank
Dr. Jan Sermeus for reading our manuscript and sharing
his constructive thoughts with us. This material is based
upon work partially supported by the National Science
Foundation under Grants No. PHY-1405726 and No. PHY-
1912087.

[1] B. P. Schermerhorn and J. R. Thompson, Physics students’
construction of differential length vectors in an unconven-
tional spherical coordinate system, Phys. Rev. Phys. Educ.
Res. 15, 010111 (2019).

[2] T. I. Smith, J. R. Thompson, and D. B. Mountcastle,
Student understanding of taylor series expansions in

statistical mechanics, Phys. Rev. ST Phys. Educ. Res. 9,
020110 (2013).

[3] J. Wagner, Students’ obstacles and resistance to Riemann
sum interpretations of the definite integral, in Proceedings of
the 19th annual Conference on Research in Undergraduate
Mathematics Education, edited by T. Fukawa-Connelly,

DYNAMIC CONCEPTUAL BLENDING ANALYSIS … PHYS. REV. PHYS. EDUC. RES. 16, 010114 (2020)

010114-17

https://doi.org/10.1103/PhysRevPhysEducRes.15.010111
https://doi.org/10.1103/PhysRevPhysEducRes.15.010111
https://doi.org/10.1103/PhysRevSTPER.9.020110
https://doi.org/10.1103/PhysRevSTPER.9.020110


N. Engelke Infante, M. Wawro, and S. Brown (MAA,
Pittsburgh, 2016), pp. 1385–1392.

[4] D. Hu and N. S. Rebello, Using conceptual blending
to describe how students use mathematical integrals in
physics, Phys. Rev. ST Phys. Educ. Res. 9, 020118 (2013).

[5] B. R. Wilcox, M. D. Caballero, D. A. Rehn, and S. J.
Pollock, Analytic framework for students’ use of math-
ematics in upper-division physics, Phys. Rev. ST Phys.
Educ. Res. 9, 020119 (2013).

[6] J. Guisasola, J. Almundi, J. Salinas, K. Zuza, and M.
Ceberio, The Gauss and Ampere laws: Different laws but
similar difficulties for student, Eur. J. Phys. 29, 1005
(2008).

[7] L. Doughty, E. Mcloughlin, P. V. Kampen, L. Doughty, E.
Mcloughlin, and P. V. Kampen, What integration cues, and
what cues integration in intermediate electromagnetism,
Am. J. Phys. 82, 1093 (2014).

[8] L. Bollen, P. V. Kampen, and M. D. Cock, Students’
difficulties with vector calculus in electrodynamics, Phys.
Rev. ST Phys. Educ. Res. 11, 020129 (2015).

[9] R. Pepper, S. Chasteen, S. Pollock, and K. Perkins,
Observations on student difficulties with mathematics in
upper-division electricity and magnetism, Phys. Rev. ST
Phys. Educ. Res. 8, 010111 (2012).

[10] E. F. Redish and E. Kuo, Language of physics, language of
math: Disciplinary culture and dynamic epistemology, Sci.
Educ. 24, 561 (2015).

[11] G. Fauconnier and M. Turner, Conceptual blending, form
and meaning, Recherches en communication 19, 57 (2003).

[12] T. J. Bing and E. F. Redish, The cognitive blending of
mathematics and physics knowledge, AIP Conf. Proc. 883,
26 (2007).

[13] L. Bollen, P. van Kampen, C. Baily, and M. De Cock,
Qualitative investigation into students’ use of divergence
and curl in electromagnetism, Phys. Rev. Phys. Educ. Res.
12, 020134 (2016).

[14] T. Huynh and E. C. Sayre, Blending of conceptual physics
and mathematical signs, arXiv:1909.11618.

[15] M. L. Boas, Mathematical Methods in the Physical
Sciences (Wiley, New York, 2006).

[16] S. Van den Eynde, J. Deprez, M. Goedhart, and M.
De Cock, Undergraduate student’s difficulties with boun-
dary conditions for the diffusion equation, Int. J. Math.
Educ. Sci. Technol. (to be published).

[17] S. J. Farlow, Partial Differential Equations for Scientists
and Engineers (Courier Corporation, New York, 1993).

[18] G. Fauconnier and M. Turner, Conceptual integration
networks, Cogn. Sci. 22, 133 (1998).

[19] O. Uhden, R. Karam, M. Pietrocola, and G. Pospiech,
Modelling mathematical reasoning in physics education,
Sci. Educ. 21, 485 (2012).

[20] B. Schermerhorn, Investigating student understanding
of vector calculus in upper-division electricity and
magnetism: Construction and determination of differential
element in non-Cartesian coordinate systems, Ph.D. thesis,
University of Maine, 2014.

[21] B. L. Sherin, How Students Understand Physics Equations,
Cognit. Instr. 19, 479 (2001).

[22] H. Gerson and J. Walter, How blending illuminates under-
standings of calculus, in Electronic Proceedings for the
Eleventh Special Interest Group of the Mathematical
Association of America on Research in Undergraduate
Mathematics (2008).

[23] M. Zandieh, K. H. Roh, and J. Knapp, Conceptual
blending: Student reasoning when proving “conditional
implies conditional” statements, J. Math. Behav. 33, 209
(2014).

[24] C. Megowan and M. J. Zandieh, A case of distributed
cognition (or, many heads make light work), in Proceed-
ings of the 27th annual meeting of the North American
Chapter of the International Group for the Psychology of
Mathematics Education (2005), http://www.pmena.org/
proceedings/.

SOFIE VAN DEN EYNDE et al. PHYS. REV. PHYS. EDUC. RES. 16, 010114 (2020)

010114-18

https://doi.org/10.1103/PhysRevSTPER.9.020118
https://doi.org/10.1103/PhysRevSTPER.9.020119
https://doi.org/10.1103/PhysRevSTPER.9.020119
https://doi.org/10.1088/0143-0807/29/5/013
https://doi.org/10.1088/0143-0807/29/5/013
https://doi.org/10.1119/1.4892613
https://doi.org/10.1103/PhysRevSTPER.11.020129
https://doi.org/10.1103/PhysRevSTPER.11.020129
https://doi.org/10.1103/PhysRevSTPER.8.010111
https://doi.org/10.1103/PhysRevSTPER.8.010111
https://doi.org/10.1007/s11191-015-9749-7
https://doi.org/10.1007/s11191-015-9749-7
https://doi.org/10.14428/rec.v19i19.48413
https://doi.org/10.1063/1.2508683
https://doi.org/10.1063/1.2508683
https://doi.org/10.1103/PhysRevPhysEducRes.12.020134
https://doi.org/10.1103/PhysRevPhysEducRes.12.020134
https://arXiv.org/abs/1909.11618
https://doi.org/10.1207/s15516709cog2202_1
https://doi.org/10.1007/s11191-011-9396-6
https://doi.org/10.1207/S1532690XCI1904_3
https://doi.org/10.1016/j.jmathb.2013.11.007
https://doi.org/10.1016/j.jmathb.2013.11.007
http://www.pmena.org/proceedings/
http://www.pmena.org/proceedings/
http://www.pmena.org/proceedings/
http://www.pmena.org/proceedings/

